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ABSTRACT We determine both barrier heights and prefactors for protein folding by applying constraints determined from
experimental rate measurements to a Kramers theory for folding rate. The theoretical values are required to match the ex-
perimental values at two conditions of temperature and denaturant that induce the same stability. Several expressions for the
prefactor in the Kramers rate equation are examined: a random energy approximation, a correlated energy approximation, and
an approximation using a single Arrhenius activation energy. Barriers and prefactors are generally found to be large as a result
of implementing this recipe, i.e., the folding landscape is cooperative and smooth. Interestingly, a prefactor with a single Ar-
rhenius activation energy admits no formal solution.

INTRODUCTION

In contrast to many exothermic reactions in organic chem-

istry, the log protein folding rate displays a significant linear

trend with the relative stability of the product and reactant

(folded and unfolded states; Fersht, 1999). This indicates

a late transition state in the language of Hammond’s postu-

late, and the slope of the log rate versus stability line quan-

tifies the degree of native structural information in the

transition state.

Native stability may be modified by adjusting temperature

T or denaturant concentration c. Many proteins show linearity

over the majority of the branches of their Chevron plot,

implying a linear dependence of folding and unfolding

barriers on denaturant concentration c (Jackson and Fersht,

1991),

DGFzðT; cÞ [ GzðT; cÞ � GFðT; cÞ ¼ DGFzðT; 0Þ � mFzc;

(1a)

DGUzðT; cÞ [ GzðT; cÞ � GUðT; cÞ ¼ DGUzðT; 0Þ1mUzc;

(1b)

with mFz . 0 and mUz . 0.

Subtracting Eq. 1b from Eq. 1a, and defining DG[ DGFU

¼ GU � GF and m ¼ mFz 1 mUz, we have that

DGðT; cÞ ¼ DGðT; 0Þ � mc: (2)

For two-state folders, the kinetically determined m above

equals, to good approximation, the thermodynamically de-

termined m-value from relative stabilities.

Applying Kramers rate theory, the log forward folding rate

is given by

ln kFðT; cÞ ¼ ln koðT; cÞ � DGUzðT; cÞ=T ¼ ln koðT; cÞ
� ðDGUzðT; 0Þ1mUzcÞ=T: (3)

Eliminating c from Eqs. 2 and 3 gives

ln kF ðT; cÞ �
mUz

m

DGðT; cÞ
T

¼ ln koðT; cÞ

� 1

T
DGUzðT; 0Þ1

mUz

m
DGðT; 0Þ

� �
; (4)

where the left-hand side of Eq. 4 depends on both (T, c),
but the function on the right-hand side depends on c only

through the prefactor. Empirically it was observed by Scalley

and Baker (1997) that for the proteins CspB and protein L,

the data for various c collapse onto a single curve when the

left-hand side is plotted versus 1/T. This indicates that the

right-hand side is a function of temperature alone and so

ln ko(T, c) � ln ko(T). Denaturant concentration does not

have a significant effect on the rate at which the system

escapes from local traps (at least for those proteins studied).

We make this assumption here as well.

Because the prefactor is independent of c, the change in

log folding rate with denaturant is directly proportional to the

change in barrier with denaturant,

d ln kF [ ln kFðT; cÞ � ln kFðT; 0Þ
¼ � DGUzðT; cÞ�DGUzðT; 0Þð Þ=T ¼�dDGUz=T;(5)

which, together with Eq. 4, gives

dDGUz ¼ �ðmUz=mÞdDG; (6)

d ln kF ¼ ðmz=mÞðdDG=TÞ: (7)

This quantifies the assertion above that log folding rates

depend linearly on the relative stability of the products. If we

let mUz/m [ Q 6¼, Eq. 6 can be rewritten as

dGz ¼ Q
6¼
dGF 1 ð1� Q

6¼ÞdGU; (8)

which is the commonly used linear free energy relation

(Bryngelson et al., 1995).

Inspection of rate-stability isotherms for several different

proteins—cytochrome C (cyt-C; Mines et al., 1996), proteinSubmitted September 9, 2004, and accepted for publication March 2, 2005.
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L (Scalley and Baker, 1997), cspB (Schindler and Schmid,

1996), N-terminal protein L9 (Kuhlman et al., 1998), and S6

(Otzen and Oliveberg, 2004)—shows linearity over ranges

up to �25 kJ3 mol�1 � 10 kBT, indicating large and robust
folding barriers, which are substantially larger than the

folding barriers seen in many simulations (for example, see

Fig. 1).

At a higher temperature, the log rate versus stability curve

is still linear, with approximately the same slope, indicating

the nativeness of the transition state, in terms of solvent

exposure, is not significantly changed (Fig. 1). However, the

rates are higher, presumably due to two effects:

1. The prefactor increases at higher temperature (since

activated escape from traps is further facilitated, and sol-

vent viscosity is reduced).

2. The thermodynamic weight of the entropic component to

the barrier (which includes contributions from the sol-

vent) increases as well, which may decrease the barrier

height.

METHODOLOGY

In what follows, we apply Kramers rate theory together with energy

landscape ideas to extract barrier heights and prefactors from experimental

rate data.

The temperature-dependence of the stability is given by the Gibbs-

Helmholtz expression (Fersht, 1999; Jackson and Fersht, 1991) as

DGðT; cÞ ¼ DH � TDS1DCPðT � To � T lnðT=ToÞÞ: (9)

Then at equal stabilities DG(To, co) ¼ DG(T, c),

DCPðT � To � T lnðT=ToÞÞ ¼ ðT � ToÞDS1mðc� coÞ:
(10)

For two-state folders, the heat-capacity ratio DCPUz/DCP is approxi-

mately equal to m-value ratio mUz/m, giving the fractional solvent acces-

sibility of the transition state. We assume this equality here as well, which

gives for Eq. 10,

DCPUzðT � To � T lnðT=ToÞÞ ¼ �mUz

m
DSðT � ToÞ

� mUzðc� coÞ: (11)

Inserting Eq. 11 into Gibbs-Helmholtz expressions for the barrier heights

DGUz at (T, c) and (To, co) gives the change in barrier height at fixed

stability,

½DGUzðT; cÞ � DGUzðTo; coÞ�DGðT;cÞ¼DGðTo;coÞ [ d9DGUz

¼ �ðT � ToÞ DSUz 1
DmUz

m
DS

� �
; (12)

which is independent of c and depends only on the temperature difference

between the two fixed-stability states (and thermodynamic parameters). This

equation applies to points A and B in Fig. 1, for example.

For changes in temperature of a few degrees, the change in barrier height

d9DGUz is only a few percent of the total barrier height, when the rates

versus temperature and denaturant are fit to a model to extract thermo-

dynamic parameters, as in Kuhlman et al. (1998), Otzen and Oliveberg

(2004), Scalley and Baker (1997), and Schindler and Schmid (1996). We

used Eq. 12 for the change in barrier height when thermodynamic data were

available. For the case of cyt-C we set d9DG ¼ 0.

The rates for pairs of states at the same stability DG are given from

Eq. 3 as

ln kFðTo; coÞ ¼ ln koðToÞ � DGUzðTo; coÞ=To; (13a)

ln kFðT; cÞ ¼ ln koðTÞ � DGUzðTo; coÞ=T � d9DGUz=T:

(13b)

Random energy model for the
temperature-dependent prefactor

At the mean field level for a landscape of uncorrelated states (random energy

model or REM), the temperature-dependence of the prefactor in Eq. 3 is super-

Arrhenius (Bryngelson and Wolynes, 1989; Onuchic et al., 1997). Moreover,

the prefactor goes as the reciprocal of the viscous friction coefficient (Hanggi

et al., 1990; Klimov and Thirumalai, 1997; Socci et al., 1996), so the log

prefactors at (To, co) and (T, c) may be written as

ln koðToÞ ¼ ln koo � D
2
=2T

2

o ; (14a)

ln koðTÞ ¼ ln koo � D
2
=2T2

1 lnðhðToÞ=hðTÞÞ: (14b)

To compare rate theories with experimental data we must introduce

a fundamental timescale or rate constant koo, which is then modified by

barriers representing the ruggedness of the energy landscape. Rates for short

loop closure are ;2 3 107 s�1 (Lapidus et al., 2000), comparable to helix

formation rates of ;107 s�1, and somewhat faster than rates of hairpin

formation ;106 s�1 (Eaton et al., 2000). Prefactors obtained from plots of

experimental rate versus powers of chain length are of order ms (Li et al.,

2004); however, these implicitly include any effects due to ruggedness. We

take 107 s�1 as an estimate of the fastest local rate. Since ;10–100 loops

and/or secondary structural elements exist in a protein, we then take koo ¼
109 s�1. This estimate for koo may appear somewhat large; we will see later

that smaller estimates for koo give smaller estimates for inferred folding

barriers. We use the known temperature dependence of the viscosity in water

(CRC, 2003). The quantity D2 measures the ruggedness of the energy

landscape. It may be eliminated from Eqs. 14a and 14b to give an equation

relating the prefactors as

lnkoðTÞ ¼ 1�T
2

o

T
2

� �
lnkoo1

T
2

o

T
2lnkoðToÞ1 ln

hðToÞ
hðTÞ

� �
: (15)

FIGURE 1 Logarithm of the rate versus (minus) native stability for horse

Cytochrome C, at two temperatures. The plots are well fit by straight line

functions that are used in the analysis of the text. Adapted from Mines et al.

(1996).
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Equations 13a, 13b, and 15 constitute a system of three linear equations

for three unknowns: DGUz(To, co), ln ko(To), and ln ko(T), which can be

solved analytically at any given stability, from linear fits to the log rate-

stability data.

RESULTS

The results of applying the method are shown in Fig. 2, for

the data in Fig. 1, ranging from the stability of wild-type at

296 K (�74 kJ/mol) to zero stability at the transition mid-

point. Barrier heights are plotted in units of kJ/mol; rates in

prefactors are in units of s�1.

We can see several things from this plot. The barrier

heights at the transition midpoint are large, compared to

values obtained from simulation models as well as theories

with pair interaction potentials. If the linear relation in Eq. 6

held until the transition midpoint, the barrier would be ;30

kJ/mol plus whatever the barrier was at conditions of zero

denaturant.

The slope dDGUz/dDG � 0.8 is also larger than its

empirical value of mUz/m � 0.4 (Mines et al., 1996), thus

the barriers vanish at weaker stabilities than the wild-type

protein. This indicates a breakdown in the validity of the

theory at higher stabilities (larger DG).
There are two parameters in the theory for which we have

put in approximate values: the value of the attempt frequency

koo ¼ 109 s�1, and the value of d9DGUz, which we have set

to zero for cytochrome C in the absence of an empirically

determined value. Increasing koo or decreasing d9DGUz

raises barriers, but does not change the slope dDGUz/dDG.
The value of �DG where the barrier vanishes linearly

decreases as d9DGUz is decreased below zero, with the

barrier vanishing at the stability of the wild-type when

d9DGUz is ;�1.6 kJ/mol. This is not an unreasonable

number compared to experimental numbers for other pro-

teins (see below); however, it is somewhat disconcerting that

barrier heights are such a strong function of the barrier change

d9DGUz. We will see later that this sensitivity is not present

when a correlated landscape model is used for the prefactor.

Fig. 2 also shows that at least for the REM approximation

it is important to account for changes in the viscosity of the

solution with temperature, as the barrier substantially de-

creases when the viscosity is held constant versus tem-

perature.

Equations 14a or 14b may now be solved for D, giving

a number �15 kJ/mol, that only weakly depends on stability

DG or barrier change d9DGUz. Estimating the chain con-

formational entropy as ;100 kB (D’Aquino et al., 1996;

Leach et al., 1966), we can give an estimate for the glass

temperature TG for this system,

TG ¼ D=ð2So=kBÞ1=2; (16)

which is also a fairly robust number as a function of stability

or barrier change, as shown in Fig. 3. At the stability of wild-

type cyt-C, TG � 150 K, giving T/TG � 2.0 at 296 K.

Correlated landscape model for the
temperature-dependent prefactor

Many of the problems of the REM approximation are re-

solved by accounting for pair correlations between states in

the expression for the prefactor. Below a critical temperature

TA on a correlated landscape, dynamics are activated, and the

rate prefactor increases as temperature is raised (Plotkin and

Onuchic, 2002a,b; Wang et al., 1997). The expressions for

the rate prefactors at To and T become

ln koðToÞ ¼ ln koo � ðS 6¼
=2Þ a� bð1� TG=ToÞ2

� �
; (17a)

ln koðTÞ ¼ ln koo � ðS 6¼
=2Þ a� bð1� TG=TÞ2

� �
1 lnðhðToÞ=hðTÞÞ: (17b)

Here S6¼ is the chain entropy at the transition state, and a

and b are parameters measuring the mismatch between en-

tropy and energy giving the typical free energy barrier

governing trap escape. The values for a bulk polymer a� 0.5,

b� 1.8 are used below (Plotkin and Onuchic, 2002a,b; Wang

et al., 1997). The temperature TG was adjusted to the value

that reproduced the experimentally determined slope of

barriers versus stability, mUz/m. In Table 1 this number is

compared to the value of TG that emerges from the REM

analysis. A mismatch of these two values may indicate a

breakdown of the REM approximation for states in deter-

mining prefactors, i.e., a breakdown in the validity of Eqs. 14a

and 14b. For cyt-C the value of TG giving the correct slope is

;1.2 kJ/mol, versus 1.0 kJ/mol from the REM analysis.

The entropy S 6¼ may be eliminated from Eqs. 17a and 17b,

giving an equation that relates the prefactors, which replaces

Eq. 15,

FIGURE 2 Barrier height DGUz and prefactors ko at two temperatures, as

obtained from the REM approximation (see text), are plotted as a function of

minus stability for cyt-C. The wild-type protein has a stability of DG � 74

kJ/mol. Numerical values are given in Table 1. Prefactor attempt rates are in

s�1, and barrier heights are in kJ/mol. The short dashed line gives the barrier

for a temperature-independent solvent viscosity. All logarithms are natural

(base e).
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½ln koo � ln koðTÞ1 lnðhðToÞ=hðTÞÞ� a� bð1� TG=ToÞ2
� �

¼ ½ln koo � ln koðToÞ� a� bð1� TG=TÞ2
� �

: (18)

Equations 13a, 13b, and 18 again define a system of three

linear equations for three unknowns: DGUz(To, co), ln ko(To),
and ln ko(T), which may be solved analytically. The results

are shown in Fig. 4.

We see that both barriers and prefactors are larger than

the corresponding REM values for cyt-C and the analysis for

other proteins yields quite large numbers in general (compare

to Table 1 for numbers). The barriers at the transition

midpoint are ;22 kBT300K, and prefactors are almost

unactivated.

The REM value of TG resulted from approximating a value

of 100 kB for the chain entropy So, so it is feasible that this

estimate for the REM TG could differ from the TG that gives

the correct mUz/m. The parameters a and b could, in prin-

ciple, have been adjusted to best match the experimental

slope; however, it can be shown that this results in the same

solution of Eqs. 13a, 13b, and 18 as that determined by vary-

ing TG.
In contrast to the REM approximation, the effects of the

temperature dependence of viscosity were not significant

here (Fig. 4). Nor were there any significant effects due to

barrier height difference—as d9DGUz changed from �2

kJ/mol to 0 kJ/mol, the barrier changed by,2%. The effects

due to TG are modest as well: over the range of TG values in

Fig. 3 B, the barrier height changed by ,15%. Lastly, the

prefactors of the correlated landscape model are nearly con-

stant over the range of experimental stabilities (Fig. 4), con-

sistent with empirical observations (see the comments below

Eq. 4).

Equation 17a or 17b may now be solved for S 6¼ as a check,

giving S 6¼ � 40 kB, or ;40% of the unfolded chain entropy

assumed in finding the REM TG. Alternatively, we can

estimate the unfolded entropy So from the value of S 6¼ as

S 6¼ � (1�mUz/m)So, then Eq. 16 gives D� 14 kJ/mol. Since

the variances of individual residues add to give D2,

D2 � N(1 � mUz/m)b
2, where b is a non-native energy

scale per residue, here as �0.7 kBT300.
Fig. 5 shows that the inferred barriers and prefactors

increase as the value of the bare reconfiguration rate koo in-
creases. The prefactor ln ko(To) closely follows the bare re-

configuration rate ln koo; i.e., they are approximately equal.

The barriers at the transition midpoint DGo
Uz and at the

stability of the wild-type protein DG
ðwtÞ
Uz increase linearly, as

;2kBTo ln koo.
In the REM analysis there is an intermediate regime where

the prefactor has a more complex temperature dependence

than Eq. 14a. We do not describe this regime in detail since it

is obtained from Eqs. 17a and 17b in the limit that a / 1,

b/ 2, S 6¼ / So. Values obtained tended to be bracketed by
the REM and correlated models.

For NTL9, the solution of the REM gave a TG that

monotonically decreased from a value of 0.4 at the stability

of the wild-type protein, to zero at a stability of;11 kJ/mol.

Similarly, the prefactor monotonically increases from

108 s�1 at the stability of the wild-type to 1010 s�1 at zero

stability. We note that these problems are not present if the

stability difference d9DGUz is set to zero, if the prefactor is

two or more orders-of-magnitude slower, or if the temper-

ature dependence of the viscosity is neglected. We take this

sensitivity as a shortcoming of the procedure of rigorously

demanding that the landscape theory fit to a limited subset of

the experimental data. In this sense, a best (but not exact) fit

to experimental rate surfaces as a function of both T and c
as in Kuhlman et al. (1998), Otzen and Oliveberg (2004),

Scalley and Baker (1997), and Schindler and Schmid (1996),

is likely to give more accurate numbers. Likewise in the

correlated model for NTL9, the prefactor increased from

;108 s�1 at the stability of the wild-type to unphysical

values at zero stability. A similar situation exists in the REM

FIGURE 3 (A) The temperature TG that emerges from the REM analysis

for cyt-C (see text and Eq. 16) varies only moderately with barrier height

change at constant stability, d9DGUz (the value of which is not known for

this protein). For this plot the stability is set to midway between zero and the

stability of the wild-type (37 kJ/mol). (B) TG also changes little as native

stability DG is varied (for this plot d9DGUz ¼ 0).
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recipe for protein S6; however, it is resolved in the correlated

landscape model for that protein.

CspB showed some difficulties that arose from its un-

usually late transition state (mUz/m � 0.9) (Perl et al., 2002).

The parameter TG in the correlated model could not be ad-

justed to reproduce the high slope of barrier versus stability,

without giving negative barriers. Again this may be an

artifact of the exact fitting method mentioned above, i.e.,

more experimental data may also be needed to obtain more

accurate numbers, or it may indicate that a simple mean field

prefactor does not fully adequately describe the folding

dynamics of this protein. In this case we took the temperature

TG ¼ 1.81 kJ/mol that induced the barrier to vanish at the

stability of the wild-type protein (while acknowledging that

other fits give large barriers (Perl et al., 2002)). This has

a steep barrier-stability curve, with slope mUz/m ¼ 0.8 (as

opposed to 0.9 observed empirically), very small barrier (7

kJ/mol at zero stability), and rugged landscape with very

slow prefactor (;102 s�1). Such small barriers are consistent

with estimates taken from simulations using Ca-models

(Shea and Brooks, 2001).

The Arrhenius model generally admits no solution

A model often proposed for the prefactor assumes an Arrhe-

nius temperature-dependence with single activation energy

EA, so that Eqs. 14a and 14b are replaced by

ln koðToÞ ¼ ln koo � EA=To (19a)

ln koðTÞ ¼ ln koo � EA=T1 lnðhðToÞ=hðTÞÞ; (19b)

from which EA may be eliminated, yielding

ln koðTÞ ¼ ð1� To=TÞln koo 1 ðTo=TÞln koðToÞ
1 lnðhðToÞ=hðTÞÞ: (20)

TABLE 1 Thermodynamic and kinetic parameters for proteins studied

Correlated model Random energy model

Proteins* To T DGwty d9DGUz DG0
Uz

yy DGwt
Uz

§ k0(T0)
yy T

ðmÞ
G

{ DG0
Uz

yy DGwt
Uz

§ k0(T0)
yy TREM

G
k

cyt-C 2.46 2.60 �74 0 56 27 5 3 108 1.2 27 0 6 3 103 1.0

NTL9 2.48 2.59 �19 �1.0 47 35 (6 3 109) 1.7 50 33 (1010) 0 (0.4)**

S6 2.48 2.56 �31 �1.4 61 39 9 3 108 1.2 78 21 (1012) 0 (0.7)**

PTL 2.34 2.43 �22 �0.8 58 45 1 3 109 1.1 56 27 3 3 108 0.5

CspB 2.38 2.44 �9 �0.8 7 0 102 1.9** 24 20 2 3 105 0.7

*Sources for experimental data: cyt-C (Mines et al., 1996), NTL9 (Kuhlman et al., 1998), S6 (Otzen and Oliveberg, 2004), PTL (Scalley and Baker, 1997),

and cspB (Schindler and Schmid, 1996). All temperatures and energies are in kJ/mol. All rates are in s�1.
yStability of the wild-type protein.
yyAt the transition midpoint where DG ¼ 0.
§At the stability of the wild-type protein, where c ¼ 0. If the barrier vanished at stabilities below the wild-type, the barrier value was simply taken as zero.
{Value of TG that gives a slope of barrier height versus stability equivalent to the experimental value of mUz/m.
kValue of TG using the REM approximation for rates, taken at a stability of approximately one-half of the wild-type protein.

**See text for explanation and comments.

FIGURE 4 Barrier heights and prefactors as obtained from the correlated

landscape analysis (see text), plotted as a function of minus native stability

for h-cyt-C. Numerical values are given in Table 1. Prefactor attempt rates

are in s�1, and barrier heights are in kJ/mol. The dotted line gives the barrier

for a temperature-independent solvent viscosity. Note prefactors are ap-

proximately constant (as is physically reasonable) and solvent viscosity

plays a minor role.

FIGURE 5 Barrier heights and prefactors extracted from the recipe for the

correlated energy landscape (see text) increase as the bare reconfiguration

rate (appearing in Eqs. 17a and 17b) increases. The increase is linear. DGo
Uz

is the barrier at the transition midpoint, DG
ðwtÞ
Uz is the barrier at the stability of

the wild-type protein, and ko(To) is the prefactor at temperature To in s�1.
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This equation, relating the prefactors together with Eqs. 13a

and 13b, constitutes the new system of equations to be

solved.

Eliminating DGUz from Eqs. 13a and 13b gives another

equation relating the prefactors:

ln koðTÞ ¼ ln kFðT; cÞ � ðT=ToÞln kFðTo; coÞ1 d9DGUz=T

1 ðTo=TÞln koðToÞ: (21)

Equations 21 and 20 both have ln ko(T) on the left-hand side

and (To/T) ln ko(To) on the right. Subtracting them gives an

equation that is independent of any variable to be solved for

ln kFðT; cÞ � ðT=ToÞln kFðTo; coÞ1 d9DGUz=T

¼ ð1� To=TÞlnKoo 1 lnðhðToÞ=hðTÞÞ; (22)

which cannot be true in general, in particular because the

left-hand side depends on c and the right-hand side does not.
A geometric analog may be helpful in understanding the

situation. The solution to three equations in three variables is

equivalent to finding the point where three planes intersect.

Letting

x1 ¼ ln koðToÞ
x2 ¼ ln koðTÞ
x3 ¼ DGUz;

Eqs. 13a, 13b, and 20 may be recast as

x2 � ðTo=TÞx1 ¼ A (23a)

x2 � ðTo=TÞx1 ¼ B (23b)

x1 � ð1=ToÞx3 ¼ C; (23c)

where

A ¼ ð1� To=TÞln koo 1 lnðhðToÞ=hðTÞÞ;
B ¼ ln kFðTo; coÞ1 ðTo=TÞln kFðT; cÞ1 d9DGUz=T;

C ¼ ln kFðTo; coÞ:

Since A 6¼ B in general, Eqs. 23a and 23b depict two parallel

planes. Thus there is no point of intersection and the system

of equations is ill-posed. For the special case of A ¼ B there

is a whole family of solutions consistent with the rate equa-

tions, but as mentioned above this scenario can only hold

under very special circumstances.

CONCLUSIONS AND DISCUSSION

We have proposed here a method of testing energy landscape

theory by mapping Kramers rate theory, with prefactors

given from the statistics of energies of states, to experimental

data on protein folding rates. We considered three models

for the prefactor here: one where ruggedness is treated with

a random energy approximation; one where correlations are

taken into account; and an Arrhenius model with a single

barrier governing reconfiguration times.

The numerical values of the barriers obtained from the

above recipes should be taken with a grain of salt; however, it

consistently emerged that folding barriers were large (except

for CspB): the average barrier at the transition midpoint for the

REM analysis is ;19 kBT, and the corresponding barrier in

the correlated model is ;18 kBT. If CspB is omitted, the

barriers are 21 kBT and 22 kBT, respectively. Wild-type S6,

a protein known to fold very cooperatively (Lindberg et al.,

2002), had the highest barriers.

With the exception of CspB, the prefactors in the cor-

related model tended to be quite high—approximately the

bare reconfiguration rate for the whole protein (109 s�1). The

folding barrier obtained from the recipe decreases as esti-

mates for the bare reconfiguration rate decrease (Fig. 5). The

prefactors from the REM recipe varied considerably.

All of the proteins analyzed here are considered two-state

folders, so we would expect a Kramers theory to describe

them. In lower temperature regimes the distribution of first

passage times may be more relevant to study (Plotkin and

Onuchic, 2002b; Zhou et al., 2003).

We found that in practice it was quite important to have

accurate fits for the empirical rate-stability curves. For

example, as temperature increased, the slope of the log rate

versus stability curve had to remain approximately constant

or tend to increase, to obtain reasonable solutions of the rate

equations. Otherwise we found an unphysical situation

where barriers did not increase as stability decreased. This

sensitivity to the experimental data may favor a less stringent

fit to the experimental constraints.

In fact, reflection on the procedure raises a general issue

on the rigorous application of experimental constraints to

energy landscape theory. For example, if we were to add data

at a third temperature T1, two new equations would be intro-

duced according to the recipe—one Kramers rate equation

and one landscape equation for the prefactor, but only one

new variable is introduced—the prefactor ln ko(T1). The

system becomes overdetermined. Demanding equality rather

than a best fit at several temperatures becomes too stringent

a constraint on the theory, as long as the parameters in the

theory (e.g., D2 or EA) are fixed. The more temperatures

used, the more variables must be introduced into the theory,

or the parameters must themselves become temperature-

dependent. Nevertheless, the fact that the Arrhenius acti-

vation model fails in general to provide a solution for even

two temperatures (two data points) should probably be seen

as evidence against its strict applicability.

A perhaps more viable method would be to fit several tem-

peratures with functional forms such as Eqs. 14a, 17a, or 19a

to extract parameters such as D2 and EA. The difficulty in

previous fits to data has been in the separation of EA and the

activation enthalpy DHUz (Scalley and Baker, 1997). One

can ask which temperature dependence (EA/T or D2/T2) gives
the best fit to the data, but there is not yet enough accurate

data to distinguish between the two scenarios (Kuhlman

et al., 1998; Scalley and Baker, 1997) by this method. How-

Folding Barrier Heights and Prefactors 3767

Biophysical Journal 88(6) 3762–3769



ever, the Arrhenius model becomes severely restricted by

applying experimental constraints rigorously at two temper-

atures and denaturant concentrations, at the same stability.

Because the activation energy in the prefactor can be

absorbed into the enthalpic part of the barrier, and only the

entropic part of the barrier is relevant in determining rate

differences at fixed stability (by Eq. 12), the activation

energy becomes irrelevant, and the difference in rates must

then be due to quantities independent of denaturant concen-

tration (entropic part of the barrier, temperature-dependent

viscosity, etc.). All rate-stability curves for a given protein

must be exactly parallel in the Arrhenius model—a situation

not observed empirically.

Topological features of the native structure have been

neglected in the rate theory. Including polymer physics into

the theoretical model (Plotkin and Onuchic, 2000; Portman

et al., 2001; Shoemaker et al., 1999) may also eliminate some

of the sensitivity of the theoretically derived values in Table

1 on the experimental data.

Other methods have been used to estimate barrier heights.

Adding a three-body contribution to a pairwise-interacting

energy function to give best agreement with experimental

f-values, a barrier height for protein L of ;16 kJ/mol was

obtained (Ejtehadi et al., 2004). Other proteins such as FKBP

and CI2 had larger barriers of 25 kJ/mol and 42 kJ/mol,

respectively (Ejtehadi et al., 2004). The large barriers ob-

served here also suggest that many-body interactions may be

playing a significant role in the energy function. A vari-

ational theory for the free energy surface of l-repressor gave

a barrier of ;12 kJ/mol (Portman et al., 2001). All-atom

simulations of a three-helix bundle fragment of protein A in

explicit water gave barrier heights �17 kJ/mol at the

transition midpoint (Garcia and Onuchic, 2003). Applying

Kramers theory with an experimentally determined estimate

for the prefactor gave an estimate for the free energy barrier

of ;18 kJ/mol for the cold shock protein CspTm (Schuler

et al., 2002). An analysis which took prefactors from experi-

mental data, along with a thermodynamic analysis to extract

enthalpic and entropic contributions to the barrier, gave

typical barrier heights of ;30 kJ/mol for the proteins

analyzed (Akmal and Munoz, 2004). However, these last

two methods found barrier heights under conditions of zero

denaturant—the barrier heights at zero stability would likely

be significantly higher. For example, the average Æ(mUz/

m)DGæ for the proteins in Table 1 is;17 kJ/mol, to be added

to the barrier height at conditions of zero denaturant.

Applying this method to a simulation model, where one

knows the answers in advance, provides a good control for

the study and is a topic for future work.
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