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The measurement of distance between two objects is generalized
to the case where the objects are no longer points but are
one-dimensional. Additional concepts such as nonextensibility,
curvature constraints, and noncrossing become central to the
notion of distance. Analytical and numerical results are given for
some specific examples, and applications to biopolymers are
discussed.

The distance, as conventionally defined between two zero-
dimensional objects (points) A and B at positions rA and rB, is

the minimal arclength travelled in the transformation from A to B.
A transformation r(t) between A and B is a vector function that may
be parametrized by a scalar variable t: 0 � t � T, r(0) � rA, r(T) �
rB, and the distance travelled is a functional of r(t). The (minimal)
transformation r*(t) is an object of dimension one higher than A or
B; i.e., it yields a distance that is one-dimensional. The distance D*
is found through the variation of the functional (1):

D* � D�r*� t�� where r*� t� satisfies [1a]

��
0

T

dt� g�� ẋ��t�ẋ��t��1/2 � ��
0

T

dt �ṙ2 � 0. [1b]

Here, ẋ � dx/dt, ṙ � dr/dt, and we have let g�v � ��v (Euclidean
metric). The boundary conditions mentioned above are present at
the end points of the integral. The Einstein summation convention
will be used where convenient (e.g., eq. 1b); however, all the analysis
here deals with spatial coordinates, � � 1, 2, 3, on a Euclidean
metric. Generalizations to dimension higher than 3, as well as
non-Euclidean metrics, are straightforward to incorporate into the
formalism.

On a Euclidean metric, the minimal distance becomes the
diagonal of a hyper-cube. However, formulated as above, the
solutions minimizing D are infinitely degenerate, because particles
moving at various speeds but tracing the same trajectory over the
total time T all give the same distance. To circumvent this problem,
what is typically done is to let one of the space variables (e.g., x)
become the independent variable. However, for higher dimensional
objects or zero dimensional objects on a manifold with nontrivial
topology, there is no guarantee that the dependent variables (y, z)
constitute single valued functions of x. Alternatively, one can study
the ‘‘time’’ trajectory of the parametric curve defined above, but
under a gauge that fixes the speed to a constant, vo, for example.
One can either fix the gauge from the outset with Lagrange
multipliers, or choose a gauge that may simplify the problem after
finding the extremum equations. The latter is often simpler in
practice.

To be specific, the effective Lagrangian appearing in the above
problem is � ṙ2, and the Euler–Lagrange (EL) equations are

d
dt��

�ṙ� � 0 or
d
dt� ṙ

� ṙ�� � v̂̇ � 0, [2]

with v̇ the unit vector in the direction of the velocity. The boundary
conditions are

r*�0� � rA and r*�T� � rB. [3]

Because the derivative of a unit vector is always orthogonal to
that vector, Eq. 2 says that the direction of the velocity cannot
change, and therefore straight line motion results. Applying the
boundary conditions gives v̂ � (rB � rA)/�rB � rA�. However, any
function v(t) � �vo(t)�v̂ satisfying the boundary conditions
is a solution, so long as �0

Tdt �vo(t)� � �rB � rA�. This is the infinite
degeneracy of solutions mentioned above. Then r*(t) � rA 	
(rB�rA)/�rB�rA� �0

t dt �vo(t)�, and D* � �0
Tdt �ṙ*2 � �0

Tdt �vo(t)� �
�rB � rA�. At this point we could fix the parameterization by
choosing �vo(t)� � �rB � rA�/T (constant speed), for example.

The extremum is a minimum, as can be shown by analyzing the
eigenvalues of the matrix �2D/�x�(t)�x�(t
) � ������ (t � t
).
Diagonalizing by Fourier transform gives positive elements 	�n

2

����(�n � �
n) for the stability matrix and thus positive eigenvalues.
In what follows, we generalize the notion of distance to higher

dimensional objects, specifically space curves. We will see many of
the above themes reiterated, as well as some fundamentally new
features that emerge when one treats the space curves as nonex-
tensible, having some persistence length or curvature constraint,
and noncrossing or unable to pass through themselves. We provide
analytical and numerical results for some prototypical examples for
nonextensible chains, and we lay the foundations for treating
curvature and noncrossing constraints.

Distance Metric for One-Dimensional Objects
The distance D* between two one-dimensional objects (which we
refer to as space curves or strings) A and B having configurations
rA(s) and rB(s), 0 � s � L, is obtained from the transformation from
A to B that minimizes the integrated distance travelled. By inte-
grated distance we mean the cumulative arclength all elements of
the string had to move in the transformation from A to B. For the
transformation to exist, strings A and B must have the same length
(although this condition may be relaxed by allowing specific exten-
sions or contractions). For the distance to be finite, open space
curves must be finite in length. For closed non-crossing space
curves, A and B must be in the same topological class for the
transformation to exist. Describing the transformation r(s, t) re-
quires two scalar parameters, one for arc length s along the string
and another measuring progress as in the zero-dimensional case, say
t: 0 � t � T, so that r(s, 0) � rA(s) and r(s, T) � rB(s). The distance
travelled is a functional of the vector function r(s, t). The minimal
transformation r*(t, s) is an object of dimension one higher than A
or B, i.e., it yields a distance that is two-dimensional. The problem
does not map to a simple soap film, since there are many config-
uration pairs that have zero area between them but nonzero
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distance travelled, e.g., a straight line displaced along its own axis,
or that in Fig. 1C. The analogue to a higher-dimensional surface of
minimal area when the ‘‘time’’ t is included is closer but inexact (see
footnote below).

We can construct the effective Lagrangian along the same lines
as the zero-dimensional case. Using the shorthand r � r(s, t), ṙ �
�r/�t, r
 � �r/�s, the distance travelled is‡

D � �
0

L

ds �
0

T

dt�ẋ�ẋ� � �
0

L

ds �
0

T

dt�ṙ2. [4]

However, to meaningfully represent the distance a string must move
to reconfigure itself from conformation A to B, the transformation
must be subject to several auxiliary conditions.

The first of these is nonextensibility. Points along the space curve
cannot move independently of one another but are constrained to
integrate to fixed length, so the curve cannot stretch or contract.
Thus there is a Lagrange multiplier �(s, t) weighting the (nonholo-
nomic) constraint:

�r
2 � 1. [5]

This constraint ensures a parameterization of the string with unit
tangent vector t̂ � r
, so that the total length of the string is L �
�0

Lds �r
2 � �0
Lds. In the language of differential geometry, the

space curve is a unit-speed curve.

If the constraint (Eq. 5) were not present in Eq. 4, each point
along the space curve could follow a straight line path from A to B
and the problem of minimizing the distance would be trivial.
Equivalently, setting � � 0 should reduce the problem to a sum of
straight lines analogously to the zero-dimensional case above.

As in the case of distance between points, one can fix the
t-parameterization from the outset by introducing a Lagrange
multiplier 	(t) that fixes the total distance covered per time �0

Lds
�ṙ2 to a known function f(t). Although this approach removes the
infinite degeneracy mentioned above, as a global isoperimetric
condition it reduces the symmetry of the problem. For example,
there would then be no conservation law that could be written to
capture the invariance of the effective Lagrangian with respect to
the independent variable t. For these reasons, we choose to leave
the answer as unparamaterized with respect to t, analogous to the
point-distance case above.

Ideal Chains. There are many examples of transformations between
two strings A and B where chain noncrossing is unimportant (e.g.,
Fig. 1 A and B). Here we derive the EL equations for this case.

From Eqs. 4 and 5, the extrema of the distance D are found from

�D � � �
0

L �
0

T

ds dt �ṙ,r
� � 0

or � �
0

L �
0

T

ds dt ��ṙ2 
 � �r
2� � 0. [6]

Performing the variation gives

�D � �
0

L

ds�pt��r�0
T � �

0

T

dt�ps��r�0
L


 �
0

L �
0

T

ds dt �r�� dps

ds
�

dpt

dt � � 0, [7]

where the generalized momenta pt and ps are given by:

pt �
�

� ṙ
� v̂ and ps �

�

�r

� 
 � t̂, [8]

where v̂ is again the unit velocity vector, and t̂ is the unit tangent
to the curve.

The EL equation follows from the last term in Eq. 7, and yields
a partial differential equation for the minimal transformation
r*(s, t):

�ṙ2� r̈ 
 � ṙ�r̈� ṙ � � ṙ�3��r� � �
r
� , [9]

where we have used the facts that �r
� � 1 and r
 � r� � t̂ � � � 0,
since the tangent is always orthogonal to the curvature at any given
point along a space curve.

Eq. 9 can be written in terms easier to understand intuitively by
using the unit velocity vector v̂, tangent t̂, and curvature �:§

v̂̇ � �� � �
 t̂. [10]

Comparing Eqs. 10 and 2, we confirm that setting the Lagrange
multiplier � corresponding to the nonextensibility condition to zero

‡The distance-metric action in Eq. 4 bears a strong resemblance to the Nambu–Goto action
for a classical relativistic string (2): SNG[r(s, t)] � �d� d 	(ṙ�r
)2 
 (ṙ)2(r
)2, where r in SNG

is now a four-vector and the dot product is the relativistic dot product. This action is
physically interpreted as the (Lorentz invariant) world-sheet area of the string. If Eq. 4
could be mapped by suitable choice of gauge to the minimization of the Nambu–Goto
action, one could exploit here the same reparameterization invariance that results in wave
equation solutions to the equations of motion for the classical relativistic string, by
choosing a parameterization such that ṙ�r
 � 0 (for the purely geometrical problem, the
discriminant under the square root in the action has opposite sign). Unfortunately,
however, because the velocity in the distance-metric action is a 3-velocity rather than a
4-velocity, our action only accumulates area when parts of the string move in 3-space, in
contrast to the Nambu–Goto action that accumulates area even for a static string. The
distance-metric action Eq. 4 has a lower symmetry than that for the classical relativistic
string. D* cannot depend on the time the transformation took, whereas the world sheet
area does. Conversely, if we take, for example, configuration A at t � 0 to be a straight line
of length L, and configurations B at t � T to be the same straight line but displaced along
its own axis by varying amounts d, the geometrical area for all transformations would be
LT, whereas the distances D*AB for each transformation would be Ld.

§The invariance of the Lagrangian to (s, t) leads to conservation laws by Noether’s theorem
(1), which here take the form of divergence conditions. However, these generally contain
no new information beyond the EL equations and can be obtained by dotting Eq. 10 with
either r
 to give �
 � v̂̇ � t̂ or ṙ to give v � (�t̂ )
 � 0.
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Fig. 1. Three representative pairs of curves. (A) Straight line curve rotated by
�/2. (B) One string has a finite radius of curvature, the other is straight. (C) A
canonical example where noncrossing is important; the curves are displaced
for easy visualization but should be imagined to be superimposed.
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results in straight line solutions for all points along the space curve.
Conversely, the condition that the space curve form a contiguous
object results generally in nonzero deviation from straight line
motion. So in comparing various extremal solutions to Eq. 10, the
minimal solution tends to minimize ��� everywhere.

The boundary conditions are obtained from the first two terms
in Eq. 7. Because the initial and final configurations are specified,
the variation �r vanishes at t � 0, T, and the corresponding
boundary conditions, or initial and final conditions, are:

r*�s , 0� � rA�s� and r*�s , T� � rB�s� . [11]

Because the end points of the string are free during the trans-
formation, �r  0 at s � 0, L, and so the conjugate momenta must
vanish: ps(0, t) � ps(L, t) � 0. This means that �t̂ � 0 at the end
points. However, because t̂ cannot be zero, the only way this can
occur is for �(0, t) � �(L, t) � 0. The Lagrange multiplier, which
represents the conjugate force or tension to ensure an inextensible
chain, must vanish at the end points of the string. If � � 0, the
EL Eq. 10 gives v̂̇ � �
t̂ at the end points. However, because v̂ is a
unit vector, v̂̇ is orthogonal to v̂ (or v), and we have finally the
boundary conditions at the end points of the string:

�
v � t̂ � 0 �at the end points� . [12]

Eq. 12 has three possible solutions. One is that v � t̂ � 0 or
equivalently ṙ � r
 � 0, which corresponds to pure rotation of the end
points. It is worth mentioning that the end points of the classical
relativistic string also move transversely to the string. Moreover
because of the Minkowski metric the end points must also move at
the speed of light. Here, however, because Lorentz invariance is not
at issue, additional solutions are possible. The end points of our
string can be at rest, v � 0, and satisfy Eq. 12. The last solution of
Eq. 12 is for �
 � 0. Because � also vanishes
at the end points, Eq. 10 gives v̂̇ � 0, or straight line motion. In
summary, the three possible boundary conditions for the string end
points are:

v � t̂ � 0 �pure rotation� [13a]

v � 0 �at rest� [13b]

v̂̇ � 0 �straight line motion� . [13c]

Whether an extremal transformation is a minimum can be
determined by examining the second variation of the functional
(Eq. 6):

�2D �
1
2 �

0

L �
0

T

ds dt ��ṙ � I � � ṙ � �r
 � � � �r
� ,

[14]

where Iij � (ṙ2�ij � ẋiẋj)/�ṙ�3 and �ij � ��(s, t) �ij, and �r
 and �ṙ are
the s and t derivatives of the variation �r from the extremal path.

We now apply these concepts to some specific examples.

Examples. Translations. If two space curves differ by a translation,
rB(s) � rA(s) 	 d with d a constant vector. The appropriate
boundary condition for the end points is Eq. 13c. The points along
the string can all satisfy Eq. 10 with v̂̇ � 0 and � � 0 everywhere
(because t̂, �  0), and straight line motion results: r*(s, t) � rA(s) 	
(rB(s) � rA(s))t/T. The distance D* � L�d�. This is the one-
dimensional analogue to Eqs. 2 and 3.
Piece-wise linear space curves. Suppose initially the curvature of some
section of the string is zero. Then, taking the dot product of v with
Eq. 10, we see that Eq. 12 holds for all points along the string. So
the string either rotates or translates (or remains at rest if that

segment has completed the transformation). If both rA and rB are
straight lines as in Fig. 1A, Eq. 12 holds for both. It is then
reasonable to seek solutions r* of the EL equation such that Eq. 12
holds for all (s, t).

Consider the two space curves shown in Fig. 1A with rA(s) � sx̂
and rB(s) � s ŷ, both with curvature � � 0. We first investigate
rotation from A to B. This transformation satisfies the EL equation
so appears to be extremal: r � sr̂ � s(cos �tx̂ 	 sin �tŷ). The
velocity ṙ � s��̂, so the distance D[rROT(s, t)] � �L2/4. Taking the
dot product of t̂ with Eq. 10 gives �
 � t̂ � v̂̇ � �� or �(s, t) � �o �
�s. For the transformation to be extremal, the conjugate momenta
must also vanish at the string end points, or �(0, t) � �(L, t) � 0.
This is impossible to achieve with this functional form, so the
transformation is not extremal, unless we include the subsidiary
condition here that rA(0, t) � rB(0, t). Then the end point of the
string at s � 0 is determined, and the variations �r(0, t) must vanish.
Now only �(L, t) � 0, and so �(s, t) � �(L � s). The transformation
is extremal.

Whether it is a minimum can be determined by examining the
second variation (Eq. 14). For the transformation rROT(s, t), the
matrix I in Eq. 14 is nonnegative definite, a necessary condition for
a local minimum (1); however, � is negative definite, so the
character of the extremum is determined by the interplay of the two
terms in Eq. 14. Variations �r that preserve r
2 � 1 or 2t̂ � �r
 � 0
are satisfied in this example by �r � f(s, t)�̂, where f(s, t) must satisfy
the boundary conditions �r(0, t) � �r(s, 0) � �r(s, T) � 0. We thus
let the variations have the functional form: �r � � sin(ks) sin(n�t/
T)�̂, where �̂ � � sin �tx̂ 	 cos �tŷ, n is a positive integer, and k
is unrestricted. Inserting this functional form for the variations into
Eq. 14 gives �2D � (�2�/8)F(kL), where F (x) is a nonpositive,
monotonically decreasing function, with a maximum of zero at
kL � 0. In fact to lowest order F(kL) � �(��2/2160) (kL)6. The
extremum corresponding to pure rotation of curve rA into rB is a
maximum!

The only other solution to Eqs. 10 and 12 for all (s, t) is for each
point s on rA(s) to be connected to a corresponding point on rB(s)
by a straight line, corresponding to Eq. 13c. Eq. 12 holds everywhere
because �
(s, t) � 0. Because � is zero at the boundaries, it is thus
zero everywhere.

An intermediate configuration then has the shape of a piecewise
linear curve with a right angle ‘‘kink’’ at s*(t) (see Fig 2). As t
progresses, the kink propagates along curve rB, and the “free” part
of the chain follows straight line diagonal motion, shrinking as its
left end is overlaid onto curve rB. The solution for the velocity at
all (s, t) is given by v(s, t) � vo(t)� (s � s*(t)) êv where s*(t) is the
position of the tangent discontinuity in Fig. 2, which goes from
s*(0) � 0 to s*(T) � L as t goes from 0 to T. êv is a unit vector along
the direction of the velocity, êv � (�x̂ 	ŷ)/�2, and vo(t) is a speed
which can be taken constant. By simple geometry, vo � �2ṡ*.
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Fig. 2. The minimal transformation from A to B in Fig. 1A involves the propa-
gation of a kink along curve B. The end point of the curve at intermediate states
satisfies x 	 y � L, the equation for a straight line. A similar linear equation holds
for any point on the curve; thus, no solution with shorter distance can exist. An
intermediate configuration is shown in red. Alternative transformations are
possible with kinks along A as well as multiple kinks (see text).

Plotkin PNAS � September 18, 2007 � vol. 104 � no. 38 � 14901

BI
O

PH
YS

IC
S

PH
YS

IC
S



Because s*(T) � L, vo � �2L/T and s*(t) � Lt/T. The total dis-
tance travelled from Eq. 4 is then D* � L2/�2.

Because the transformation involves straight line motion, it is
minimal. This can be seen from the second variation Eq. 14. The
shape of the curve at all times is given by

r*�s , t� � s��Lt /T 
 s� ŷ � �Lt /T���s 
 Lt /T� ŷ

� �s 
 Lt /T���s 
 Lt /T� x̂. [15]

Taking variations from the extremal path as before, let �r � � sin
k(s�Lt/T) sin(n�t/T)�(s � Lt/T)ŷ. These variations only act on the
‘‘free’’ part of the string and preserve a unit tangent to first order.
The matrix � in Eq. 14 is zero for straight line transformations
where � � 0. The quadratic form �ṙ � I � �ṙ is nonnegative, and results
in a second variation �2D � �2(32�2)�1[(kL)2 	 (n�)2(1 � sinc2

(kL))], which is nonnegative, monotonically increasing in kL, and
quadratic to lowest order, with a minimum of zero at kL � 0. The
transformation is indeed minimal.

Likewise, the minimal distance to fold a string of length L upon
itself starting from a straight line (to form a hairpin) is D* � L2/4.
Solution degeneracy. In the above example, one can piece together
various rotations and translations for parts or all of the chain while
still satisfying the EL equations. This infinity of extrema renders the
solution of Eq. 9 by direct numerical integration very difficult. For
these reasons we apply a method based on analytic geometry to
obtain numerical solutions, described in more detail below.

There is also an infinite degeneracy of solutions having the
minimal distance in the above example. To see a second minimal
transformation, imagine running the above solution backward in
time, so the kink propagates from s � L to s � 0 along rB. However,
this solution should hold forward in time for the original problem
if we permute rB and rA. Now, intermediate states r* first run along
x̂, then ŷ. But then we can introduce multiple right–angle kinks in
various places, without causing the trajectories in the transforma-
tion to deviate from straight lines, so that intermediate states look
like staircases. Because there are an infinite number of possible
staircases in the continuum limit, there is an infinite degeneracy.
This can lead to a tangent vector r
 whose magnitude is length-scale
dependent, and less than unity until s 3 0. For example, an
intermediate configuration can be drawn in Fig. 2 that appears as
a straight diagonal line from r*(0, t) to r*(L, t), until s3 0 when an
infinite number of step discontinuities are revealed. This problem
is resolved in practice through finite-size effects involving different
critical angles of rotation described below. In the continuum limit,
it is resolved by introducing curvature constraints.
Curvature constraints. In applications to polymer physics, chains have
a stiffness characterized by bending potential in the analysis that is
proportional to the square of the local curvature. Here, we may
choose to characterize stiffness by introducing a constraint on the
configurations of the space curve, so that the curvature simply
cannot exceed a given number:

V��r�� � A�� �r� � � �C� �A � 1). [16]

This term lifts the infinite degeneracy mentioned above, as each
near-kink (with curvature � now � �c) would result in slight
deviations from linear motion in the above example, and thus an
additional cost in the effective action. Other functional forms for V�

are also possible. For some applications, a more conventional
stiffness potential of the form V�(r�) � 1/2A�r�2 may be more
appropriate. However, the action would no longer consist of a true
distance functional, and its minimization would involve the detailed
interplay of the parameter A� favoring globally minimal curvature
with other factors affecting distance in the problem.
Discrete chains. Strings with a finite number of elements (chains)
provide a more accurate representation of real-world systems such
as biopolymers. Discretization is also essential for numerical solu-
tions in these more realistic cases. Monomers on a discretized chain

travel along a curved metric (3), and Lagrange multipliers explicitly
account for this fact here.

We start by discretizing the string into a chain of N links each with
length ds � L/N, so that Eq. 4 becomes (ds) �dt �i�1

N	1� ṙi
2, with each

ri(t) a function of t only. The total distance is the accumulated
distance of all the points joining the links, plus that of the end points,
all times ds. This approach is essentially the method of lines for
solving Eq. 10: the PDE becomes a set of N 	 1 coupled ODEs.

Eq. 5 becomes N constraint equations added to the Lagrangian:
�i�1

N �̂i,i	1�(ri	1�ri)2. We rewrite this strictly for convenience as
�(1/2) �i,i	1r i	1/i

2 , where ri	1/i � ri	1 � ri, and �ri	1/i� � L/N.
The PDE in Eq. 10 then becomes N 	 1 coupled (vector) ODEs,

each of the form

v̂̇i � � i�1,iri/i�1 
 � i,i	1ri	1/i � 0, [17]

with �0,1 � �N	1,N	2 � 0. Eq. 17 is consistent with Eq. 10 after
suitable definitions, for example the curvature at point i after
discretization is given by (ri	1/i � ri/i�1)/ds2.
One link. We turn to the simplest problem of one link with end points
A and B (see Fig. 3), for which the action reads L �0

T dt (�ṙA
2 	

�ṙB
2 � (�(t)/2) rB/A

2 ). Points A and B have boundary conditions
rA (0) � A, rB (0) � B, rA (T) � A
, rB(T) � B
. The link in our
problem is taken to have a direction, so point A cannot transform
to point B
. The EL equations become:

v̂̇A 
 �rB/A � 0 or
�vA�rB/A � 0

v̂̇B � �rB/A � 0 �vB�rB/A � 0,
[18]

where the orthogonality of v and v̂̇ has been used.
Reminiscent of Eq. 12, Eqs. 18 each have three solutions. For

point A, these are: (i) vA � rB/A � 0, or pure rotation of A about B,
(ii) vA � 0 or point A is stationary, or (iii) � � 0 and thus v̂̇A � 0
from the EL equations, indicating straight-line motion. Moreover,
i implies vB � 0, or both points rotate about a common center, ii
implies vB � rB/A � 0 or B rotates, and iii implies v̂̇B � 0 as well, so
that both points move in straight lines. An extremal transformation
thus involves either straight line motion, or rotations of one point
about the other at rest (or common center), see Fig. 3 B–F.
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B'A' A B'A'
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θ

Fig. 3. Transformations between two rigid rods. A undergoes simultaneous
translation and rotation and so is not extremal. B is extremal and minimal. The
rod cannot rotate any less given that it translates first. However, this trans-
formation is a weak or local minimum. C–E are extremal in bulk but not
minimal because they violate corner conditions (A. Mohazab and S.S.P.,
unpublished data). F is the global minimum. It rotates the minimal amount,
and both A and B move monotonically toward A
, B
. A purely straight-line
transformation exists but involves moving point A away from A
 before
moving toward it (similar to D), thus covering a larger distance than the
minimal transformation.
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The Lagrange multiplier may be found from the dot product of
the EL equation for B with rB/A, which gives �ds2� � rB/A � v̂̇B. Thus,
when B moves in a straight line � � 0. When B rotates about A, its
acceleration aB follows from rigid body kinematics as aA 	 � �
rB/A � �2rB/A, where � and � are the angular velocity and
acceleration, respectively, and aA � 0. Thus � � 1/L.

The minimal solution is the one that involves the minimal
amount of rotation (and monotonic approach to A
B
). This
may be obtained from analytic geometry: for the example con-
figurations in Fig. 3F, point B rotates about point A until
B�, where the straight line B�B
 is tangent to the circle of radius
ds � L about A. The distance (over ds) is AA
 	 L�c 	 B�B
,
where sin �c � L/(L	AA
) and B�B
 � �(AA
)2 	 2L(AA
), so,
for example, if AA
 � 2L, D � 5.168 L2.
Chains with curvature. We can now investigate the transformation
shown in Fig. 1B with the above methods. This is the canonical
example when at least one of the space curves has nonzero
curvature �. Let rA � R sin(�s/2L)x̂ 	 R cos(�s/2L)ŷ and rB � sx̂ 	
Rŷ, with 0 � s � L and R � 2L/�. We then discretize the chain into
N segments. According to Eq. 17, the end point velocities v̂̇1, v̂̇N	1
obey EL equations of the same form as Eqs. 18, and thus either
rotate or translate. The situation for these links is analogous to Fig.
3 B and F, in that the angle the link must rotate depends on the
order of translation and rotation. The geometry in Fig. 1B is
analogous to transformations A
B
3 AB in Fig. 3 B and F, in that
the critical angle �c the link must rotate is smaller if translation
occurs first.

Fig. 4 shows the two minimal solutions thus obtained. The
transformation in Fig. 4A undergoes translation away from
curve rA, and rotation at rB. It is the global minimum. The
transformation in Fig. 4B rotates from rA through a larger
critical angle (see Fig. 4B Inset), and then translates to rB. Both
solutions have a soliton-like kink that propagates across either
space-curve rB or rA.

The minimal transformation follows these steps: (i) Link r2/1
rotates about r1, v1 � 0, v2 � r2/1 � 0, and the Lagrange multiplier
representing the conjugate ‘‘force’’ �12  0. During this rotation,
nodes 3, 4, . . . move in straight lines formed by their initial values
rA3, rA4, . . . and the tangent points to circles of radius ds centered
at rB2, rB3, . . . . The corresponding Lagrange constraint forces �23,
�34, . . . are all zero. Links r3/2, r4/3, . . . all adjust their orientation to
ensure straight-line motion of their end points (dashed lines in Fig.
4A), except for r2, which follows a curved path. (ii) When link r2/1
completes its rotation, it coincides with curve rB, and the process
starts again with link r3/2, which begins its rotation about r2, whereas
nodes 4, 5, . . . move in straight lines. This process continues until
the final link rN	1/N rotates into place on rB. The transformation in
Fig. 4B is essentially the time-reverse of the above, but starting at
curve rB and ending on rA.

For ideal chains without curvature constraints, the distances
obtained from the two transformations in Fig. 4 A and B differ
nonextensively as the number of links N 3 �. Moreover, the
distance for each transformation itself differs nonextensively
from the mean root square distance MRSD � N�1�i�1

N

�(rAi�rBi)2 as N 3 �.¶ Specifically, the distance travelled by
straight line motion scales as ds NL � L2, whereas the distance
travelled by rotational motion scales as ds (N�� cds) � L2/N.

On the other hand, curvature constraints as in Eq. 16 become
more severe on consecutive links as N3 �, and can yield extensive
corrections to the distance. Specifically, the increase in distance �D
due to curvature constraints scales like the radius of curvature R
times N, because every node is affected by the rounded kink as it
propagates. So �D � ds N R � LR. The importance of this effect
then depends on how R compares to L (the ratio of the persistence

length to the total length). It does not vanish as N 3 �. Non-
crossing constraints described below also yield extensive corrections
to the distance travelled.

Noncrossing Space Curves. The minimal transformation may be
qualitatively different when chain crossing is explicitly disallowed.
Fig. 1C illustrates a pair of curves that differ only by the order of
chain crossing. They are displaced in Fig. 1C for easier visualization
but should be imagined to overlap so the quantity �0

L�rA � rB� � 0,
i.e., if they were ghost chains their distance would be nearly zero,
and most existing metrics give zero distance between these curve
pairs (see Table 1).

Analogous to the construction of Alexander polynomials for
knots, if we form the orthogonal projection of these space
curves onto a plane, there will be double points indicating one
part of the curve crossing over or under another. If we trace
the curve in an arbitrary but fixed direction, each double point
occurs twice, once as underpass and once as an overpass. We
may call the part of the curve between two consecutive passes
a bridge. If the bridge ends in an overpass we assign it 	1, if
the bridge ends in an underpass we assign it �1, so traversing
from the left in Fig. 1C, curve rB has (	1) sense, and curve rA
(�1). For transformations obeying noncrossing, a bridge can
undergo change in sense �2 to zero by moving from under or
over the chain, whereas bridges in ghost chains undergo
changes of sense by crossing from �1 to �1 directly.

The non-crossing condition means that the Lagrangian for the
minimal transformation now depends on the position r(s, t) of the
space curve, which may be accounted for using an Edwards
potential: VNC([r(s, t)]) � �0

Lds1�0
Lds2 �(r(s1, t) � r( s2, t)) In prac-

tice, a Gaussian may be used to approximate the delta function, with
¶The MRSD is always less than or equal to the rmsd between structures, as can be shown by
applying Hölder’s inequality.
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Fig. 4. Two minimal transformations between the curves shown in Fig. 1B,
for N � 10 links. (A) The global minimal transformation r*(s, t), with D* �
0.330 L2. (B) A local minimum with D � 0.335 L2. In A, links with one end
touching curve rB rotate; the others translate first from rA, rotating only when
one end of a link has touched rB. In B, they rotate first from rA and then
translate into rB. Dashed lines in A show the paths travelled for each bead. (A
Inset) The total distance travelled as a function of the number of links N, with
various N plotted as filled circles to indicate the rapid decrease and asymptotic
limit to D� � 0.251 L2. (B Inset) The minimal angle each link must rotate during
the transformation; it is less for the transformation in A. Animations of these
transformations are provided as supporting information (SI) Movies 1–4.
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a variance that may be adjusted to account for the thickness or
volume of the chain.

The EL equation now becomes

�VNC�
r

� � r
� s � � ṙ� t 
 �� V��r�� ss, [19]

where the curvature potential in Eq. 16 has been included, and
the notation ( r
)s � (d/ds)(� /�r
) has been used. Eq. 10 is now
modified to

v̂t � �� t̂� s � �VNC � �� V��r�� ss. [20]

To access various conformations, the minimal transforma-
tion must now abide by the nontrivial geometrical constraints
that are induced by non-crossing. In general, this renders the
problem difficult; however, the example in Fig. 1C is simple
enough to propose a mechanism for the minimal transforma-
tion consistent with the developments above, without explicitly
solving the EL equations in this case. In analogy with the
hairpin transformation described below Eq. 15, the transfor-
mation here involves essentially forming and then unforming
a hairpin. rA(N) (the blue end of curve rA in Fig. 1C)
propagates back along its own length until it reaches the
junction, where it then rotates over it to become the overpass
(this “rotation” takes essentially zero distance in the contin-
uum limit). The curve then doubles back, following its path in
reverse to its starting point. This transformation is fully
consistent with the allowed extremal rotations and translations
of the discretized chain. The distance in the continuum limit
is D � �0

l ds (2s) � �2, where � is the length of the shorter arm
extending from the junction in Fig. 1C.

Discussion
The distance between finite objects of any dimension d is a
variational problem, and may be calculated by minimizing a vector
functional of d 	 1 independent variables. Here we formulated the

problem for space curves, where the function r*(s, t) defining the
transformation from curve rA to curve rB gives the minimal
distance D.

We provided a general recipe for the solution to the problem
through the calculus of variations. For simple cases, the solution is
analytically tractable. Direct numerical methods are difficult due to
multiple extrema. We employed a method that interpreted the
discretized EL equations geometrically to obtain minimal solutions.
The various solutions obtained here are summarized in Table 1 and
compared with other similarity measures currently used.

The distance metric may be generalized to higher dimensional
manifolds; for example, a two-dimensional surface needs three
independent parameters to describe the transformation. The dis-
tance becomes D � � du � dv � dt �ṙ� and the constant unit area
condition becomes ��r/�u � �r/�v� � 1.

The question of a distance metric between configurations of a
biopolymer has occupied the minds of many in the protein folding
community for some time (c.f., for example, refs. 4–8). Such a
metric is of interest for comparison between folded structures, as
well as to quantify how close an unfolded or partly folded structure
is to the native. Chan and Dill (5) investigated the minimum number
of moves necessary to transform one lattice structure to another, in
particular while breaking the smallest number of hydrogen bonds.
Leopold et al. (4) investigated the minimum number of monomers
that had to be moved to transform one compact conformation to
another. Falicov and Cohen (6) investigated structural comparison
by rotation and translation until the minimal area surface by
triangulation was obtained between two protein structures.

The present theoretical framework allows computation of a
minimal distance between proteins of the same length by rotating
and translating until D is minimized, as done in the calculation of
rmsd. Comparison between different length proteins would involve
the further optimization with respect to insertions or deletions.

It is interesting to ask which folded structures have the largest, or
smallest, average distance �D� from an ensemble of random coil
structures, and also whether the accessibility of these structures in
terms of D translates to their folding rates. It can also be determined
whether the distance to a structure correlates with kinetic proximity
in terms of its probability pF to fold before unfolding (7), by
calculating �DpF�. The question of the most accessible or least
accessible structure may be formulated variationally as a free-
boundary or variable end-point problem.

It is an important future question to address whether the
entropy of paths to a particular structure is as important as the
minimal distance. In this sense, it may be the finite ‘‘temper-
ature’’ (� � �) partition function Z(�) � � d[r(s, t)] exp
(��D[r(s, t)]), i.e., the sum over paths weighted by their
‘‘actions,’’ which is the most important quantity in determining
the accessibility between structures. This has an analogue to
the quantum string: we investigated only Z(�) here. We hope
that this work proves useful in laying the foundations for
unambiguously defining distance between biomolecular struc-
tures in particular and high-dimensional objects in general.
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Table 1. Values of the distance for various examples considered
here, compared to other metrics

Curve pair D* (L2) rmsd† (L) (1-Q)‡ �§

Trivial translation �d�/L �d�/L 0 0
‘‘L-curves’’, Fig. 1A 1/�2 �2/3 —¶ 0
Straight line to hairpin 1/4 1/�6 1 1/2
‘‘C-curve’’ - straight line, Fig. 4A 0.330 0.371 —¶ 0.417
‘‘C-curve’’ - straight line, Fig. 1A� 0.251 0.334 —¶ 1
‘‘Over/under’’ curves, Fig. 1C (�/L)2 �0 0†† 0
Single link, Fig. 3F‡‡ 5.168 �7§§ —¶¶ —¶¶

†rmsd � �N�1 �i (rAi � rBi)2.
‡Fraction of shared contacts A has with B; see refs. 7 and 8 for definitions.
§Structural overlap function equal to 1 minus the fraction of residue pairs with
similar distances in structures A and B. The formula in ref. 9 is used.

¶0/0 or undefined.
�In the continuum limit.
††Assuming a contact is made at the junction.
‡‡For AA
 � 2 � link length.
§§D � rmsd here because rmsd contains a factor of 2, whereas D did not. An

‘‘effective distance’’ for the rod could divide by 2.
¶¶Undefined for a single link.
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