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Abstract 

We study the role of correlations in the energy landscape of heteropolymers and proteins, specifically their role in the 
glass transition in random heteropolymers and the folding transition in minimally frustrated proteins. In the context of 
the glass transition, a correlated landscape results in a more gradual freezing into basins of extensive entropy, while not 
completely destroying the first-order jump in the order parameter until below a certain density. Quantities such as the glass 
transition temperature and the probability distribution of overlaps q are quantitatively similar to the results for an uncorrelated 
landscape or random energy model (REM), while the number of searchable basins at the glass transition (the Levinthal search) 
is significantly modified. 

For proteins, correlations provide a way to induce a funnel topography onto the energy landscape by the selection of 
a sequence with a particularly low energy configuration. The folding transition is weakly first-order. The position of the 
transition state ensemble in the model is in accord with recent experimental results on denaturant effects on kinetics of small 
proteins. 
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1. The glass transition in heteropolymers 

We study the effects of  correlations in the energy 

landscape on the glass transition in a random het- 

eropolymer [ 1]. If  two states are configurationally sim- 

ilar as defined by an order parameter q measuring 

the fraction of  identical contacts in each configura- 

tion, then their energies tend to be similar. A simple 

contact hamiltonian 7- /=  ~ eijffij with gaussian ran- 
dom contact energies ~ij and trij ---- 0 or 1, yields a 
joint probability distribution for the energies of  two 

states which is identical to that obtained in a gener- 
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alized random energy model (GREM) of  Derrida and 

Gardner [2], where all states are ultrametrically orga- 

nized. This means that the bond averaged free energy 

- T ( l o g  Z ( T ) )  obtained through the GREM formal- 

ism [2] will be accurate to second-order in the partition 

function of  the system ( i.e. (Z (T ) )  and the correla- 

tions ( Z ( T ) Z ( T ' ) )  are the same for both the GREM 

model and the contact hamiltonian). 

In order to obtain the free energy, we have explic- 
itly calculated the configurational entropy of  a poly- 

mer subject to either few or very many topological 

constraints, and interpolated between the two regimes. 
At low q the entropy is reduced from that of  the un- 

constrained system by the formation of  cross-links, 

essentially following the Flory formula for vulcaniza- 
tion [3], but with the following modifications: (1) finite 
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size confinement effects are taken into account; (2) 

combinatorial entropy is accounted for in choosing 
the set of constraining bonds from the total possible 
bonds; (3) we also consider the fact that a number of 
bonds cx (1 - q )  cannot have been formed, which fur- 
ther reduces the entropy. 

When the number of bonds exceeds the number of 
monomers in the system, the entropy is then calculated 
by considering the combinatorics of discrete sections 
of the polymer chain "melting out" from the frozen 
(q = 1) three-dimensional structure of a reference 
state. Knowing the entropics and energetics allows 

the free energy to be determined within the GREM 
formalism. 

For collapsed polymers the system exhibits a ran- 
dom first-order glass transition below a temperature 
Tg, which confines non-glassy polymer dynamics to 
a basin of states of extensive entropy -~ 1/4 of the 
total entropy. This phase transition is representative 
of a wide universality class of spin-glass transitions in 
systems that lack special symmetries [5]. The number 
of basins to be searched below Tg is reduced from the 
uncorrelated landscape value (exp So in the REM to 

exp(0.7S0) in the GREM for collapsed 27-mers, 
where So is the total unconstrained entropy), which 
decreases the Levinthal search time [4] for proteins 
with glassy dynamics. The number of basins at Tg 
is a sensitive function of density. For packing frac- 
tions of ~ 0.85, there are only ~ exp(0.25S0) basins 
to search through. Similar reductions in the num- 
ber of basins searched to escape from a meta-stable 
state at the glass temperature have been obtained in 
replica variational [6] and correlated landscape kinetic 

treatments [7]. 
In the GREM, the glass temperature at which freez- 

ing begins is quantitatively similar to the uncorrelated 
landscape temperature Trem, and is given by 

k 2SLEV ,] ' 

where SLEV is the Levinthal entropy per monomer, e 
measures the roughness of the landscape, and Qo is 
the minimum similarity in a confined basin (all states 
in the basin have overlaps > Qo)- For temperatures 
less than Tg the melted basin gradually shrinks to a 

single frozen state at a temperature considerably lower 

than Trem. 
In investigating the density dependence of the glass 

temperaure, it was found that below a tri-critical den- 
sity (of packing fraction r/c ---- 0.85 for a 27-mer ) the 
order parameter q(x) becomes second-order continu- 
ous. However, characterizations such as the bond av- 
eraged probability of overlap P(q) at temperature T 
remain quantitatively similar. 

2. The folding transition in proteins 

To model the effect of minimal frustration [8] in pro- 
teins or designed heteropolymers, we simply require 
the energy of a particular state to be lower than the av- 

erage by a "stability gap" energy SEn - an additional 
energy parameter in the theory. Energetic correlations 
between states induce a funnel [9] topography around 
a given state of low energy [ 10]. For sufficient stability 
gap energies compared to the roughness (~en/e > 4'2), 
the folding temperature of the protein is above its glass 
transition temperature, and the model may be analyzed 
in the replica-symmetric regime where glassy trapping 
does not play a role. 

A simple model coupling polymer density to bond 
formation was introduced to obtain a free energy sur- 
face (as a function of the number of native contacts 
and the total number of contacts) which captures the 
qualitative features of simulations [11] (see Fig. 1). 
The corresponding states principle [ 12] is then used 
to compare the properties of transition states of real 
proteins with those of (smaller length) lattice models. 
In the model, the folding transition is weakly first- 
order with a small barrier. For small proteins (e.g. L- 
repressor), the predicted free energy barrier for folding 
is a few kBT, which is small compared to the entropic 
barrier of ~ 21kBT. The barrier results from the subtle 
incomplete cancellation of entropic loss and negative 
energy gain. The transition state ensemble has about 
1/4 of the unconstrained molten globule entropy and 
contains about 1/2 the native contacts. While the posi- 
tion of the barrier in coordinate Q agrees with that of 
small proteins [ 13], the experimental barrier positions 
for larger proteins [14,15] appear smaller than those 
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The mean-field theory [ 10] predicts a folding barrier 
rising nearly linearly with N (see Fig. 2), while other 
theories considering either nucleation growth of a con- 
tiguous native core [18], or free energy fluctuations 
analagous to those in Potts glasses [19], give barriers 
scaling as N 2/3 or N 1/2, respectively. Experimental re- 
sults will eventually reveal which of these mechanisms 
is dominant for proteins of various sizes, hydrophobic- 
ity, intrinsic roughness, and stability gap [20]. Other 
theories that allow local regions of the chain to rear- 
range separately may also be significant [ 16,17]. 
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Fig. 1. Free energy surface at the folding temperature for the 
27-mer, with typical roughness, gap and hydrophobicity (dark 
areas are deeper in free energy). The surface has a double-well 
structure with a transition state bottleneck at Q* ~ 1/2 and 
barrier height A F  -~ 3kBT. 
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Fig. 2. Free energy barrier height A F  in units of kBT, as a 
function of sequence length N. 

predicted by the theory, indicating the possibility of 
local regions of the chain rearranging separately via a 
foldon mechanism [16], as opposed to homogeneous 
mean-field behavior. 

References 

[1] S.S. Plotkin, J. Wang and EG. Wolynes, Phys. Rev. E 53 
(1996) 6271. 

[2] B. Derrida and E. Gardner, J. Phys. C 19 (1986) 2253- 
2274. 

13] EJ. Flory, J. Am. Chem. Soc. 78 (1956) 5222. 
14] C. Levinthal, in: Mossbauer Spectroscopy in Biological 

Systems; Proc. a Meeting Held at Allerton House, 
Monticello, IL (University of Illinois Press, Urbana, IL, 
1969) 22. 

15] D.J. Gross, I. Kantor and H. Sompolinsky, Phys. Rev. Lett. 
55 (1985) 304; T.R. Kirkpatrick and EG. Wolynes, Phys. 
Rev. B 36 (1987) 8552-8564. 

[6] S. Takada and EG. Wolynes, Phys. Rev. E 55 (1997) 4562- 
4577. 

[7] J. Wang, S.S. Plotkin and EG. Wolynes, J. de Phys. I 7 
(1997) 395-421. 

[8l N. G6 , Ann. Rev. Biophys. Bioeng. 12 (1983) 183-210. 
[9] J. Bryngelson, J.O. Onuchic, N.D. Socci and EG. Wolynes, 

Proteins: Structure, Function, and Genetics 21 (1995) 
167-195. 

[10] S.S. Plotkin, J. Wang and EG. Wolynes, J. Chem. Phys., 
106 (1997) 2932-2948. 

ll II A. Kolinski, A. Godzik and J. Skolnick, J. Chem. Phys. 98 
(9) (1993) 7420; N.D. Socci and J.N. Onuchic, J. Chem. 
Phys. 101 (1994) 1519-1528; K.A. Dill, S. Bromberg, K. 
Yue, K.M. Fiebig, D.E Yee, ED. Thomas and H.S. Chart, 
Protein Science 4 (1995) 561-602; A. Sali, E. Shakhnovich 
and M. Karplus, J. Mol. Biol. 235 (1994) 1614. 

[12] J.N. Onuchic, EG. Wolynes, Z. Luthey-Schulten and 
N.D. Socci, Proc. Natl. Acad. Sci. USA 92 (1995) 
3626-3630. 



S.S. PIotkin et al./Physica D 107 (1997) 322-325 325 

[13] G.S. Huang and T.G, Oas, Proc. Natl. Acad. Sci. USA 92 
(1995) 6878. 

[14] S.E. Jackson and A.R. Fersht, Biochem. 30 (1991) 
10428. 

[15] T. Pascher, J.P. Chesick, J.R. Winkler and H.B. Gray, 
Science 271 (1996) 1558. 

[16] A. Panchenko, Z.A. Luthey-Schulten and P.G. Wolynes, 
Proc. Natl. Acad. Sci. USA 93 (1996) 2008. 

[17] S. Takada and EG. Wolynes, Prog. Theor. Phys. Suppl., 
in press. 

[18] A.E. Finkelstein and A.Ya. Badretdinov, Folding and 
Design 2 (1997) 115-121. 

[19] D. Thirumalai, J. de Phys. I 5 (1995) 1457-1467. 
[20] P.G. Wolynes, Proc. Natl. Acad. Sci. USA 94 (1997) 

6170-6175. 


