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1. Introduction

We have seen in Part I of this review that the energy landscape theory of protein folding is

a statistical description of a protein’s complex potential energy surface, where individual

folding events are sampled from an ensemble of possible routes on the landscape. We found

that the most likely global structure for the landscape of a protein can be described as that

of a partially random heteropolymer with a rugged, yet funneled landscape towards the native

structure. Here we develop some quantitative aspects of folding using tools from the

statistical mechanics of disordered systems, polymers, and phase transitions in finite-sized

systems. Throughout the text we will refer to concepts and equations developed in Part I of

the review, and the reader is advised to at least survey its contents before proceeding here.

Sections, figures or equations from Part I are often prefixed with I- [e.g. Section I-1.1, Fig. I-1,

Eq. (I-1.1)].

2. Quantifying the notions behind the energy landscape

In this section we will go more deeply into the physical concepts behind energy landscape

theory. This will allow for a quantitative description of protein folding thermodynamics and

kinetics, as well as the glass transition in random heteropolymers.

2.1 Basic concepts of the Random Energy Model (REM)

As temperature is lowered, a random heteropolymer (RHP) exhibits a phase transition to a

state of zero configurational entropy, characterized by the freezing of the system into one of

many globally distinct, low energy configurations. A basic analysis of this can be seen by

applying the random energy model (REM) (Derrida, 1981; Gross and Me! zard, 1984)

to configurations of the RHP (Shakhnovich & Gutin, 1989a). Inspection of the RHP

Hamiltonian [cf. Eq. (6.1) of Part I]

(
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Fig. 1. Log density of states in the REM. The slope of the curve at the ground state energy (E
GS

) gives

the reciprocal of the freezing or ‘glass ’ temperature (T
G
) in the model. For designed or protein-like

sequences there is a minimally frustrated native state (E
N
) with considerably lower energy (∆) than the

putative RHP ground state. This state will be in thermodynamic equilibrium having equal Boltzmann

weight as a manifold of unfolded states with higher average energy (E
D
) at a temperature (T

F
) above

the REM glass temperature (T
G
). (Figure adapted from Shakhnovich & Gutin, 1993.)

shows that the energy E of a state at fixed density is the sum of a large number of random

terms. Thus by the central limit theorem the energies of the configurations are distributed

according to a Gaussian distribution

P(E )¯
1

(2π∆#)"#
e−(E−E

G
)
#
/#

∆#, (2.2)

where EG ¯Nzε- is the average energy and ∆#¯ zNb# is the variance ; here N is the polymer

length, z is the mean number of contacts per monomer, and b# is the energetic variance

of the individual contacts.

Thus the average number of states in the interval (E, EdE ), n- (E )dE, is given by (see

Fig. 1)

na (E )dE¯Ω
!
P(E )dE¯ exp

E

F

Ns
!
®

(E®E{ )#
2zNb#

G

H

dE, (2.3)

where Ω
!
¯ exp(Ns

!
) is the total number of polymer conformations at fixed contact density.

Then from Eq. (2.3) (see also Fig. 1), it is clear that there exists a critical energy

E
GS

¯N(zεa®bo2zs
!
) (2.4)

such that if E"E
GS

the average number n- (E ) of levels is ( 1, and if E!E
GS

, n- (E )' 1.

Because of the statistical independence of energy levels in the REM, the relative fluctuations

of n(E ) around the mean die away as n- (E )−"

#, and therefore n(E )F n- (E ) when E"E
GS

. If

on the other hand E!E
GS

, n- (E )' 1, so for almost all sequences n(E )¯ 0 and with a very

small probability which vanishes exponentially with N, n(E )& 1. Thus in the thermodynamic
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limit, if E"E
GS

the microcanonical entropy S(E ) is a parabolic function, similar to the

density of states of a finite-sized paramagnet or finite, random-field Ising model :

S(E )¯ logna (E )¯Ns
!
®

(E®E{ )#
2zNb#

. (2.5)

The REM is applicable to the freezing of a RHP to the extent that the states contributing

to the thermodynamics are uncorrelated in energy. This approximation is a reasonably good

one. If we were to randomly pick pairs of states from the pool of all possible configurations,

most pairs of states would have little or no structural similarity, because the topological

constraints consistent with a given degree of similarity dramatically reduce the number of

pairs with structural overlap. Issues of polymer entropy and REM applicability are treated

further in Section 2.4.

Through the definition of temperature, 1}T¯ ¥S}¥E, thermodynamic properties such as

the energy, entropy, and free energy may be obtained at temperature T :

E(T )

N
¯ zεa®

zb#

T
(2.6a)

S(T )

N
¯ s

!
®

zb#

2T#

(2.6b)

F(T )

N
¯

E®TS

N
¯ zεa®Ts

!
®

zb#

2T
. (2.6c)

Equations (2.6a), (2.6b) and (2.6c) are valid so long as the temperature is high enough that

a macroscopic number of states are occupied, i.e. T is above T
G

where S(T
G
)¯ 0. From Eq.

(2.6b), the chain conformational entropy vanishes above absolute zero at a temperature

T
G
¯ bA z

2s
!

. (2.7)

At and below this temperature, the system will be frozen into one of a small number of low-

energy states, whose number is sufficiently small that their entropy is insignificant. Thus

below this point the entropy vanishes and remains equal to zero. The thermodynamics are

then given by:

E(T%T
G
)

N
¯

E
GS

N
¯ zεa®bo2zs

!
(2.8a)

S(T%T
G
)¯ 0 (2.8b)

F(T%T
G
)¯E®TS¯E

GS
. (2.8c)

The entropy in Eqs. (2.6b) and (2.8b) vanishes continuously as T!T
G
, i.e. the transition

is second order.

The random energy model was first used to describe the unfolded parts of a protein in

Bryngelson & Wolynes (1987), and shown to be a good approximation by the replica method

in Shakhnovich & Gutin (1989b). Issues related to the glass transition are treated further in

the next section and Section 3.1.
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2.2 Replica-symmetric partition functions and densities of states

As described in Part I.5 minimal frustration greatly simplifies the folding problem, and allows

for an analysis of folding mechanism, structure prediction, and sequence design that is not

critically sensitive to the microscopic details of the amino-acid sequence along the chain, but

rather on gross, overall features of ensembles of sequences which fold to the same structure.

Minimal frustration and the resulting funneled landscape justifies using a replica-symmetric

partition function in the canonical ensemble, or a sequence averaged density of states in the

microcanonical ensemble, to describe the folding mechanism of a typical sequence folding to

a given structure. Physically, replica-symmetric behavior corresponds to all copies of the

system following the same behavior, in this case reliably folding to the same structure, as

opposed to being trapped in many globally distinct structures.

Formally, the sequence-averaged free energy ©Fª is calculated within the canonical

ensemble using the replica identity :

©Fª¯®T©lnZª¯®T lim
n!

!

©Znª®1

n
. (2.9)

For two replicas,

©Z#ª¯ 3
νN

α="

3
νN

β="

©e−(Eα+Eβ)/Tª, (2.10)

where νN is the total number of configurational states in the system. Two configurations α

and β are correlated energetically depending on how similar they are, similarity being defined

in the context of the Hamiltonian [Eq. (2.1)] (as well as the protein Hamiltonian [Eq. (6.3)

of Part I]) as the fraction of shared pair contact interactions :

qαβ ¯
1

M
3
i! j

∆(rα

i
®rα

j
)∆(rβ

i
®rβ

j
). (2.11)

Then ©exp®(EαEβ)}Tª depends only on the overlap between configurations α and β and

©Z#ª can be written

©Z#ª¯ 3
νN

α="

3
νN

β="

®eNε(qαβ)/T. (2.12)

Because the expectation value of the energies of two states depends only on their overlap, to

calculate the trace for large N it is sufficient to know the number of configurations having

overlap qαβ, eNs(qαβ). Then for large N, the saddle-point overlap q$αβ gives the behavior of ©Z#ª,

and

ln©Z#ª¯Nmax
qαβ

E

F

®ε(qαβ)

T
s(qαβ)

G

H

. (2.13)

For n replicas the saddle point is obtained in the space of n(n®1)}2 variables.

It has been shown that above the replica symmetry breaking transition, the saddle-point

solution which yields the free energy is that in which all replica overlaps qαβ equal one value

q (Sherrington & Kirkpatrick, 1975; de Almeida & Thouless, 1978). Then the free energy

can be obtained as a function of q. The analysis outlined above may be straightforwardly

generalized to account for variable polymer density.
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The thermodynamics in the microcanonical ensemble is considerably simpler. Here one

seeks the sequence-averaged log density of states ©S(E )ª¯©lnn(E )ª, which as before

depends on the overlap q to a reference state. The replica identity may be used again

©S(q, E )ª¯ lim
p!

!

©n(q, E )pª®1

p
. (2.14)

For all moments p, there are two regimes for n(q, E ) (Derrida, 1981),

©n(q, E )pªE©n(q, E )ªp E"E
GS

(q) (2.15a)

©n(q, E )pªE©n(q, E )ª E!E
GS

(q), (2.15b)

where E
GS

(q)¯®Nbo2s(q) is where ©n(q, E )ª¯ 1 and the entropy typically vanishes.

Under typical folding conditions, a protein reconfigures within a band of energies in the

region of large density of states, E(q)"E
GS

(q) (until qE 1), so

©S(q, E )ª¯ ln©n(q, E )ª, (2.16)

which is the approximation used in Eq. (2.5) in obtaining the high-temperature REM

thermodynamics.

2.3 The RHP phase diagram and avoided phase transitions

Even though there may be as few as one energy scale (b) in a RHP (with zero mean attraction

between residues), there are several phase transitions in the system. For example, random

interactions can induce collapse in a heteropolymer, at a temperature T
C

distinct from the

glass temperature T
G
, depending on the stiffness of the chain.

Collapse occurs below a temperature T
C
, defined as the temperature where the free energy

of the coil and collapsed phases of the heteropolymer are equal :

F(zD 0, T
C
)¯F(zD z

c
, T

C
). (2.17)

From Eq. (2.6c) this occurs when

®T
C
s
!
¯®T

C
s
C
®

z
c
b#

2T
C

®z
c
εa (2.18)

where s
!
is the entropy in the coil state (where the number of contacts per residue zD 0) and

s
C

is the entropy in the collapsed state (where zD 1). Using the reduction in entropy for

collapsed versus coil chain statistics from Eq. (4.1) of Part I :

s
!
®s

C
¯ s(η¯ 0)®s(η¯ 1)¯ lnν®ln

ν
e
¯ 1, (2.19)

Eq. (2.18) yields the collapse temperature :

T
C
¯

z
c
εa

2
"

#

oz#
c
εa #2z

c
b#. (2.20)

Note that even when there is no net homopolymeric attraction (ε- ¯ 0), random interactions

can induce collapse in the heteropolymer at a temperature

T!
C
¯ bAz

c

2
. (2.21)
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Fig. 2. Phase diagram for a RHP (cf. with Fig. 19). The axes are temperature in units of the collapse

temperature, and entropy per residue, which is a measure of the flexibility of the chain. The coil phase

is separated from the glass and collapsed phases by second-order transitions, as is the collapsed to glass

phase. For sufficient flexibility, a microphase-separated phase may appear depending on the nature of

the interactions (see text).

For a heteropolymer with zero net attraction (ε- ¯ 0), the T
G

where the entropy vanishes

must always be below the collapse temperature, T!
C
, in Eq. (2.21) (Bryngelson & Wolynes,

1990). To see this, assume the converse, i.e. that T
G
"T!

C
. Then we rewrite Eq. (2.7) as

T!
G
¯A∆#(η)

2 S
!

, (2.22)

where

∆#¯ z
c
Nηb# (2.23)

[this is of the form of Eq. (I-5.14), with Q¯ 0]. Here η¯Nv}V is the packing fraction,

where v is the excluded volume per residue. If the chain is above the collapse transition, the

total volume occupied V¯R$
g
D vN*

& (Flory, 1953) and ηDN−
%

&, so ∆#CN"

&. Since the

entropy loss at the glass transition scales like CN, T!
G

in Eq. (2.22) scales like CN−
#

&, and

so must be 'T
C

as N becomes large, in contradiction with our original assumption. A

similar proof by contradiction can be made to show the glass temperature is below the θ point

(Bryngelson & Wolynes, 1990). We conclude then that Eq. (2.7) should be written for a

collapsed heteropolymer

T
G
¯ bAz

c

2s
!

. (2.24)

Then a phase diagram can be constructed for the RHP in Fig. 2. Here the axes are

temperature in units of the collapse temperature, and s
!
, which is a measure of the flexibility

of the chain. For chains more flexible than s
!
¯ 1, the glass transition curve follows
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T
G
}T

C
¯ s−"

#

!
, and the collapse and glass transitions are distinct. For stiffer or lower

dimensional chains (with s
!
! 1), the glass transition and collapse occur concurrently by the

argument given above.

If the residue–residue interaction energies have a few discrete values or are sufficiently

distinct, microphase separation may also occur below the collapse temperature (Sfatos et al.

1994). This transition line should increase with flexibility since more entropy is lost to

phase separate stiffer polymers, as described in Section I-4.4, i.e. microphase separation can

be destroyed or induced by increasing the stiffness or flexibility of the polymer chain. While

the microphase transition is first order with latent heat, the collapse and freezing transitions

are second order."

The glass II phase in Fig. 2 is different than the glass I phase, in that the specific microphase

separated basin is favored over all other low-energy basins on the landscape. Since relaxation

times diverge in the glass phase for a bulk system, kinetics becomes important in determining

what state will be observed in practice. If the glass II region is approached from above as

indicated by the arrow in the figure, the system is frozen into the basin corresponding to the

microphase separated state, and has residual entropy within that basin. In contrast, the glass

I phase has essentially no configurational entropy. If the glass II phase is approached from

the left, the slow kinetics of the glassy state prohibits the formation of the microphase

separated state, for a large system.

We will see later in Section 5.7 that a similar phenomenon occurs in the context of folding,

where at low temperatures the state of a protein is one in which it is frozen into an ensemble

of substates in the native basin, so long as the temperature-dependent energy function is not

significantly altered (Austin et al. 1975). Just as the glass I phase is avoided in microphase

separation, a glass I phase is avoided in low-temperature proteins by the presence of a folded

state at higher temperature.

2.4 Basic concepts of the entropy of topologically constrained polymers

A theory capable of predicting folding mechanisms from the Hamiltonian must be able to

quantitatively describe the free-energy landscape the protein folds upon. The free-energy

landscape is constructed by taking an order parameter, and quantifying the number of states

and distribution of energies of these states at a given value of the order parameter.

In the context of folding, we take as a first approximation a global scalar parameter Q

describing the overall fraction of native contacts present (0%Q% 1). Later in Section 7 we

generalize this to a field Q whose components Q
i

(1% i%M ) give the equilibrium

probability native contact i is made in the thermal ensemble at a given Q.

In this section we focus on the calculation of the configurational entropy of a

heteropolymer under topological constraints. We will apply the entropy as derived here to

the thermodynamics of folding, the glass transition, and to folding kinetics.

The entropy depends in principle on the reference configuration, and on which particular

contacts are shared. We begin with a mean-field analysis here, so that entropy fluctuations

between contact patterns with the same total number of contacts are not accounted for,

and neither are any specific properties of the reference configuration. We begin to take

these features into account in Section 7. The topological constraints are taken to be the

" However the collapse transition may become first-order-like for stiff chains (Lifshitz et al. 1978), or

when interactions are cooperative.
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(a)

(b)

Fig. 3. Allowable configurations of polymer strands (a) before and (b) after bond formation. Each pair

of bonded mers has 4 nearest cross-linked neighbors.

fraction of shared contacts q with a given typical configuration, which can be arbitrarily

chosen.

Given the fraction of shared contacts q and packing fraction η, the chain configurational

entropy S(q, η) is estimated as a sum of 4 terms, described below (Plotkin et al. 1996) :

S
low

(q, η)¯S
!
(η)∆S

B
(q, η)∆S

rout
(q, η)∆S

AB
(q, η). (2.25)

The first term is the entropy of an unconstrained polymer at density η, given by Eq. (4.1) of

Part I :

S(η)¯N lnµEN

A

B

ln
ν
e
®

E

F

1®η

η

G

H

ln(1®η)

C

D

, (2.26)

where ν is the number of conformational states per monomer and η is the packing fraction

(given by the total volume of the residues over the effective volume the polymer occupies,

0! η! 1). The remaining terms describe the entropy loss from the unconstrained state, as

contacts are randomly added.

Figure 3 illustrates the calculation of the reduction in chain configurational entropy

∆S
B
(q, η) due to the addition of specific cross-links in the polymer chain, as first derived by

Flory (1956). Consider the region of a cross-linked polymer around a given cross-link about

to be formed. Each cross-link and its two associated monomers has four neighboring cross-

links denoted C
"
, C

#
, C

$
, C

%
in Fig. 3. We seek the fraction of allowable states that are

consistent with the formation of a specific cross-link, ω∆τ, assuming that if the specific cross-



214 S. S. Plotkin and J. N. Onuchic

linked monomers are within a volume ∆τ of each other then a cross-link is formed.

Considering the system to be composed of four separate chains, ω∆τ equals the probability

that all four chains meet in ∆τ, divided by the probability that the chains meet anywhere in

pairs (restoring the allowable configurations in the unbonded initial structure). The

probability of forming a cross-link is then given by

ω∆τ¯∆τ
!dτ G

"
(r

"
)G

#
(r

#
)G

$
(r

$
)G

%
(r

%
)

!dτ G
"
(r

"
)G

#
(r

#
) !dτ G

$
(r

$
)G

%
(r

%
)
, (2.27)

where G
i
(r

i
) is the chain propagator from position C

i
to the volume element ∆τ, whose vector

is r
i
. The integrations extend over all space – the specific contact is free to move anywhere.

Performing the integrations in Eq. (2.27) for Gaussian propagators gives the entropy

reduction in forming µ¯ qNz
c
η specific total cross-links for an ideal polymer chain. The

calculation is mean field in that the mean free-chain length when µ contacts are present,

N}2µ, is used in calculating the propagators in Eq. (2.27). For polymers in 3 dimensions

the entropy reduction is

∆S
B
(q, η)¯ $

#
N(qz

c
η) ln(Cqz

c
η), (2.28)

where C is a constant of order /(1) involving the ratio of the contact radius to the persistence

length. The change in entropy due to the addition of contacts is negative, as plotted in

Fig. 4.

If we imagine the ensemble of configurations that have a given amount of order, say a

given number Mq of similar contacts to a given structure, then within this ensemble there are

a multiplicity of sub-ensembles of states having different sets of Mq contacts. These are the

core-halo ensembles described in Section I-5 in the context of folding, which can be identified

as a measure of the number of distinct routes in folding to the native state, or to an arbitrary

state in a description of configurational diffusion. Each sub-ensemble contains many states

corresponding to the entropy of the disordered polymer around the particular core (e.g. see

inset of Fig. 10, Part I). We define the entropy that corresponds to the degeneracy of contact

patterns at q as S
rout

(q) (S
rout

" 0), while the configurational entropy lost from the coil state

to form that set of contacts is ∆S
B
(∆S

B
! 0).

In capillarity models of nucleation (Becker & Doring, 1935), S
rout

corresponds to the log

of the translational partition function (Lothe & Pound, 1962; Reiss et al. 1967; Lothe &

Pound, 1969) which scales logarithmically with system size, plus the entropy of surface

fluctuations of droplets of a given size (Langer, 1967; Fisher, 1967) which correspond to

logarithmic terms in the expansion of the free energy density. This translational entropy is

small compared to the total conformational entropy, however at the spinodal where the free-

energy profile F(q) becomes downhill [e.g. F(Q) curves in the third row of Fig. 31],

the nucleus is of small amplitude and highly ramified (Gunton et al. 1983; Unger & Klein,

1984). In this regime the droplet structure is percolative as in spinodal decomposition of

binary fluids, and the capillarity approximation is poor. Field-theoretic descriptions for

the structure of the droplet are typically used in this regime (Cahn & Hilliard, 1958;

Langer, 1969). Binary fluid approximations to the route entropy in proteins which scale

extensively with system size have been used in this limit (Bohr & Wolynes, 1992;

Plotkin et al. 1996, 1997; Pande et al. 1997; Shoemaker et al. 1997, 1999; Shoemaker &

Wolynes, 1999). The amount of route diversity in folding has also been analyzed in terms

of the Shannon entropy (Ferna!ndez et al. 2000), which is similar in spirit to the
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Fig. 4. Entropy contributions (divided by N) for a weakly constrained polymer. Here the length

N¯ 27, and the packing fraction η¯ 1. – – –, Entropy loss ∆S
b
due to the formation of contacts [Eq.

(2.28)]. ––, Entropy loss ∆S
AB

due to the elimination of forbidden configurations which would cause

the overlap to exceed q. This ‘anti-bond’ term becomes larger for more compact polymers and for

longer polymers [Eq. (2.32)]. - - - -, Putative binary fluid mixing entropy in the absence of the polymer

backbone, given through Eq. (2.29). +—+, Data and theory for the route entropy associated with the

number of core configurations consistent with q [Eqs. (2.31a) and (2.31b)]. S
rout

includes a prefactor

(1®qα) corresponding to the entropic asymmetry of applying contacts to an unconstrained polymer and

removing contacts from a fully constrained polymer, described in the text. The data are for the 27-mer

lattice model structure shown in Fig. 27a (Nymeyer, unpublished results), and are obtained for low q

values by making subsets of M(1®q) contacts repulsive, Mq contacts attractive, and then finding the

most native-like state in a low temperature quench. For high q values they are obtained by making

random sets of M(1®q) contacts repulsive, and counting the remaining native cores which are distinct.

This method finds the reduction in binary fluid mixing entropy due to chain connectivity and particular

native topology of the protein under study. The computation treats all contact formation

probabilities on an equal footing (all q
i
¯ q), and so the conformational route entropy plotted

is an upper limit to the actual thermal route entropy present. E—E, Total entropy loss for the

weakly constrained polymer. Adding the constant s
!

to this gives Eq. (2.25). Finite-size effects

add further modifications to the theory for small values of q (Plotkin et al. 1996).

following treatment (Plotkin & Onuchic, 2000). We make no capillarity or spinodal

assumptions, and treat the route entropy S
rout

(²q
i
´) as a fairly simple modification of

the entropy of a binary fluid mixture (Landau & Lifshitz, 1980) :

expS
bf
(q)¯

M !

Mq !(M®Mq) !
F (Ωbf

i
)M (2.29)

Ωbf

i
¯ q−q(1®q)−("−q), (2.30)

which we interpret here as the product of the complexities per contact Ω
i
and is readily

generalized to the case where the complexities are not all equal : expS
bf
(²q

i
´)3

0M

i="
q−qi
i

(1®q
i
)−("−qi).

There are two principle modifications from the simple mixing entropy in Eq. (2.30) for

proteins. One is that as noted above, due to fluctuations in energetics and chain entropy, not

all contacts are occupied with equal probability in the thermal ensemble at overall similarity

We study this in Section 7 which focuses on heterogeneity in folding. The other is that, q.

due to chain connectivity, as contact density increases, there is less sterically allowed space
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for a monomer to move around when one of its constraining contacts is broken. Thus not

all M !}Mq !(M®Mq) ! contact patterns have an entropy ENs
!
∆S

B
. In other words making

some contacts forces spatially nearby contacts to be made because the corresponding

monomers are forced to be in each other’s proximity. So there is a reduction from the putative

complexity (Ωbf

i
)M since not all M contacts are independently contributing to mixing, with

several contact patterns corresponding to the same constrained state.

This further entropy reduction is subtracted off of the mixing entropy entropy in Eq.

(2.30). In Plotkin & Onuchic (2000, 2002), this reduction was taken into account by

introducing a phenomenological prefactor λ(q) to yield the total route entropy for a polymer

system:

S
rout

(q)¯λ(q)[®q lnq®(1®q) ln(1®q)] (2.31a)

λ(q)3 1®qα. (2.31b)

The factor λ(q) measures the entropy reduction due to the coupling of chain connectivity with

the topology of the reference state. The power α in λ(q) should be a decreasing function of

the persistence length, and also of system size N, since for larger systems more polymer is

buried and thus more strongly constrained by surrounding contacts. Allowing fluctuations

in contact probabilities q! q
i
will lower the route entropy, but will also turn out to lower

the magnitude of bond entropy loss.

Specifying the overlap q introduces an additional entropy reduction due to the fact that

Nz
c
η®qNz

c
η contacts of the reference state must not be formed, since adjacent residues are

assumed to be bonded. This ‘anti-bond’ entropy reduction is largest for small overlaps, and

goes to zero as q! 1. It is given by Plotkin et al. (1996)

1

N
∆S

AB
(q, η)¯

1

C &
Czc

η

Cqzc
η

dx log(1®x$

# ), (2.32)

where C is the same coefficient in Eq. (2.28).

The sum of Eqs. (2.26), (2.28), (2.31a), and (2.32) gives the total entropy in Eq. (2.25),

which is plotted in Fig. 4 for a model chain of length N¯ 27 in 3 dimensions, believed to

model the folding of small, single domain proteins (Onuchic et al. 1995). The total entropy

and route entropy agree well with the values obtained from lattice simulations.

The theory gives a maximum number of states at a small, non-zero value of structural

overlap, q
min

. Simulations reveal that q
min

does not tend to zero as N becomes large, but

converges to a small number of about 0.01–0.1, depending on the amount of homopolymer

attraction (Bastolla & Grassberger, 2001). To see this and obtain an estimate of q
min

, consider

two random flight chains of length N. The probability a contact of length l is shared between

the two replicas is the probability of successful first return for both chains. Taking the chains

to be Gaussian,

P(l )#D
E

F

c(d )

ld/#

G

H

#

(2.33a)

c(d )D
E

F

3

2π

G

H

d/#
E

F

r
B

a

G

H

d

, (2.33b)

where r
B

is the bond radius and a is the persistence length. It is possible to generalize the

result for self-avoiding chains, which results in a smaller value of q
min

. From Eq. (2.33a), the
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probability a residue in both replicas at position i on the chain participates in a contact (of

any length) is

p
i
D 3

N

j="
j1i

c#

ri®jrd
D

c#

d®1

E

F

2®
1

(i®1)d−"
®

1

(N®i )d−"

G

H

, (2.34)

where we have approximated the events as having small and independent probability

of return.

For long chains i( 1 and N( 1 and the last two terms in parentheses! 0. The average

number of shared contacts between the chains n. is then Np
i
}2, since there are 2 residues per

contact. The average fraction of the total possible shared contacts q
min

is then n.}Nz
c
or

q
min

D
c#

z
c
(d®1)

. (2.35)

Note that q
min

! 0 as the dimension d!¢. We can now obtain a number for polymers on

a d¯ 3 cubic lattice, for which the maximum number of contacts per residue z
c
approaches

2 as z
c
E 2®3N−

"

$ (Douglas & Ishinabe, 1995), and for which the bond volume r$
B

is 4 sites

and the lattice spacing a3 1 functions as the persistence length. Then

q$D
min

D
c#

4
¯

E

F

3

2π

G

H

$

E 0.11. (2.36)

This number is slightly larger than the number for self-avoiding walks, since the ideal chain

approximation was used. Nevertheless, the fact that q
min

does not tend to zero as N! 0

means that energetic correlations between chain replicas are always present, and, for example

will broaden the glass transition from the REM behavior even in the bulk limit.

When the number of contacts present exceeds the number of residues and there is more

than one contact per residue on average, the mean-field Flory theory undergoes an entropy

crisis and is longer valid. At some point before this, configurations having fluctuations from

the mean-field contact pattern begin to dominate the free energy. It then becomes more

accurate to switch the description of entropy loss from that due to a dilute ‘gas ’ of contacts,

to an atomistic description ascribing entropy to lengths of chain melted out from the frozen

(q¯ 1) three-dimensional (3D) reference structure, and the combinatorics of these pieces of

melted chain (Plotkin et al. 1996).

It is appropriate then in this regime to start from a reference state in which all the bonds

are formed, and the polymer is ‘ frozen’ into the reference structure, which may be the native

structure. By switching from the contact representation used at low q to an atomic

representation, we can study how certain parts of the frozen polymer are melted out by

keeping track of which residues are still in their correct geometrical positions relative to the

3D structure of the reference state (see Fig. 5, upper inset). The melted pieces each carry a

certain amount of entropy, and there is also a mixing entropy associated with the different

places that the given melted pieces can occur along the sequence of the polymer. The process

of melting physically involves the collective freeing up of several monomers at once, i.e. at

least some critical number l
c
" 1 of monomers must be free for the melted strand to have any

entropy. Each melted piece of segment length l then has an internal partition function for its

entropy

z(l )Fµl−(lc−"). (2.37)
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Fig. 5. Configurational entropy of a topologically restricted polymer, for a 3D 27-mer. The lower inset

(- - -) is the high-q entropy which is accurate for a strongly constrained polymer [shown here for a 64-

mer; cf. Eq. (2.38)]. The solid curves are interpolations between the high-q and low-q entropy formulae,

for two different overall packing densities, η¯ 1 (Hamiltonian walks) and η¯ 0±7. The value of q
min

is where the entropy is maximal [see Eq. (2.36)]. The value of q
max

is related to the minimal amount of

polymer which must be melted out to yield entropy. It is a finite-size effect in that q
max

! 1 as N!¢.

Upper inset : illustration of a polymer in the geometrical configuration of the reference state (q¯ 1), and

for a partially native structure (q! 1). The entropy can be considered to come from melted out strands

along the sequence which are not in their correct geometrical positions (dark lines), and the

combinatorics of those melted strands along with the frozen trains between melted strands (see text).

In addition the ends are allowed to be freed up in the same fashion, but we expect them to

be easier to free up, with a correspondingly smaller value of critical collective length l
EC

! l
C
.

We can then express the total number of states of an entire polymer composed of melted

and frozen pieces, along with melted or frozen ends (see Fig. 5, lower inset) at a given q. We

can characterize a state microscopically by the number distribution of melted pieces of length

l, ²n
l
´, the number distribution of frozen pieces of length l, ²m

l
´, and of the probability

distribution that the ends have length l, ² p
l
´ (we treat the ends on equal footing here). As a

consequence of specifying the total number of states in terms of the given distributions ²n
l
´,

²m
l
´, and ² p

l
´, there must be a combinatorial factor present associated with the permutation

degeneracy given the above distributions. There is also a mixing term pertaining to the end

length distributions, which is necessary for the end lengths to have a probability distribution

rather than just their mean value. The melted pieces, frozen pieces, and end lengths each have

their own internal partition function [given for melted pieces by Eq. (2.37)]. The frozen

pieces do not have any internal entropy in the model. So the total number of states is given

by Plotkin et al. (1996)

Ω
tot

¯ 3
²nl

´
²ml

´
²pl

´

E

F
3N

lc

n
l

G

H !
#

0N

lc

n
l
!0N

"

m
l
!

0
N

l= lc

(µl−(lc−"))nl 0
N

l= lEC

E

F

1

p
l

µl−(lEC−")

G

H

#pl

, (2.38)

where the total number of melted pieces essentially equals the total number of frozen pieces

in a large system (in the particular configuration of the finite-sized system in the inset of
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Fig. 5, there are 3 melted and 4 frozen pieces, and 2 melted ends). The sum is over all possible

distributions of ²n
l
´, ²m

l
´, and ² p

l
´. Expressions of this form for the number of states have

been used in models of the helix-coil transition and DNA denaturation (Poland & Scheraga,

1970; Flory & Matheson, 1984), and in models of polymer adsorption onto a surface

(Silberberg, 1962; Hoeve et al. 1965).

The entropy at q for a strongly constrained polymer is obtained by maximizing the log of

the largest term in Eq. (2.38) subject to the constraints :

3
N

lc

n
l
¯Nf, 3

N

lc

ln
l
¯N(1®q)®2 l

E,
(2.39a)

3
N

"

m
l
¯Nf, 3

N

"

lm
l
¯Nq, (2.39b)

3
N

lEC

p
l
¯ 1, 3

N

lEC

lp
l
¯ l

E
, (2.39c)

where Nf is the total number of melted or frozen pieces. The constraints are derived by

noting for example that ΣN

"
lm

l
in Eq. (2.39b) equals the total number of frozen monomers.

If there are N
F

frozen monomers, there are zηN
F

frozen bonds. Equating this with qNzη

bonds gives N
F
¯Nq. The other constraints follow from this type of reasoning.

Maximizing the log largest term of Eq. (2.38) yields exponentially decaying distributions

for n
l
, m

l
and p

l
. Substituting these back into the log largest term gives the configurational

entropy S(q, f, l
E
) as a function of q, the total number of melted or frozen pieces, Nf, and the

mean end length, l
E
. Then this function can be maximized to obtain the most probable

number of melted pieces and end length as a function of q, and finally the configurational

entropy as a function of q only, in the strongly constrained regime. The results are shown in

the inset of Fig. 5.

The total entropy can then be obtained by interpolating between the weakly and strongly

constrained regimes, yielding the curves in Fig. 5.

An interesting extension of the above analysis would be to incorporate topological effects

of the reference (native) structure by allowing the entropy of melted pieces to vary depending

where they are in the structure. Such an analysis may prove fruitful in understanding the

experimental results from hydrogen exchange experiments (Bai et al. 1995; Sadqi et al. 1999).

Simpler versions of the above analysis which restrict conformations to have one up to a few

melted and frozen segments, and which incorporate some aspects of native structure, have

been applied with some success in predicting folding rates and mechanisms (Munoz & Eaton,

1999; Alm & Baker, 1999; Galzitskaya & Finkelstein, 1999; Guerois & Serrano, 2000;

Galzitskaya et al. 2001).

The effects of entropic fluctuations due to structural heterogeneity are treated further in

Section 7.

3. Beyond the Random Energy Model

Though the REM has produced qualitatively reasonable results either as applied to the

heteropolymer glass transition or to non-native trapping in protein folding, it may seem too

extreme. Configurations of a system with structural similarity should have similar energies,
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Fig. 6. Qualitative picture of the energy landscape, pictured here as a 2D projection of the multi-

dimensional configuration space. We can speak of a distance radius C (1®q) from any given state,

which measures structural similarity to that state, and determines how correlated the energies of similar

states are given the underlying interactions. Correlations smooth out the energy landscape, which affects

the nature of the glass transition.

provided interaction ranges are reasonably local and not pathologically many-body.

Analogous to random first-order transitions in glasses (Kirkpatrick & Wolynes, 1987;

Kirkpatrick et al. 1989; Parisi, 2000) and Potts glasses (Gross et al. 1985; De Santis et al. 1995),

many states lie in a given thermodynamic basin, rather than the situation of just one state per

basin as in the REM. In fact for proteins, a dominant correlation-induced basin is essential

for solving the Levinthal paradox.

For a general disordered system, a model taking into account pair correlations in the

energy landscape, and thus capable of calculating disorder-averaged free energies accurate to

second order in the partition function, has been defined and solved by Derrida and Gardner

(Derrida, 1985; Derrida & Gardner, 1986a, b). Extensions to include higher order

correlations are straightforward in principle. The model, known as the generalized random

energy model (GREM), is defined by first introducing a similarity measure q to any given

state. The parameter q quantifies structural similarity between two configurations of the

system, and becomes an order parameter in the analysis. The energies of two states with

similarity q are correlated, Gaussian variables with covariance ©δE
"
δE

#
ª¯∆#(q) specified by

the underlying interactions. The parameter q functions as a distance measure which stratifies

the energy landscape (see Fig. 6). With the landscape thus parameterized, the last defining

quantity in the model is the log number of states or configurational entropy S(q) at distance

q to a given state, as described in the last section. Thus with a knowledge of the Hamiltonian

and configurational phase space of the system, a given disordered system can be mapped to

the GREM and solved to give the approximate thermodynamics. This technique can be

applied to study the glass transition in a finite-size heteropolymer globule (Plotkin et al. 1996).

We can generalize the contact Hamiltonian of Eq. (2.1) to account for many-body

interactions of arbitrary order, analogously with p-spin-glass models (Gardner, 1985; Derrida
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& Gardner, 1986b). Let a single index i
a

label each contact in sets of p contacts,

i
"
, i

#
,…, i

p
(there are CN # different pair contacts in the system, and (N

p
) sets of p contacts).

Then, generalizing the cut-off function in Eq. (2.1) for p-contact interactions, ∆
i
"

∆
i
"

,…,

∆
ip

¯ 1 if all p contacts are made, zero otherwise. We associate a ‘p-contact ’ energy with

each set, ε
i
"
,i

#
,…,ip

. To ensure an extensive energy, p-contact coupling energies must be chosen

from the distribution

P(ε
i
"
,i

#
,…, ip

)¯
E

F

Mp−"

2πb#p !

G

H

"

#

exp

A

B

® E

F
ε
i
"
,i

#
,…, ip

G

H
#
Mp−"

2b#p !

C

D

, (3.1)

where M¯Nzη is the total number of contacts. The ‘many-body’ Hamiltonian is then

(
P
²∆

i
´¯ 3

"
%i

"
!i

#
,…,! ip

%M

ε
i
"
,i
#
,…, ip

∆
i
"

∆
i
"
,…,

∆
ip

. (3.2)

The probability a state has energy E is simply a Gaussian distribution:

P(E )¯©δ(E®(
P
²∆

i
´)ª

¯&
¢

−¢

0
"
%i

"
! i

#
,…,! ip

%M
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i
"
,i
#
,…, ip

P
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F
ε
i
"
,i
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,…, ip

G

H
δ(E®(

P
²∆

i
´)

¯
1

(2πMb#)"#
e−E

#
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5

6
7

8

(3.3)

The last equality is obtained by Fourier transforming the delta function and performing the

Gaussian integrals. The final Gaussian distribution has a variance scaling extensively, which

justifies using Eq. (3.1).

Given two different configurations, ²∆a

i
´ and ²∆b

i
´, the probability they have energies E

a

and E
b
, respectively is

P
q
(E

a
, E

b
)¯©δ(E

a
®(

P
²∆a

i
´)δ(E

b
®(

P
²∆b
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´)ª
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E

b
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(E
a
®E

b
)#

4Mb#(1®qp)
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D

,

5
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7

8

(3.4)

where

q¯
1

M
3
M

i="

∆a

i
∆b

i
(3.5)

is the fraction of shared contacts between configurations a and b, and measures their structural

overlap.

There are two particularly important cases of Eq. (3.4) (Derrida, 1981). When the number

of contacts p necessary for a given energetic interaction becomes large, qp ! 0 for essentially

all q, and the distribution factorizes :

P
q
(E

a
, E

b
)!P(E

a
)P(E

b
). (3.6)

The states become uncorrelated for any q!1: Eq. (3.6) is the pair distribution in the REM.

Another important limit of Eq. (3.4) is when p¯ 1, which yields the two-point distribution

for a Hamiltonian with pair interactions. Equation (3.4) can be generalized to the case where

the densities of the two conformations are not equal (Plotkin et al. 1996). It is an interesting

future topic to investigate Eqs. (3.1) and (3.2) in the limit that the p contacts belong to a

spatially contiguous cluster of residues, as in capillarity models of folding and dynamics.
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Fig. 7. The ultrametric tree construction used in the GREM model ; the parameters q
i
, αN

i
, a

i
, and ε(β)

i

are described in Appendix B.

3.1 The GREM and the glass transition in a finite RHP

One can gain insight into the nature of a glass transition by applying the GREM formalism

to the RHP. Energetic correlations as well as the structure of the conformational entropy S(q)

can modify the transition. For an outline of the GREM construction, see Appendix B and

Derrida (1985), Derrida & Gardner (1986b).

The derivation of the free energy in the GREM involves essentially the same concepts as

in the REM, but with the modification that instead of the total energies of different states

being uncorrelated, the contributions to the energies ε(β)
i

on the branches of an ultrametric

tree at the ith level are uncorrelated (see Fig. 7), with the nodes of the ultrametric tree

representing the total energies of the states. A freezing temperature associated with each level

i involves the same competition between roughness and entropy loss as before, but now the

competition is between the decrease in roughness as we move towards a given state an

increment dq, and the loss in entropy for the same increment dq. The T
G

in Eq. (2.7) is

replaced by a q-dependent glass temperature :

T
G
(q)¯

E

F

(zb# ) (dv(q)}dq)

®2(ds}dq)

G

H

"

#

, (3.7)

where s(q) is the conformational entropy per residue at q, and v(q) is a measure of the

covariance of the energies of two states and is given through Eq. (B 5). Comparison between

Eqs. (3.4) and (B 5) gives v(q)¯ qp. For a Hamiltonian with pair-interactions ( p¯ 1),

T
G
(q)

boz}2
¯

E

F

®
ds(q)

dq

G

H

−
"

#

, (3.8)

where s(q) can be obtained from the methods of Section 2.4 (Fig. 5).
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The glass transition temperature T
G
(q) describes how upon cooling the system becomes

frozen into ergodically separated basins of states when correlations are present. As the

temperature is further lowered, the model predicts how the basins shrink to one frozen

configuration as occurs at the REM transition.

The glass transition can be investigated only for moderately high polymer densities for the

reasons given in Section 2.3. At moderate densities (η!1), the system is understood to have

some residual entropy even after freezing due to the parts of the polymer that were not

interacting. For the two entropy curves in Fig. 5, the glass temperature curves, T
G
(q) are

shown in the inset of Fig. 8. For moderately high packing fraction ηD0.7, the curve

monotonically decreases, while at full packing fraction η¯ 1 the curve has a maximum. Both

curves diverge as q
min

is approached from above, for the reasons leading to Eq. (2.36).

Analogously, two paramagnets in the same field H tend to have an overlap with each other

of at least the magnetization m(H).

These two cases have qualitatively different glass transition behaviors in the GREM. When

one applies a single breaking of replica symmetry (one-branch on the ultrametric tree), one

recovers the free energy of the REM (Gross & Me! zard, 1984). It is possible to apply the Parisi

ansatz for the structure of the replica symmetry breaking, and then one recovers the free

energy of the GREM, as long as the inverse of the replica-symmetry breaking-order

parameter q(x) has the form (Derrida & Gardner, 1986a) :

x(q)¯

1

2
3

4

0 0! q! q
min

T

T
G
(q)

q
min

! q! q
max

(T )

1 q
max

(T )! q! 1,

(3.9)

when T
G
(q) has the monotonically decreasing form of the η¯ 0.7 curve in Fig. 8 inset. When

T
G
(q) has a single maximum as in the η¯ 1 curve in Fig. 8, inset, x(q) is given by:

x(q)¯

1

2
3

4

0 0! q! q
min

T

T!
G

q
min

! q! q!
g

T

T
G
(q)

q!
g
! q! q

max
(T )

1 q
max

(T )! q! 1.

(3.10)

One of the upshots is that correlations in the landscape significantly reduce the temperature

at which the system is frozen in one particular low-energy state, as expected. However, for a

RHP with 2-body interactions, the T
G
, where the system is now frozen into one of many

distinct basins of states, is approximately 5–10% of the REM glass transition temperature.

In Eq. (3.10), q!
g

is the basin size at temperature T!
G
3T

G
(q!

g
) where freezing begins (see

Appendix B). This temperature, plotted in Fig. 8 as a function of packing fraction η, is

approximately 5–10% of the REM glass transition temperature. Perhaps somewhat

surprisingly correlations on the landscape have not significantly modified the temperature at

which the heteropolymer system becomes glassy in the thermodynamic sense, because even

though the effective energetic variance is reduced, so is the entropy lost at the transition. The

residual entropy at the transition comes from the fact that at T!
G
, the system is ergodically

localized into basins of states with an extensive amount of entropy, rather than just one state

as in the REM. When the interactions are very many-body [large p in Eq. (3.4)], the REM
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( )

Fig. 8. The temperature T !
G

at the onset of freezing (––), plotted with the REM freezing temperature

T
REM

(- - -). At η! η
c
D 0±85 the mechanism behind the glass transition changes from that in Eq. (3.10)

to that in Eq. (3.9). Below this density T !
G

is not precisely defined, but may be estimated (Plotkin et al.

1996). Inset : glass temperature curves T
G

(q) given by Eq. (3.8), which govern the nature of the replica

symmetry breaking transition in the GREM. q!
g
is the basin size at T !

G
where freezing begins, where q !

g

and T !
G

are given by Eqs. (B 14)–(B 16).

Fig. 9. Levinthal entropy (remaining configurational entropy) and thermal entropy, at T !
G

for both the

REM and the GREM, in units of the total configurational entropy S
!
. For the REM the thermal entropy

at the glass transition is zero (-.-.-), and the Levinthal entropy is S
!
(I[[). The configurational entropy

per basin is zero, so the number of basins to be searched at the glass transition is the total number of

states. For the GREM, the thermal entropy at the transition is C 10–20% of the total entropy, and the

Levinthal entropy corresponding to the number of basins to be searched is between about 40–70% of

the log total number of states, depending on the density. This is because at T !
G

there is a significant

configurational entropy per basin, which decreases only upon further cooling. At η! η
c
the freezing

mechanism changes from that in Eq. (3.10) to that in Eq. (3.9).

result is recovered; between these two regimes the transition temperature varies very little,

but the basin entropy changes significantly.

To see this, the Levinthal and thermal entropy are plotted versus η for the GREM and

compared to the REM results in Fig. 9. Even though the temperature at which the glass
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transition occurs did not significantly change, the entropy to be searched at the transition is

significantly less. These effects lead to the much smaller Levinthal search time at the glass

transition. For example at ηE 0.95, the Levinthal entropy on the correlated landscape at the

thermodynamic glass temperature is E 0.6 S
!
. Let the search take place in a polymer that has

collapsed and has the effective number of residues reduced by the helix-coil transition. We will

assume here that the polymer has not microphase separated or nematically ordered. Then

from the arguments of Section I-4 which led to Eq. (I-4.15), correlations reduce the Levinthal

search time from (10−"# s) expN(s
!
}2®1)C 10"!$ yr for Barnase [where Eq. (I-2.2) was used

for s
!
], to

τcorr

F
¯ (10−"# s) expN

E

F

0.6 s
!

2
®1

G

H

C10$! yr. (3.11)

This number is significantly larger than the number obtained in Eq. (I-2.30) and Section 4

from kinetic arguments on the correlated landscape, S
Lev

E 0.3 S
!
. This is because

correlations in the landscape reduce the barriers between basins in addition to the total

number of basins. The reduced height of the barriers reduces the time in a Levinthal search;

this effect is observed in a kinetic rather than thermodynamic analysis. Taking the estimate

for the reduced conformational entropy to be searched at the glass transition from Eq. (3.11),

and using this as S
MG

in Eq. (I-2.30) for the kinetic search time, we obtain

©τªcorr(T
G
)E (10−"#®10−* s)e!.$N(!.' s

!
/#−")C10 min\®10# h. (3.12)

depending on the reconfiguration time. By considering dynamics on a correlated landscape,

we have shown here how a glassy random search is a feasible folding mechanism for some

very slow folding proteins. Of course, in addition to the issue of kinetic accessibility, the

issues of stability and robustness become important for this class of sequences.

The replica-symmetry breaking-order parameter q(x) is plotted in Fig. 10a for η¯ 1 and

η¯ 0.7, corresponding to the two cases in Eqs. (3.9) and (3.10). The temperature is taken to

be about ("
#
)T

G
, with T

G
is given by Eq. (2.24). Also plotted in Fig. 10b is the probability

distribution of similarity parameter q, P(q), defined as the derivative of Eqs. (3.9) and (3.10),

dx (q)}dq. That is, x(q)¯ !q
!
dq«P(q«) is the probability two replicas have overlap less than q

(Me! zard et al. 1984). For maximally collapsed heteropolymers, the order parameter retains a

large discontinuous jump, as in the REM transition. This means there is a sudden ergodic

localization to basins of a characteristic size q!
g
. There are many basins since there is only a

fraction of the total entropy counting all the states within q!
g
of a given structure, and these

basins contain dissimilar structures, because the low q peak in the overlap probability

distribution function P(q) occurs at q
min

.

There is a critical value of the density η
c
D0.85 for N¯ 27, where the order parameter q(x)

changes from discontinuous to continuous as density is lowered. Appealing to conventional

spin-glasses in the presence of a magnetic field, this can be thought of as the analog to a tri-

critical point on the de Almeida–Thouless line for the spin-glass transition in the field-

temperature plane of the phase diagram (de Almeida & Thouless, 1978). Here the line is in

the ‘hydrophobicity ’-temperature plane, where hydrophobicity h is a property of the solvent

that induces collapse (makes η larger). At h
c

the transition changes from one that is

continuous to one with an order parameter jump as the heteropolymer is cooled in that

solvent. Equivalently, at η
c
in Fig. 8 the transition changes from continuous to discontinuous.
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(a)

(b)

Fig. 10. (a) The order parameter q (x ) in the analytic theory for a RHP of length N¯ 27, at a

temperature of about ("
#
)T

G
. - - - -, q (x ) in the REM collapsed heteropolymer has a discontinuous jump

from q
min

to q
max

at x¯T}TREM

G
where TREM

G
is given by Eq. (2.7). , For the fully collapsed,

correlated RHP, the transition is rounded corresponding to the non-zero entropy of ergodically

separated basins. A discrete jump is retained at the glass transition temperature T!
G
, which is within

5–10% of the REM glass temperature. – – –, The partially collapsed RHP has a continuous glass

transition, without a discrete jump. The transition from continuous to discontinuous freezing occurs

at η
c
E 0±85. (b) Probability distribution of similarity parameter q in the GREM, and in the REM (inset),

at a temperature about ("
#
)T

G
. The REM P (q) has two delta functions indicating a single tier of replica-

symmetry breaking (see Fig. 7). , The collapsed (η¯ 1) RHP retains a delta function at q
min

.

The REM spike at q
max

is spread out into a continuum group of states. - - -, In the partially collapsed

(η¯ 0±7) RHP, there is a finite probability for 2 replicas to have overlaps with all intermediate q

values.
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4. Basics of configurational diffusion for RHPs and proteins

Understanding configurational diffusion in a protein is essential to predicting folding rates

and mechanisms. Specifically, Eq. (I-3.12) for the folding rate contains a prefactor k
!
(D)

which depends on the configuration diffusion coefficient. To make predictions for protein-

folding kinetics or relaxation rates in RHPs, it is necessary to quantitatively understand

configurational diffusion for a heteropolymer chain. A protein undergoes state-to-state

transitions obeying a master equation: If the probability to occupy state i at time t

is p
i
(t), then

dp
i
(t)

dt
¯3

j

[k
ji
p
j
(t)®k

ij
p
i
(t)]. (4.1)

Here k
ji

is the transition rate from state j to state i.

According to the energy landscape theory (Bryngelson & Wolynes, 1989), protein folding

can be seen as a stochastic motion of a few collective coordinates describing protein

conformation, on an average thermodynamic potential. To first approximation this motion

is Brownian, and the folding time can be computed from diffusive rate theory (Bryngelson

& Wolynes, 1989; Socci et al. 1996; Klimov & Thirumalai, 1997; Pande & Plaxco, 2001).

Then the state-to-state master Eq. (4.1) can be generalized to a master equation along a

collective coordinate :

dp(Q, t)

dt
¯3

Q«

[k
Q«Q

p(Q«, t)®k
QQ«p(Q, t)]. (4.2)

Here p(Q, t) is the probability the protein is at similarity Q to the native state, and k
Q«Q

is the

transition rate from Q« to Q, where many states contribute collectively to this rate. Equivalent

to a master equation formulation, diffusion along the coordinate Q may be described by a

Fokker–Planck eqaution:

¥p(Q, t)

¥t
¯

¥
¥Q

A

B

D(Q)

E

F

¥p(Q, t)

¥Q
p(Q, t)

¥(βF(Q))

¥Q

G

H

C

D

, (4.3)

where D(Q) is proportional to the transition rates k
Q«Q

, the proportionality being related to

the probability a state to state transition leaves the ensemble of states at Q. In Eq. (4.3), βF(Q)

is the average thermodynamic potential in units of Boltzmann’s constant times the

temperature, and is constructed by finding the thermal energy and entropy of the system

constrained to be at Q : F(Q)¯E(Q)®TS(Q). We pursue this further in Section 5.

In principle the diffusion from state to state may involve many time scales, in which case

the validity of Eqs. (4.2) and (4.3) are questionable, in that some information may have been

lost on the preojection of all degrees of freedom onto the collective coordinate Q. This is

particularly true for a low temperature random heteropolymer chain or poorly designed

protein, or for a poorly connected network of conformational states. In these cases,

distributions of state-to-state transition rates then translate, upon projection to a reaction

coordinate Q, to a spectrum of diffusion coefficients, i.e. the diffusion coefficient then depends

on the frequency of the mode looked at, D(Q)!D(Q, ω). Similar treatments of diffusion

with a distribution of trapping times lead to what are known as fractional Fokker–Planck

equations (Metzler & Klafter, 2000).

Equivalently, we can generalize the master equation of Eq. (4.2) to allow for history

dependence in the transition rate, i.e. the probability to move from Q to Q« is a function of
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the time spent in the states at Q. This non-Markovian behavior is to account for the numerous

timescales of diffusion in principle present in the problem. Define the rate for a system which

arrived at Q at time zero to move to Q« between time t and tdt to be k
Q,Q«(t)dt. Then

dp(Q, t)

dt
¯ 3

"

Q«=!

&t

!

dt«[k
Q«Q

(t®t«)p(Q«, t«)®k
QQ«(t®t«)p(Q, t«)]. (4.4)

is the generalized master equation governing transitions, and the corresponding Fokker–

Planck equation governing the diffusion is :

ωP(Q, ω)®P(Q, t¯ 0)¯
¥

¥Q

A

B

D(Q, ω, T )

E

F

P(Q, ω)
¥

¥Q

F(Q, ω, T )

T


¥
¥Q

P(Q, ω)

G

H

C

D

,

(4.5)

where F(Q, ω, T )¯F(Q, T )  T ln(D(Q, ω, T )}D(Q, 0, T )), i.e. the frequency-dependent

effective potential is related to both the bare potential and the diffusion coefficient. The

statistics of transition rates enters into the calculation of the diffusion coefficient D(Q, ω, t)

in Eq. (4.5).

The fact that the annealed approximation is good for proteins as discussed in Section I-5

supports the description that there is not a wide distribution of transition rates between

states. Conversely, individual untrapping events and a wide distribution of barrier heights

would govern the relaxation dynamics of a poorly designed, frustrated system. States within

the stratum Q would be slow to interconvert, and many exponentials would contribute to the

rate of diffusion. This would correspond to a wide spectrum of values for the diffusion

coefficient, yielding strongly non-Markovian behavior. In extreme cases near the T
G
,

diffusion may even have to be treated at the level of individual trap escapes, at least

for a finite-sized system. However for systems which have a folding temperature, T
F
,

sufficiently larger than T
G
, and when we are considering dynamics at temperatures T

well above T
G
, Markovian diffusion along the coordinate Q should tend to be a good ap-

proximation. This is shown to be the case in Section 6. On the other hand, in the

limit when interconversion times between partially native structures are slow compared

to the barrier crossing timescale, a protein will begin to exhibit kinetic partitioning, in

that fractions of an ensemble of proteins fold with different rates (Guo & Thirumalai,

1995). This behavior is seen for example in hen lysozyme, which shows intermediates

corresponding to multi-domain folding, and correspondingly multi-exponential kinetics

(Radford et al. 1992). In these cases, it is worthwhile to explicitly introduce another

order parameter in addition to say Q, which can distinguish between intermediates

(Dobson et al. 1998). It will be interesting to investigate how such features may arise

from the interplay between the energy function and the connectivity of the network of

conformational states resulting from the native structure.

As discussed in Section I-3, there is a modest residual free-energy barrier in the potential

F(Q, T ) in Eq. (4.3). The solution for the mean first passage time to cross the barrier (and

thus fold) is (Szabo et al. 1980; Deutsch, 1980; Bryngelson & Wolynes, 1989)

τa
F
¯&QF

D
"

QU
D

!

dQ &Q

!

dQ«
1

D(Q)
e β[F(Q)−F(Q«)]. (4.6)

Equation (4.6) can be rewritten in a simpler form by letting G(Q)3F(Q)®TR(Q), where



229Understanding protein folding

R(Q)3 ln(D(Q)}D
u
) and D

u
is the diffusion coefficient in the unfolded state. Then one can

perform saddle-point expansions around the unfolded free-energy minimum, and the

maximum Q* of G(Q) to obtain

τb
F
¯

2πT

D
u
ω

u
ω*

e β[G(Q*)−F(QU)] (4.7a)

k
F
¯ τb −"

F
¯

ω
u
ω*

2πζ(Q*)
e−β[F(Q*)−F(QU)], (4.7b)

which is the well-known Kramers law for barrier crossing by activated diffusion in the spatial

diffusion limit (Kramers, 1940; Hanggi et al. 1990). Here the rate prefactor is proportional to

the curvature of the free energy in the unfolded state as well as to the curvature of G(Q) near

Q*, and inversely proportional to the friction kernel ζ(Q*) at the position of the maximum.

The rate is exponentially suppressed by the free-energy difference between Q* and Q
u
.

Note that Q* is in general not equal to the position of the barrier peak in the free energy.

Typically, the barrier peak is taken as the position of the transition state because it is assumed

the diffusion coefficient does not vary too strongly with Q. We examine the effects of a

Q-dependent diffusion coefficient in Appendix C, and find that in summary, a Q-dependent

diffusion coefficient may significantly affect the transition state ensemble without significantly

affecting the rate (see Appendix C).

Other reaction coordinates for folding or diffusion may be chosen besides Q, e.g. the

fraction of native or similar dihedral angles. For these other coordinates, the position and

height of the barrier will in general differ from ∆F(Q1). Of course the rate must be same,

so the prefactor will also be different. We choose Q for the analysis because the energetics are

easy to calculate, and the entropics can be calculated as in Section 2.4. Then it is in principle

straightforward to quantify the mean escape time ©τª and thermodynamic potential F(Q) in

terms of this parameter.

In the limit of the most minimally frustrated protein, a Go- model protein (Ueda et al. 1975),

Rouse–Zimm times govern state to state diffusion. Transitions between states are fast, and are

determined by properties of the polymer chain and native structure. For proteins not so

strongly funneled, configurational diffusion is colored by escape from numerous local

energetic traps which pock-mark the energy landscape. Trapping is facilitated by the low

energy of a given configuration, and opposed by the entropic driving force of numerous

dissimilar structures. As mentioned earlier, the diffusion coefficient and the state-to-state

transition rates are not independent quantities. By equating the master equation description

in Eq. (4.4) to a description in terms of the Fokker–Planck equation [Eq. (4.5)], one obtains

the diffusion coefficient in terms of the rate (or time) between transitions (Kenkre et al. 1973;

Bryngelson & Wolynes, 1989). The general result is given in Section 6. Taking the zero-

frequency (long-time) limit of Eq. (6.10) gives

DF
λ

©τª
, (4.8)

where λ sets a ‘distance ’ scale of local moves on the landscape. The strategy for estimating

folding rates then reduces to finding the mean escape time ©τª in Eq. (4.8) thus determining

ζ¯k
B
T}D in Eq. (4.7b), and determining the reaction surface or thermodynamic potential

F(Q) in Eq. (4.7b).
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At the other extreme from the Go. model, we can consider a RHP or very poorly designed

protein near the T
G
. We can make some statements about the structure of the distribution of

relaxation times in such a material as follows. First we may postulate an Arrhenius law for

escape from individual states. For a state of energy E, the escape time is

τ¯ τ
!
e(E*−E)/T, (4.9)

where E* is an activation energy, assumed fixed.

Using Eq. (4.9), we can explain the initial time dependence of the energy for a RHP system

which has undergone a sudden temperature jump from T
!
¯¢ to T#T

G
(Shakhnovich &

Gutin, 1989c). For such a system, at time τ, all states with energies with E«"E(τ) [where

E(τ)¯E*®T ln(τ}τ
!
) is the inverse of Eq. (4.9)] have relaxed to their equilibrium

Boltzmann distribution, while all states below E(τ) are nearly unpopulated (since the initial

temperature was ¢). The average energy at time τ is then

E{ (τ)¯
!

¢

E(τ)

dE En(E)e−βE

!
¢

E(τ)

dE n(E)e−βE

¯®
d

dβ
ln&

¢

E(τ)

dE e−E
#
/#

∆#
−βE

¯®β∆#o2π∆
e−X(β)#

erfc(X(β))
, (4.10)

where β is the reciprocal final temperature, and X(β)¯ ("
#
∆)(β∆#E(τ)). Because E(τ) is

always above the ground state energy, and β∆# is always larger than the magnitude of

the ground-state energy (since β" 1}T
G
), X is positive and reasonably large, until the

equilibrating energies are down in the discrete part of the spectrum. Then one can

approximate the complementary error function in Eq. (4.10) to yield

E{ (τ)¯E(τ)¯E*®T ln

E

F

τ

τ
!

G

H

(4.11)

so that the thermal energy relaxes logarithmically with elapsed time, and proportional to the

final temperature.

To further investigate the dynamics when T!T
G
, we can expand the density of states near

the tail end of the spectrum shown in Fig. 1 (i.e. around E
GS

) as

P(E)D eE/TG, (4.12)

and then obtain from Eq. (4.9) a power law distribution of transition times :

P(τ)¯
P(E(τ))

rdτ}dEr
¯Aτ−("−x), (4.13)

where x¯T}T
G
# 1. Power law distributions of transition times typically lead to stretched

exponential relaxation functions (Shlesinger & Montroll, 1984). To see this, let N(t) be the

number of systems in an ensemble which have not yet made a transition in time τ which

would equilibrate the system. Then NJ (t)¯®k(t)N(t) where k(t) is the time-dependent rate

coefficient. We let N(t)}N
!

serve as the relaxation function φ(t)

φ(t)¯
N(t)

N
!

¯ exp
E

F

®& t

!

dt k(t)
G

H

. (4.14)
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The rate coefficient at time t is proportional to the time rate of change of the number of

distinct states Ω(t) visited within time t (Shlesinger & Montroll, 1984) : k(t)¯dΩ}dt. The

number of distinct states visited in time t in a d-dimensional walk scales like the time elapsed

over the mean time between steps, raised to a power γ which depends on the dimensionality

of the walk (the connectivity of the state space for the heteropolymer example ; for d¯ 3,

γ¯ 1, for d¯ 1, γ¯ "

#
)

Ω(t)¯A«
E

F

t

©tª

G

H

γ

. (4.15)

For the Levy waiting distribution in Eq. (4.13), the mean time ©τª in Eq. (4.15) diverges

slower than the time waited, as τ"−x, so Ω(τ)C τxγ and the relaxation function

φ(τ)¯ e−Ω(τ) ¯ exp(®AτγT/TG ) (4.16)

is stretched exponential.

For a finite-sized system such as a model protein below T
G
, relaxation to Q¯ 1 starting

from QD 0 is dominated by escape from one or a few states with RHP ground-state energies.

The smallest barriers with sequence-dependent energies E* are the rate-limiting steps and

dominate the relaxation rate, which turns over to an Arrhenius law for such a finite-sized

system.

k(T )Ek
!
e−(E*−EGS)/T. (4.17)

4.1 Kinetics on a correlated energy landscape

The strategy we follow is to first find ©τ(T )ª for a RHP (Wang et al. 1997). The quantities

that enter are the entropy S which drives trap escape, the temperature T over T
G
, and lastly

a nonlinearity parameter which characterizes the residual barrier height for trap escape. In

Wang et al. (1997), this was taken to come from a nonlinear entropy function. However

nonlinearity may also arise from cooperative energetic effects to yield the same result. Once

©τ(T )ª is obtained for a RHP, we may substitute S!S(Q), and T
G
!T

G
(Q) to estimate the

diffusion coefficient D(Q, T )¯λ}©τ(Q, T )ª and thus friction ζ(Q, T )¯T}D(Q, T ) in

Eq. (4.7b) for protein folding. Escape from traps determines the effective diffusion coefficient

(versus Q) for flow of an ensemble of unfolded protein structures towards the folded state.

With a knowledge of the number of states which exist on the landscapes a distance q from

a given state i, i.e. S(q), and their energetic correlations to state i of energy E
i
, we may

calculate a free-energy profile about a state i, with the similarity measure q now acting as a

reaction coordinate for escape from the basin centered around the state of energy E
i
.

The statistics of the energies of states on the landscape is treated by using Eqs. (3.3) and

(3.4). The probability of there being a state of energy E at similarity q to a given state i, given

i has energy E
i
, is

P
q
(E;E

i
)¯

P
q
(E, E

i
)

P(E
i
)

E exp

A

B

®
(E®qpE

i
)#

2M(1®q#p )b#

C

D

. (4.18)

Note that when q! 1, P
q
(E;E

i
)! δ(E®E

i
), and when q! 0, the states are uncorrelated,

and P
q
(E;E

i
)!P(E). This equation is generalized in Section 5 to include a different

energetic variance in the reference configuration i, which may be relevant for proteins where

native energetic variance may be reduced. When the variance in the reference state is set to
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Fig. 11. Bi-linear form of S (q) used in the GREM calculation of mean escape time. The bilinear form

is a good approximation since contacts formed initially for a weakly constrained polymer cost more

entropy than for a strongly constrained one at high q. The entropy has a discontinuity in slope at

q¯ q1, where the fraction of remaining entropy is S (q1)}S
!
3 sh 1.

zero, the denominator of the exponent in Eq. (4.18) is replaced by 2M(1®qp)b#. This is the

result also obtained by taking a saddle-point solution on an ultrametric tree of states (Wang

et al. 1997), as well as when the set of all contact energies in the native or reference state is

known and specified. Diffusion on the landscape was treated for both cases in Wang et al.

(1997).

For two-body interactions p¯ 1, and the mean number of states of energy E having

similarity q to i is

na
q
(E rE

i
)¯ eS(q)P

q
(E;E

i
)¯ exp

A

B

S(q)®
(E®qE

i
)#

2M(1®q)b#

C

D

, (4.19)

where we have taken the saddle-point solution mentioned above. S(q) is the log total number

of conformational states at q. This function was treated in Section 2.4, and we will use this

analysis for the thermodynamic potential for folding F(Q). However in treating the diffusion

coefficient we take a simple bi-linear fit for the entropy shown in Fig. 11, to obtain simple,

analytic expressions for the mean escape time. The shape of the escape potential F(q rE
i
)

fluctuates from trap to trap depending on the energyE
i
if conformational state i, so heuristically

we will assume the simple bi-linear form of the entropy in Fig. 11 to capture the gross features

of the escape process, and expedite the calculation. Following the reasoning used to obtain

Eq. (2.6c) from Eq. (2.5), we can obtain the free-energy profile :

F(q rE
i
)¯ qE

i
®TS(q)®

1

2T
M(1®q)b#. (4.20)

A free-energy barrier for escape can be calculated from Eq. (4.20) for each state i of energy

E
i
(Wang et al. 1997) (see Fig. 12). The escape time τ(E

i
, T ) from a given state with energy

E
i
is calculated from Eq. (4.20) by an Arrhenius law:

τ(E
i
, T )¯ τ

!
exp[(F(E

i
, T, q1)®F(E

i
, T, 1))}T ], (4.21)

where τ
!
is the timescale for local motions along q. Trap escape is treated as a mini-unfolding

event from trap conformation i.

The distribution of escape times at temperature T, P(τ, T ), is calculated from

P(τ, T )¯&dE
i
P(E

i
, T )δ[τ®τ(E

i
, T )], (4.22)



233Understanding protein folding

Fig. 12. At a given temperature, low-energy states have a barrier for escape, while states of higher

energy have downhill free-energy profiles. E$
i

is the critical energy for downhill escape. The

temperature where the thermal energy equals E$
i

is roughly the dynamic glass temperature.

where P(E
i
, T ) is the probability an occupied state has energy E

i
at temperature T :

P(E
i
, T )E e−S(EN −"/TN )#, (4.23)

where E� ¯E}rE
GS

r is the energy in units of the ground-state energy ∆o2S, and T� ¯T}T
G

is the temperature in units of the glass temperature ∆}o2S. Integrating Eq. (4.22) yields

P(τ, T )¯w
BL

(T )δ(τ®τ
!
)w

B
(T )

A

τ
exp[®α ln#(τ}τ«)]. (4.24)

The first term in the distribution of Eq. (4.24) corresponds to the collection of states at

temperature T with downhill free-energy (barrier-less) profiles, and thus escape time C τ
!
.

The second term corresponds to the lower energy states with free-energy barriers to escape,

which have a log-normal distribution of escape times. The time τ«(T ) is a temperature-

dependent timescale. Each piece of the distribution has a temperature-dependent weight ;

w
B
(T ) increases and w

BL
(T ) decreases as temperature is lowered.

The mean escape time ©τ(T )ª is just the first moment of the distribution:

©τ(T )ª¯&
¢

τ
!

dτ τP(τ, T ), (4.25)

and has the form (see Fig. 13)

©τ(T )ªE

1

2
3

4

τ
!

for T
A
!T

τ
!
exp[SG

Lev
®S(2®q1)(1®(1}T ))#] for T

G
!T!T

A

τ
!
exp(SG

Lev
) for T!T

G
,

(4.26)

where SG

Lev
¯S(1®q1®sh 1) is the reduced Levinthal entropy in the kinetic GREM, and

T
A
¯

T
G

1sh 1
[2®q1o(2®q1)(1®q1®sh 1) ] (4.27)

is a temperature above which escape barriers disappear, i.e. above T
A

the free-energy profile

for thermally occupied states is downhill (Wang et al. 1997). However, below this

temperature, dynamics become activated for a large fraction of the states, and one obtains

a modified form of the Ferry law often seen in treatment of glass dynamics [see Eq. (4.28)
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below]. It can be seen from Eq. (4.27) that when the configurational entropy is purely linear

(sh 1 ¯ 1®q1), T
A
!T

G
, so that the kinetics are unactivated all the way down until the

thermodynamic glass transition temperature – entropic gains always compensate energetic

losses, leaving no residual free-energy barriers.

The mean diffusion time is Eq. (4.26) is plotted as a function of temperature in Fig. 13. The

diffusion coefficient is essentially the reciprocal of Eq. (4.26). The numerical values of the

escape time for the correlated landscape are in much better agreement (than the REM) with

the values inferred from lattice simulations.

It is worthwhile comparing Eqs. (4.26) and (4.27) with the results for an uncorrelated

landscape (Bryngelson & Wolynes, 1989) :

©τ(T )ª
REM

E

1

2
3

4

τ
!
exp(2S}T#) for 2T

G
!T

τ
!
exp[S®2S(1®(1}T ))# for T

G
!T! 2T

G

τ
!
exp(S) for T!T

G
,

(4.28)

A more detailed analysis (Wang et al. 1997) obtains Eq. (4.28) as a limiting case of the GREM

result [Eq. (4.26)]. However we can see much of that limit here, when we let s41 and q1 ! 0.

Then the free-energy landscape is highly cratered, and there is no entropic gain until all

energetic bonds are broken; the lower two temperature regimes in Eq. (4.26) reduce to those

of Eq. (4.28), and T
A
! (2o2)T

G
. The Levinthal search at T

G
involves the total entropy

in the REM limit. A more careful analysis recovers the REM crossover temperature

T
A
! 2T

G
, as well as the Ferry law behavior of the higher temperature regime.

A physical interpretation of T
A

is the temperature when the energies of thermally occupied

states have downhill free-energy profiles. In the REM limit there is always a barrier to escape

from a thermally occupied state. For bulk systems (lim N!¢), sh 1 !E 0.3, q1 !E 0.18,

and T
A
!E 2.1 T

G
(Wang et al. 1997).

One may also study the landscape statistics from many-body Hamiltonians, as in Eqs. (3.2)

and (4.18). For these models the landscape becomes more golf-course-like, because energetic

correlations become extremely short range in structural similarity space or q. For p-contact

interactions, T
A
!¢ as p"

# in the limit of large p. The dynamics are always activated as in the

REM – there are no energetic correlations between the states until they are nearly identical.

Finally, we mention that analyses of kinetics on landscapes having global kinetic moves,

so that all states are kinetically connected, have already been carried out (Saven et al. 1994;

Wang et al. 1996).

5. Thermodynamics and kinetics of protein folding

5.1 A protein Hamiltonian with cooperative interactions

As mentioned in Section I-6, one can quantitatively describe a funnel with a statistical

Hamiltonian having the form of Eq. (I-6.3) :

(
P
²∆

i
´¯ 3

i! j

[εN
ij
∆

ij
∆N

ij
ε

ij
(1®∆N

ij
)∆

ij
],

with pair-interaction contact energies chosen from Eq. (I-6.4). However, the hydrophobic

force driving folding is believed to be a cooperative, many-body effect. This prompts us to

investigate the effects of cooperativity within the context of the energy landscape theory. To
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Fig. 13. Logarithm of the mean escape time for the correlated landscape model of a 27-mer random

heteropolymer versus temperature in units of T
G
. , The correlated landscape [Eq. (4.26)] with

q1 ¯ sh 1 ¯ 0±4, S¯ 0±9¬27, T
A
D 1±55. - - -, The REM (uncorrelated) model, Eq. (4.28). The data-

points are adapted from measurements of the diffusion coefficient from simulations on a specific

3-letter sequence 27-mer (Socci et al. 1996), with the data at T¯ 2 T
G

normalized to τ
!
. The dynamic

glass transition at T
A

is apparently rounded due to the finite size of the system (N¯ 27).

generalize this protein Hamiltonian to p-contact interactions, we can follow the reasoning

leading to Eqs. (3.1) and (3.2) to give

(
P
²∆

i
´¯ 3

"
% i

"
! i

#
,…,! ip

%M
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"
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#
,…,ip
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0
ip

i= i
"
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G

H

E

F

0
ip

i= i
"

∆
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G

H
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i
"
,i
#
,…,ip

A

B

1®
E

F

0
ip

i= i
"

∆N

i

G

H

C

D

E

F

0
ip

i= i
"

∆
i

G

H

5

6
7

8

, (5.1)

where the coupling energies εN
i
"
,i
#
,…, ip

and ε
i
"
,i
#
,…, ip

are chosen from distributions of different

mean, and possibly variance. Equation (5.1) is an energy function with purely cooperative

interactions. Two points are worth mentioning here. One can straightforwardly generalize

the Hamiltonian to include a heirarchy of terms representing interactions with various levels

of cooperatively. Another interesting topic is the issue of the most likely configurations of

native contacts given Eq. (5.1). For example the p contacts may most likely belong to spatially

contiguous clusters of residues, as in capillarity models.

5.2 Variance of native contact energies

The variance in coupling energies in the native structure need not be the same as the variance

over structures whose energy is unconstrained. That is, the low energy of the native structure

can reduce the energetic variance contact to contact. To illustrate this, let the allowed contact

energies in a p¯ 1 Hamiltonian have two values, b and ®b. Then the distribution of coupling

energies is

P(ε)¯ "

#
δ(εb)"

#
δ(ε®b). (5.2)
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This distribution has a mean of zero, so we have taken energies relative to the mean energy

here. The mean energy per contact ε- (E ) in a structure of energy E is (1}M )Σ
i
ε
i
¯E}M,

where we have labeled each of the M contacts by a single index i. This number must be

between ®b and b, and will tend to ®b as E!®Mb. The variance per native contact δε#

is ε#®ε- #¯ b#®E#}M#. When E¯ 0 (or E is the average energy), δε#¯ b#, but when E is

large and negative, the variance is reduced. When E¯®Mb, δε#¯ 0. For native-like

energies a factor γ below the random heteropolymer ground state energy, i.e. E¯
®γMbo2s

!
}z with γ& 1,

δε#¯ b#
E

F

1®γ#
2s

!

z

G

H

, (5.3)

so the native variance is appreciable only when γ#2s
!
}z! 1. Taking a concrete model such

as a lattice model for folding, typical collapsed conformational entropies have values of

s
!
F ln(6}e). So for there to be any native variance, z$ 1.6 γ#. The larger the entropy s

!
, say

if other models are considered, the more stringent the lower bound on the number of

neighbors per monomer. The number of neighbors per monomer z for a collapsed

‘Hamiltonian’ walk on a 3D cubic lattice is F 2®3N−
"

$, thus for any appreciable native

variance N$ 3$}(2®1.6 γ#)$. For γ¯ 1, N$ 420! That is, for system sizes involved in

simulations, there is essentially no variance in the native structure. Real proteins have a large

‘ two-letter ’ component to their energy functions, loosely corresponding to hydrophobic–

hydrophobic and hydrophobic–hydrophilic interactions. The above argument implies that

there should be a significant reduction in the variance of the interaction energies in the

native structure, compared to generic collapsed structures.

In principle the variance is then a function of E, which for funneled landscapes is a function

of Q, so there is some reduction in variance as folding progresses. Residual variance may of

course be present in real proteins for other reasons such as assisting function.

In general we may find the native variance ©δε#
i
ª from ©ε#

i
ª®©ε

i
ª#, where

©εp
i
ª¯

&0
j

P
N
(ε

j
)εp

i
δ

E

F

3
j

ε
j
®E

N

G

H

&0
j

P
N
(ε

j
)δ

E

F

3
j

ε
j
®E

N

G

H

. (5.4)

Another interesting special case is when the interaction energies are chosen from a Gaussian

distribution of variance b, rather than the binary distribution of contact energies in Eq. (5.2).

In this case the native variance b
N

is essentially not reduced: b#
N

3©δε#
i
ª¯ b#(1®1}M )

regardless of E, hence for large enough polymers b
N

3 δε
N

¯ b. This is because the

distribution of interaction energies is a continuous (non-discrete) function. For distributions

of interaction energies with many possible values, we still expect to have some variance in

the energies of native stabilizing interactions. We take up this issue in Section 7.

5.3 Thermodynamics of protein folding

The fact that proteins are minimally-frustrated motivates one to let the coupling energies

εN
i
"
,i
#
,…,ip

and ε
i
"
,i
#
,…,ip

in Eq. (5.1) be chosen from distributions of different mean and

variance. We choose effective Gaussian distributions for simplicity. The probability of there
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Fig. 14. The halo density η
H

as a function of the fraction of the total contacts c. Left inset : the partially

native protein can be pictured as a frozen, compact, native core surrounded by a halo of unfolded

polymer of variable density (Plotkin et al. 1997). Right inset : a surface contour plot of η
H
(Q, c) in the

model. The halo density η
H
(c) is a function only of the total number of contacts present, irrespective

of whether those contacts are native or not.

being a state of energy E at similarity Q to the native structure of energy E
N
, is then

modified from Eq. (4.18) to :

P
Q
(E rE

N
)¯

P
Q
(E, E

N
)

P(E
N
)

E exp

A

B

®
(E®QpE

N
)#

2M(1®Qp)(b#Qpb#
N
)

C

D

. (5.5)

Note that when Q! 1, P
Q
(E rE

N
)! δ(E®E

N
), and when Q! 0, or p!¢, the states

become uncorrelated and P
Q
(E rE

N
)!P(E ). Moreover, when the native variance b#

N
! b#,

Eq. (4.18) is recovered, and when b#
N

! 0, the saddle-point solution of the GREM is

recovered. Again the above arguments indicate it is likely b#
N

is reduced from b#. When p¯ 1,

the landscape statistics of a two-body Hamiltonian are recovered. The more many-body the

Hamiltonian is, the more de-correlated states of a given structural similarity are.

The a priori assertion of the existence of a low-energy state, plus the energetic correlations

which exist due to structural similarity, and the locality of interactions (p is not large), induce

a global funnel topography to the landscape, when E
N

is considerably lower than the

RHP ground state.# The funnel topography induced yields a much larger stability of the

native structure against sequence mutations or environmental perturbations, as described in

Section I-3.

Concurrent collapse with folding may be important to consider when the protein is

strongly funneled or has weak non-specific attraction. In these cases unfolding is loosely

analogous to sublimation. To account for collapse as well as native similarity, we wish to

# The minimal frustration of the native structure is encoded into the sequence in a manner similar

to the hidden order in unfrustrated spin-glass models such as the Mattis model (Me! zard et al. 1986). For

such a system a gauge transformation to an appropriate spin conformation reduces the Hamiltonian to

an unfrustrated ferromagnet. The ‘gauge transformation’ to the least frustrated structure for a given

sequence is considerably more complex.
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stratify the energy landscape with respect to both the fraction of native contacts Q, and the

fraction of total contacts c (both native and non-native). Then the results may directly be

compared with existing simulations (Socci et al. 1998), for which Q and c are convenient

parameterizations. However the theory of configurational entropy described in Section 2.4

was characterized in terms of packing fraction η, so a theory of collapse must be introduced

to find the polymer density η (0!η! 1) as a function of Q and c. This functional dependence

enters through the configurational entropy, S(Q, c)¯S(Q, η(Q, c)).

A partially native protein consists of a dense native core with η
C
¯ 1 surrounded by a less

dense halo region η
H

% 1 (see Fig. 14). As Q increases, the size of the native core increases,

and the amount of polymer in the halo decreases. The number of loops decorating the core,

their average length, and the average length of the two dangling ends of the polymer can be

taken from the high-Q analysis for a strongly constrained polymer in Section 2.4. This results

in a theory for the packing fraction η in terms of Q and c : η(Q, c) (Plotkin et al. 1997).

Once the polymer issues are under control, the thermodynamics of the landscape may

be deduced as in Eqs. (4.19) and (4.20). The mean number of states na (E rE
N
, Q, c)

having energy E, similarity Q, and density c on the minimally frustrated landscape is

exp(S(Q, c))P(E rE
N
, Q, c). When the mean number of states is ( 1, the microcanonical

entropy S(E rQ, c) is obtained by taking the log of na (E rE
N
, Q, c), and the thermodynamics

in the canonical ensemble obtained through the Legendre transform ¥S}¥E¯T−" as

before. This yields :

E

M
(T, Q, c rE

N
)¯ cpεaQpε

N
®

cp

T
(1®Qp)(b#Qpb#

N
) (5.6a)

S

M
(T, Q, c rE

N
)¯

s(Q, c)

z
®

cp

2T#

(1®Qp)(b#Qpb#
N
) (5.6b)

F

M
(T, Q, c rE

N
)¯ cpεaQpε

N
®T

s(Q, c)

z
®

cp

2T
(1®Qp)(b#Qpb#

N
). (5.6c)

A larger number of total contacts c lowers the energy and thus the free energy due to the

first ‘homopolymer ’ term on the right-hand side of Eqs. (5.6a) and (5.6c), assuming ε- ! 0

as is typically the case. Cooperative p-contact interactions are introduced for this

homopolymer force as well here. The last term on the right-hand side quantifies the

roughness of the landscape. This term comes from the non-native parts of the protein outside

the native core, and induces a free energy bias towards states with many non-native contacts

(c large and Q small). The protein can find itself in statistically low-energy non-native states

due to the random nature of the interactions. The term Qpε
N

on the right-hand side of Eqs.

(5.6a) and (5.6c) embodies the slope of the funnel, inducing a free energetic bias towards

structures with greater nativeness. The third, entropic term in Eq. (5.6c) gives a bias towards

expanded states with small Q and c, where the conformational entropy is largest. The larger

p is, the more native-like structures must be to be low in energy.

When the Hamiltonian consists of pair interactions, p¯ 1. When we can neglect native

energetic variance, b
N

¯ 0. For these cases, Eq. (5.6c) becomes (Plotkin et al. 1997) (recall

M¯Nz) :

F

N
(T, Q, c rE

N
)¯ czεaQzε

N
®(1®Q)

czb#

2T
®Ts(Q, c), (5.7)
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Fig. 15. The folding temperature (T
F
) and glass transition temperature [T

G
(Q, c)] as a function of the

fraction of native contacts (Q) and the fraction of total contacts (c). The parameters used in the plot are

taken from a fit of the theory to simulations (N, b, ε
N
, ε- , ν, b

N
, p)¯ (27, 1±1, ®2±1, ®2±1, ®1±3, 6, b, 1).

The parameter ν is the number of conformational states per monomer in the coil phase. T
F

is above

T
G

[Eq. (5.10)] for most values of Q and c, indicating that folding properties including rates and

mechanism are largely self-averaging and not sensitive to sequence over most of the range of the order

parameters.

which may be compared with Eq. (4.20) when E
i
¯Mε

N
and a term cMε- corresponding to

the mean energy of collapse is added. Compare also Eq. (5.7) to Eq. (I-5.15) in the mean-field

limit, i.e. neglecting core free-energy fluctuations so that δF#
C
¯ 0. Equation (I-5.15) gives,

in the notation of this section (Plotkin et al. 1997) :

F
MF

N
(Q, c)¯ czεaQzε

N
®(1®Q)

czb#

2T
®

T

N
(S{

C
(Q, c)S

rout
(Q)), (5.8)

so in Eq. (5.8) [and Eq. (I-5.15)] the entropy has been partitioned into a contribution from

the polymer surrounding the core S{
C
, and the number of distinct cores S

rout
.

In equilibrium at the folding temperature, T
F
, the folded (QD 1, cD 1) and unfolded

( QD 0, c) states have equal thermodynamic weights. Equation (5.6c) then gives an equation

for T
F
:

cpεa®
cpb#

2T
F

®T
F

s(0, c)

z
¯ εaε

N
. (5.9)

There is also a Q and c dependent temperature T
G
(Q, c) where the entropy Eq. (5.6b)

vanishes :

T
G
(Q, c)¯

A

B

zcp(1®Qp)(b#Qpb#
N
)

2s(Q, c)

C

D

"

#

. (5.10)

T
G
(Q, c) is plotted along with T

F
in Fig. 15, for the case when p¯ 1, b

N
¯ b. For this region
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of the phase diagram, the folding funnel is indeed self-averaging, with T
F
}T

G
D 2 in the

molten globule or unfolded phase. Late in the folding process however it can be seen that

T
G
ET

F
. Beyond this point, sequence specific features dominate the energy landscape, late-

stage structural intermediates are predicted to be very sensitive to mutations, and the late-

stage kinetics are governed by a few pathways rather than a multiplicity of routes. If the

sequence were more poorly designed (smaller r ε
N

r ), T
G

would be comparable to T
F

at

smaller values of the reaction coordinates, with non-self-averaging behavior dominating

more of the folding process (Bryngelson et al. 1995).

For the unfolded QD 0 phase,

T
G
(0, c)¯A zcpb#

2s(0, c)
. (5.11)

For large cooperativity p, T
G
(0, c) is small unless the polymer is fully collapsed (cE 1).

For a Go- model protein, b¯ 0, and the solution of Eq. (5.9) gives for the folding transition

temperature :

TGo

F
¯

z[ r ε
N

r®εa (1®cp)]

s(0, c)
. (5.12)

In general then when b1 0, T
F

is given by

T
F
¯

TGo

F

2
A E

F

TGo

F

2

G

H

#

®(T
G
(0, c))#. (5.13)

It is interesting that even in an unfrustrated model protein with b¯ 0, the entropy may still

vanish. From Eq. (5.10),

T
G
(Q, c, b¯ 0)¯ b

N
AzcpQp(1®Qp)

2s(Q, c)
. (5.14)

This equation is similar in spirit to Eq. (I-5.18), in that below T
G

in Eq. (5.14), the system

takes one folding route to the native structure, through those strata of Q where

T!T
G
(Q, c, b¯ 0). The folding mechanism for a single-route folder is described further in

Section 7 (see bottom row of Fig. 31).

5.4 Free-energy surfaces and dynamics for a Hamiltonian with pair-wise interactions

The following analysis pertains to the case of a 2-body Hamiltonian ( p¯ 1), unless otherwise

noted.

To estimate realistic energy parameters for the funnel, a correspondence as described in

Section I-6 was established between real proteins and minimalistic lattice models (Onuchic et

al. 1995). We follow this prescription by fitting the resulting free energy of Eq. (5.6c) with

p¯ 1 in our theoretical model to the free energy obtained from a lattice simulation.

Temperature is fixed to the (arbitrary) value in the simulations at the point of folding

equilibrium (where the free-energy depth of the folded and unfolded wells are equal)

T
F
3 1±5. Then the other three parameters b, ε- , ε

N
are found by minimizing a cost function

to the shape of the lattice potential free energy (Plotkin et al. 1997) : (b, ε- , ε
N
, T

F
)¯

(1±1, ®1±3, ®2±1, 1±5). The parameters were found to be in reasonable agreement with those
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(a)

(b)

Fig. 16. (a) Free-energy surface [F(Q, c)] at T
F

for the 27-mer, obtained from Eq. (5.6c) with the

parameters (b, ε- , ε
N
, T

F
)¯ (1±1, ®1±3, ®2±1, 1±5), and b

N
¯ 0, p¯ 1. The surface is plotted in contours

of about ("
#
) k

B
T

F.
The surface has a double-well structure with a transition-state ensemble at Q1 D 0±50,

and barrier height ∆F1 D 3±0 k
B
T. (b ) The free-energy surface [F(Q, c)] at T

F
, as obtained from

simulations (Onuchic et al. 1995). The surface is plotted in contours of about 1 k
B
T

F
. For both cases

the native minimum is in the uppermost right corner. The plots are in the upper diagonal half because

there are always more total contacts than native contacts.

in the lattice simulations. The resulting free-energy profile, shown in Fig. 16, gives an

approximation for the free-energy profile at T
F

for a small single-domain protein, e.g. λ-

repressor (Huang & Oas, 1995; Plotkin et al. 1997). For these parameters the free energy

has a double-well structure at T
F
. The transition is first-order-like, but the barrier height is

only F 3 k
B
T

F
, compared to an entropic barrier of F 20 k

B
T

F
to reach the transition

state. The transition is nearly second-order due to the near cancellation of entropic losses

with (negative) energetic gains as Q increases. As interactions become more cooperative,

the barrier increases and the transition becomes more first-order-like, as we will see

below.
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The barrier peak is located at Q1 F 0±5 and contains a transition state ensemble of E 10$

thermally occupied states, supporting a description of generally delocalized nuclei seen in

several studies (Itzhaki et al. 1995; Boczko & Brooks, 1995; Onuchic et al. 1996). Other native

structures may have transition states with more localized nuclei, in that certain sets of contacts

are preferred significantly over others, due to entropic or energetic reasons (Abkevich et al.

1994; Martinez et al. 1998; Grantcharova et al. 1998). The folding nucleus for some structures

is inherently specific, while for other structures the folding nucleus is inherently diffuse, or

non-specific (Onuchic et al. 1996; Klimov & Thirumalai, 1998b; Shoemaker et al. 1999). The

degree of nucleus specificity in proteins is a quantitative rather than qualitative question.

However at the mean-field level given here, the theory cannot address it.

A crude estimate of the reconfiguration time at the barrier position may be obtained from

ln(k
f
τ- (Q1))D®(F1®F

u
)}T. For example, for λ-repressor at the folding midpoint the

folding rate is about 400 s−" (Huang & Oas, 1995). Using the barrier height obtained from

the above model ∆F1 E 3 k
B
T

F
for the corresponding 27-mer lattice protein gives a

reconfiguration time τ- (Q1)E 10−% s. Since Rouse–Zimm times for free polymer motions are

in the nanosecond range, this suggests that configurational diffusion in the transition state

region may be activated even at T
F
. Unactivated diffusion would imply a free-energy barrier

of about 15 k
B
T

F
.

5.5 The effects of cooperativity on folding

As the level of explicit cooperativity in the model increases, the funneled landscape converts

to a golf-course topography, reproducing the REM limit, (see Figs. I-5a and 17). When

interactions are strongly cooperative, much of the protein must be in native proximity to

obtain a significant energetic benefit, leading to large entropic losses to reach the transition

state. If all the residues must come together to achieve any energetic benefit, the Levinthal

landscape is recovered. Detailed studies of the hydrophobic effect at variable length scales

(Lum et al. 1999; Huang & Chandler, 2000; Hummer et al. 2000) indicate that the de-wetting

effect involved in the attraction between hydrophobic elements in the protein is a collective

one that appears on length scales $ 1 nm, comparable in size to a protein domain. De-wetting

transitions have been studied recently as a late stage phenomenon in folding (Sheinerman &

Brooks, 1998; Bursulaya & Brooks, 1999; Panick et al. 1999; Garcia & Hummer, 2000).

While proteins have interspersed hydrophilic residues and relaxations involving side-chains

which broaden the crossover, it is clear that interactions involving many-body effects are

present in folding (Kolinski et al. 1996; Plotkin et al. 1997; Takada et al. 1999; Eastwood &

Wolynes, 2001). The effects of these many-body effects may be investigated within the energy

landscape formalism through Eq. (5.6c). The inset of Fig. 17a plots Eq. (5.6c) for two

different values of p for purposes of illustrating the increase in barrier height, and the increase

in the nativeness of the transition state cores, as cooperativity is increased. Figure 17b plots

the trend in transition-state barrier height decomposed into entropic and energetic parts.

5.6 Transition-state drift

The stability gap ε
N

may be decreased, for example by adding denaturant or making

mutations in the sequence. As the native state is destabilized, the folding free-energy profile

becomes more uphill, and the transition state should shift to larger values of Q. This

transition-state drift has been seen in experiments, for example in CI2 and U1A (Oliveberg
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(a)

(b)

Fig. 17. (a) Inset : Free energy per monomer F}N for a 27-mer, in units of k
B
T

F
as a function of Q,

at constant density η¯ 1, with s
!
¯ 0±8, for protein-like energetic parameters (ε

N
, b )¯ (®2±3, 1±6). For

these parameters T
F
E r ε

N
r . For illustrative purposes, two values of p-contact interactions are chosen:

, pure 3-body interactions ; - - -, pure 12-body interactions. Note the trends in height and position

of the barrier, and note how in the p¯ 12 case the free-energy curve is essentially ®T times the entropy

curve s (Q) of Fig. 5 with η¯ 1, until Q is very large. (a) Main figure : the position of the barrier peak

(Q1) increases with explicit cooperativity in p-contact forces. (b ) The free-energy barrier height (∆F)

(in units of k
B
T

F
) is an increasing function of p. The barrier height rises to the limit of T

F
S(Q¯ 0) as

p!¢, when it becomes completely entropic. Also shown are the energetic (- - -) and entropic (——)

contributions to the barrier.

et al. 1998; Otzen et al. 1999), and it is interesting to compare the theoretical and experimental

results. The mean transition-state position is experimentally measured by the change in rate

over the change in stability under some global external perturbation such as adding

denaturant, changing temperature, or making sequence mutations throughout the protein

(for example by comparing sequence homologs) :

β1 3®
δ ln(k

F
}k

!
)

δ lnK
eq

. (5.15)

Here K
eq

is the folding equilibrium constant. When the change in the rate prefactor with the

perturbation can be neglected, Eq. (5.15) becomes

β1D
δF(Q1)®δF

U

δF
F
®δF

U

, (5.16)
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Fig. 18. Position of the transition state β1 of CI2 plotted against protein stability. The slope

¥β1}¥ lnK
D−N

is the transition-state drift. The lower curve is the result of thermal destabilization

monitored by φ-values. The upper curve is the result from GdnHCl binding (m-values). The lower

theory curve is from Eq. (5.18) derived from the free energy in Eq. (5.7) for the parameters (N, b, ε- ,
ε
N
, T, b

N
, ν, p)¯ (27, 1±1, ®1±3, ®2±1, 1±5, 0, 6, 1) (see Plotkin et al. 1997). The upper experimental

curve arises from hydrophobic forces which are believed to be intrinsically many-body in nature. The

upper theory curve is obtained from Eqs. (5.18) and (5±6c) for p¯ 4, corresponding to 4-contact or

8-body interactions. The position of the transition state measured by overall collapse in Fig. 16 has

somewhat larger values (c1 C 0±85) than the upper curve here measuring hydrophobic burial of the

transition state. (Adapted from Oliveberg et al. 1998.)

where we have approximated the free energy of the transition state by the free energy at Q1.

For small perturbations, the change in transition-state free energy may be approximated as

a linear interpolation between the unfolded free-energy change and folded free-energy

change:

δF(Q1)E
E

F

Q1®Q
U

Q
F
®Q

U

G

H

δF
F


E

F

Q
F
®Q1

Q
F
®Q

U

G

H

δF
U
, (5.17)

where Q
U
, Q

F
, and Q1, are the positions of the unfolded, folded, and transition state. When

the transition state is nearly identical to the folded structure, Q1 !Q
F

and from Eq. (5.17)

δF(Q1)¯ δF
F

as expected, and when Q1 !Q
U
, δF(Q1)¯ δF

U
. Inserting Eq. (5.17) into

(5.16) gives :

β1D
E

F

Q1®Q
U

Q
F
®Q

U

G

H

. (5.18)

Figure 18 shows a plot of the transition state position for CI2 versus stability, for two

methods of measurement and for the theoretical results. The lower experimental curve shows

the effect of thermal destabilization on the average φ-value, while the upper curve shows the

effect of GdnHCl binding on exposed hydrophobic surface area. The transition state as

measured from interaction energies (via thermal destabilization) is smaller and less native than

the transition state measured from hydrophobic effects. The lower solid theory curve is the

result of Eqs. (5.18) and (5.6c) with b
N

¯ 0, p¯ 1, and N¯ 27, as the stabilization energy

ε
N

is decreased (Plotkin et al. 1997). Again the theoretical 27-mer may be entropically
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equivalent to a larger real protein due to transient helix formation (Onuchic et al. 1995) (see

Section I-4.2), and this increases our faith in the comparison even though the chain lengths

are indeed different. As mentioned above, the de-wetting transition involved in burying

surface area is inherently a many-body effect. Thus it is interesting to ask what level of

cooperativity in the theory is necessary to obtain the same result as the upper curve. Taking

Eq. (5.18) using Eq. (5.6c) for p¯ 4, corresponding to 4-contact or 8-body interactions, gives

good agreement with the experimental results (The curves for p¯ 3 and p¯ 5 differ from

the curve shown by E 5%). The theoretical transition-state drift is comparable to the

observed drift.

Why is one curve higher than the other? Different experimental probes measure different

order parameters, which may have different transition state positions. For example, a probe

measuring the number of native interactions may infer a transition-state position at the

T
F

E 0±5 from Fig. 16, while a probe measuring degree of overall collapse may measure a

transition-state position of E 0±8–0±9 from the same figure. Moreover one may infer different

transition-state ensembles from different measurements, since each measurement effectively

projects different ensembles onto the transition state. For example, referring to Fig. 16 an

experiment effectively using Q as a reaction coordinate measures the Q1 E "

#
transition-state

ensemble, which includes states with all the degrees of collapse having c$ "

#
. On the other

hand, an experiment effectively using c as a reaction coordinate measures the cE 0±9
transition-state ensemble, which includes states with all Q# 0±9.

The stronger many-body effects are, the less drift. That is, larger cooperativity results in

a larger, more sharply peaked barrier. Thus the transition-state drifts less for a given amount

of destabilization, and the barrier persists over a larger range of denaturant concentration or

thermal destabilization. Temperature dependence of interactions may additionally modify

thermal drift measurements (Crane et al. 2000).

Changes in the prefactor may play a role in transition-state drift. For example, if the pre-

factor increased with native destabilization, due for example to the destabilization of kinetic

traps with the addition of denaturant, rate-stability isotherms would curve upwards, opposite

to the direction of curvature expected for the increase in native structure in the transition

state. It is possible the effects of prefactor enhancement and transition-state destabilization

may compensate each other to yield linear Bronsted plots over a larger range of stability than

naively expected. On the other hand, if one then does observe rate-stability curvature in the

direction of Hammond behavior, it is a good assumption that this is due to drift towards a

more native thermodynamic transition state. However because of the possibility of this kind

of hidden cancellation, one should use caution when drawing conclusions based on the

linearity of Bronsted plots.

5.7 Phase diagram for a model protein

By finding the global free-energy minimum of Eq. (5.7) in the parameter space of the

thermodynamic variables of the system, we can construct the phase diagram for a model

protein, as shown in Fig. 19.

At the highest temperatures the protein is in the coil phase. As temperature is lowered or

non-native variance is increased, a collapse transition takes place. For sufficiently low

ruggedness, folding and collapse may occur concurrently. The coil-to-globule transition is

second order here, without any free-energy barrier.
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Fig. 19. Phase diagram for a model protein (cf. with Fig. 2 for the RHP). The axes are temperature

in units of the mean native stability per monomer, and the roughness or standard deviation of non-

native contact energies, in the same units. Other parameters are (ε- , b
N
, p)¯ (®1±2, 0, 1). The coil and

globule phases are separated from the folded phase by a first-order-like transition, while the coil-to-

globule and glass transitions are second order. In the glass II phase, the native basin is favored over all

other low-energy basins. If it is approached above as indicated by the arrow, it retains non-zero

configurational entropy, in contrast to the glass I phase, which has zero configurational entropy, and

favors no specific basin.

The glass II phase in Fig. 19 is different than the glass I phase, in that the specific folded

basin is favored over all other low-energy basins on the landscape. Since relaxation times

diverge in the glass phase for a bulk system, kinetics becomes important in determining what

state will be observed in practice. If the glass II region is approached from above as indicated

by the arrow in the figure, the system is frozen into the basin corresponding to the folded

state, and has residual entropy within that basin. At low temperatures the state of the protein

is one in which it is frozen into an ensemble of substates in the native basin, as long as the

temperature-dependent energy function is not significantly altered (Austin et al. 1975). In

contrast, the glass I phase has essentially no configurational entropy. If the glass II phase is

approached from the right, the slow kinetics of the glassy state prohibits the formation of the

folded state, for a large system. This scenario as analogous to the phenomenon we saw earlier

in Section 2.3 and in Fig. 2 in the context of micro-phase separation in a RHP. Just as the

glass I phase is avoided in microphase separation, a glass I phase is avoided in low-

temperature proteins by the presence of a folded state at higher temperature.

5.8 A non-Arrhenius folding-rate curve for proteins

To a good approximation the motion in Q is overdamped and Markovian, i.e. Brownian

motion (see Section 6). Thus the folding time τ
f
can be computed from diffusive rate theory

(Bryngelson & Wolynes, 1989). We may obtain the mean folding rate from the Kramers law,

Eq. (4.7b) using parameters from the energy landscape theory. The barrier ∆F1 and

potential curvatures ω
u
ω1 are obtained from the thermodynamic analysis of Section 5.4.

The friction kernel or diffusion coefficient D in Eq. (4.8) is obtained using Eq. (4.26).
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The position of the kinetic bottleneck, Q*, is the value of Q which, when substituted into

Eq. (4.7b), maximizes the expression for the folding time. This includes the effects of a Q-

dependent prefactor. Using the free-energy profiles in two reaction coordinates, Q and c, the

value of Q* is within 10% of Q1, the position of the thermodynamic bottleneck, for the

parameters used in Fig. 16.

The resulting mean first passage time, Eq. (4.7a), is plotted in Fig. 20a as a function

of reciprocal temperature in units of T
F
, and shows the non-Arrhenius behavior characteristic

to proteins. Note this is the forward folding time, not the total relaxation time which would

include both forward and backward rates. At high temperatures, the large entropy of the

unfolded state slows the rate, and at low temperatures, various reconfigurational barriers

contribute more strongly to slow the folding rate. In real proteins, the interactions which

stabilize the folded structure are themselves temperature-dependent, which further slows the

rate at low temperatures. This effect is not accounted for in this analysis, which assumes a

temperature-independent Hamiltonian. The fact that proteins fold on biological timescales at

biological temperatures is linked with the fact that above T
G

where diffusion is slow, the

thermodynamic profile favors the native state. Thus the temperature where a protein is

biologically active is between T
F

and T
G
, which can only occur when T

F
}T

G
" 1. Sequences

with a large range of foldable temperatures, i.e. with large T
F
}T

G
, tend to have faster folding

rates (Bryngelson et al. 1995; Me! lin et al. 1999; Dinner et al. 1999; Buchler & Goldstein, 1999).

A relation between the optimal smallest folding time τopt

f
and T

F
}T

G
should be derivable

within the energy landscape formalism and is a problem for the future. The rate should

correlate with T
F
}T

G
when the system is weakly to moderately minimally frustrated.

However for steep funnels, i.e. T
F
}T

G
sufficiently large, the rate-limiting steps in folding may

be governed more strongly by other factors, such as native topology (Plaxco et al. 1998),

overall stability (Dinner & Karplus, 2001), specific collapse (Thirumalai, 1995), or net

hydrophobicity (Klimov & Thirumalai, 1996).

6. Non-Markovian configurational diffusion and reaction coordinates in

protein folding

Interactions with solvent and self-interactions within a protein damp intra-molecular

motions. At the lengthscales and timescales of folding dynamics, the diffusion of side-chains

and backbone is overdamped as discussed in Section I-3, and overdamped Langevin equations

are occasionally used to simulate folding in coarse-grained models (Guo et al. 1992;

Guo & Thorumalai 1996; Berriz et al. 1997; Guo & Brooks, 1997; Takada et al. 1999; Hoang

& Cieplak, 2000). As well as all-atom models (Eastman & Doniach, 1998; Bursulaya

& Brooks, 2000; Elmer & Pande, 2001). A coordinate whose motion is governed by

a Langevin equation has a propagator or probability distribution p (x, t ) which obeys a

Fokker–Planck equation (Doi & Edwards, 1986).

According to the energy landscape theory previously developed, protein folding can be

seen as a stochastic motion of one or a few collective coordinates describing protein

conformation, on an average thermodynamic potential. We saw in the last section that

Fokker–Planck diffusion in Q gave a fairly accurate prediction of folding rate. However it is

not clear a priori that the ensemble distribution p (Q, t ) of collective coordinate Q
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(a)

(b)

Fig. 20. (a) Folding time (not relaxation time), in units of the collapse time, as a function of one over

temperature, in units of T
F
. The plots show a minimum value which due to selection pressure may be

close to biological temperatures. At low temperatures, τ
F

becomes large in the model because diffusion

is slow. Realistic temperature-dependent energy functions may no longer favor the native conformation

at low temperatures, and this also slows the forward rate. At high temperatures diffusion is fast but

folding is thermodynamically uphill because of the large entropy of the unfolded state, which again

results in large folding times. The theory plot is for a sequence having the energetic parameters found

earlier in Fig. 16, by fitting to a 27-mer lattice model with a 3-letter code. The folding time is normalized

to the Rouse–Zimm timescale τ
!
, assumed to be of the same order as the time τ

C
for non-specific

collapse. The data are from two lattice models (Nymeyer et al. 2001) : Sequence 1 (E) is a

3-letter code ABCACABCCACBBCACACCCABCCACB with coupling energies either ε
ij
¯®3

for like residues or ε
ij
¯®1 for unlike residues. It has a ratio T

F
}T

G
E 1±44. Sequence 2 (+) is a

36-mer with a 20-letter code NSKFFJOTGQAEECTRRPSNMBLHEKJDIJOPLIID with a

Miyazawa–Jernigan contact energy matrix (Miyazawa & Jernigan, 1985, 1996), and T
F
}T

G
E 1±91. The

simulations seem to have relative optimal folding temperatures below those in the theory, for the

parameters chosen here. This means that the model proteins in the simulations are more frustrated, in

that their temperatures of fastest folding are near or above T
F

indicating local kinetic traps are

becoming important in determining folding rates even at T
F
. On the other hand, the theory has a
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(a) (b)

Fig. 21. Two folding trajectories projected onto the Q–A plane, where Q is the fraction of native

contacts and A is the fraction of native dihedral angles. The model is a 3D cubic lattice heteropolymer

with a contact potential where like monomers have contact energy ®3 and unlikes have energy ®1.

The sequence ABABBBCBACBABABACACBACAACAB has all interactions equal to ®3 in the

ground state. The trajectories are superimposed on a contour plot of the free energy with levels

spanning the range from ®82±5 to ®67±5 in increments of 2±5. The trajectories spanC "

%
of the folding

time, about 3¬10' Monte Carlo steps. In the early part of the trajectories, the individual points are not

connected and shown simply as dots, while in the latter part they are. In (a), the transition event occurs

inC 10& Monte Carlo steps, indicating a diffusive, shuttling motion across the free-energy barrier. In

(b ), the trajectory moves quasi-ballistically across the transition region, in about 3000 Monte-Carlo

steps. When such fast trajectories are present, non-Markovian effects may become important in

determining the folding rate. (Adapted from Onuchic et al. 1995.)

representing degree of nativeness at time t indeed obeys Fokker–Planck diffusion as in

Eq. (4.3), or equivalently that the coordinate Q obeys a Langevin equation:

®
dF (Q)

dQ
®ζ (Q)Q~ (t )ξ (Q, t )¯ 0,

with ©ξ(Q, t )ª¯ 0 and ©ξ(Q, 0)ξ (Q, t )ª¯Tζ(Q)δ (t ).

In fact when the dynamics of reconfiguration, which occurs on many timescales for a

system with a rugged landscape or with many relevant lengthscales, is projected onto a single

reaction coordinate such as Q, the information of the dynamics of the fast and slow

modes is obtained in a new frequency-dependent diffusion constant. Thus the dynamics

temperature regime where as folding becomes more thermodynamically downhill, the rate increases,

because kinetic slowing down has not yet become appreciable. At lower temperatures, energetic traps

become more important and the folding time then increases. (b ) When the friction and barrier are

obtained directly from the lattice data (see Section 6.3), the Kramers rate expression [Eq. (6.29)] and

the mean first passage time directly measured from simulations are within a factor of 2, indicating a

diffusive barrier crossing theory is a good predictor of rates. The numbers given for the landscape

theory include a calculation of the diffusion coefficient appearing in the rate prefactor, as well as the free-

energy barrier. Both quantities are obtained for the same model protein for which the mean first passage

time was obtained directly. The prefactor is obtained by measuring the auto-correlation time of

conformational motions projected onto Q in the molten globule state for the simulated model protein,

and the free-energy barrier obtained directly from sampling (hence the error bars for the landscape

theory results). (Adapted from Socci et al. 1996.)
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Fig. 22. Enhancement of escape rate from the barrier peak over the Kramers escape rate [with friction

ζ#(0)], for a frequency-dependent friction kernel obeying Eq. (6.7), with γ¯ 2. From Eq. (6.5), the

escape frequency ω* is where ζ#(ω*)}ζ#(0)¯ω
KR

}ω*, and so is determined through the intercept of 1}ω

with the friction as a function of frequency. Here then ω* ¯γ}(γ®1)ω
KR

.

should rigorously be treated as non-Markovian (Plotkin & Wolynes, 1998). Non-Markovian

dynamics will affect reaction rates when the time to cross the top of the barrier is

comparable to the memory time of the fluctuating forces acting on the collective

coordinate.

In simulations, many barrier-crossing trajectories are diffusive, as in Fig. 21a, supporting

a Kramers description for the folding rate. However, some barrier-crossing trajectories are

quasi-ballistic as in Fig. 21b, indicating that these fast trajectories may cross within the

memory time of the effective forces driving diffusion. To the first approximation, when the

(Laplace-transformed) friction evaluated at the Kramers barrier-crossing frequency is

significantly less than the friction at zero frequency, i.e. when

ζ#
E

F

mω1
#

ζ#(0)

G

H

# ζ#(0), (6.1)

then non-Markovian effects are important in determining the rate.

Then motion along the coordinate Q should be characterized by an overdamped

generalized Langevin equation (GLE):

dF(Q)

dQ
®&t

!

dτ ζ(Q, t®τ)Q~ (τ)ξ(Q, t )¯ 0, (6.2)

with ©ξ(Q, t )ª¯ 0 and ©ξ(Q, 0)ξ (Q, t )ª¯Tζ (Q, t).

6.1 An illustrative example

A simple example to illustrate the importance of non-Markovian effects is to consider the

characteristic escape time or escape frequency from an inverted oscillator with stiffness mω1
#

(inset of Fig. 22). Defining the time autocorrelation function c (t ) as

c (t )¯
©Q (0)Q (t )ª

©Q (0)#ª
, (6.3)
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Eq. (6.2) becomes

mω1
#c (t )®&t

!

dt« ζ (t®t« ) cd (t« )¯ 0, (6.4)

whose Laplace transform c# (ω) has the form c# (ω)¯ c (0)}(ω®(mω1
#}ζ#(ω)), with a pole at

ω*¯
mω1

#

ζ#(ω*)
, (6.5)

which is precisely the Grote–Hynes barrier crossing frequency, as determined in Grote &

Hynes (1980) from time correlation functions for the forward rate constant. If the random

force correlations decay rapidly compared to the ‘velocity ’ QJ (t ), Eq. (6.4) becomes

mω1
#c (t )®cd (t )ζ# (0)¯ 0, (6.6)

which yields an exponentially diverging time-correlation function: c (t )¯ c (0)e(mω1
#
/ζ

#
(!))t,

whose Laplace transform c# (ω) has a pole at mω1
#}ζ#(0), which is the Kramers correction to

the forward rate in the spatial diffusion limit (Kramers, 1940).

One can see from Eq. (6.5) that the escape time from the barrier peak involves the high

frequency components of the spectral resolution of ζ(t). If these are smaller than the zero

frequency (long-time) friction assumed in the Kramers approximation, the forward rate is

significantly modified.

To be specific, let the friction have an exponential time decay, as ζ (t )¯ ζ#(0)γω
KR

e−γω
KRt,

where ω
KR

is the Kramers frequency mω1
#}ζ#(0) and γ is a proportionality constant with

γ& 0. Then the frequency-dependent friction kernel is

ζ#(ω)¯
γω

KR

ωγω
KR

ζ# (0). (6.7)

Inserting this into Eq. (6.5) gives the barrier-escape frequency: ω*¯ (γ}(γ®1))ω
KR

. This

has a real, positive frequency only when γ" 1, i.e. when the random force correlations decay

more rapidly than the Kramers frequency. Otherwise, the velocities are not in equilibrium

over the period of time the system crosses the barrier peak, and the motions are ballistic.

For γ" 1, the escape frequency ω*"ω
KR

, so the escape rate is enhanced, as illustrated in

Fig. 22. The effective friction governing escape is given by

ζ# (ω*)¯
E

F

1®
1

γ

G

H

ζ# (0). (6.8)

When γ!¢, the forces decorrelate infinitely fast, then ω*!ω
KR

and ζ# (ω*)! ζ# (0).
This example illustrates that the dynamics that determine the barrier crossing rate depend

on the short time ‘non-adiabatic ’ friction experienced during passage over the barrier and

thus involve the high-frequency components of the spectral resolution of the friction. When

these components of the friction are much weaker than the long-time values, the forward rate

may be strongly enhanced.

6.2 Non-Markovian rate theory and reaction surfaces

The projection onto Q of dynamics occurring on many timescales introduces memory effects

into the friction kernel. In what follows, we determine the impact of these non-Markovian
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effects on the folding dynamics (Plotkin & Wolynes, 1998). This addresses the validity of

using Q as a reaction coordinate : if non-Markovian effects are large, it is obvious then that

much information was lost in the projection of dynamics onto Q.

For dynamics governed by a GLE as in Eq. (6.2), it is implicit that Q responds linearly to

fluctuations in the other coordinates of the polymer chain apart from the nonlinearity inherent

in the thermodynamic potential for Q. This should be a good approximation if many

individual configurational states of the polymer chain are sampled for each value of Q, as

expected above the glass transition temperature. On the other hand, nonlinearities must be

present in proteins that have multi-exponential kinetics, as occurs for example in kinetic

partitioning mechanisms (Guo & Thirumalai, 1995), which will be an interesting

phenomenon to incorporate into this framework.

A system governed by the generalized Fokker–Planck equation in Eq. (4.5) shows the same

linear response as the GLE in Eq. (6.2) (see Appendix D for a proof of this). That is, the

Fourier transformed friction ζ# (Q, ω) and the diffusion coefficient D= (Q, ω) at frequency ω are

related by

ζ# (Q, ω, T )¯
k
B
T

D= (Q, ω, T )
. (6.9)

As mentioned earlier in Section 4 Eq. (4.8), these quantities may be obtained by mapping

the generalized Fokker–Planck equation to a generalized master equation, with transition

dynamics between states obeying a waiting-time distribution. The waiting-time distribution

which determines the diffusion coefficient may be obtained by appealing to the statistics of

escape times on the energy landscape, as in Eq. (4.24). It was shown in Bryngelson &

Wolynes (1989) by employing this mapping that the diffusion coefficient is given by

D= (Q, ω, T )¯
k
B
T

ζ# (Q, ω, T )
¯λ (Q)

©1}(1ωτ)ª
©τ}(1ωτ)ª

, (6.10)

where λ (Q) involves the distance scale for conformational diffusion, and is related to the step

size in Q, ∆Q, and the probability that a given microscopic transition changes Q.

The averages in Eq. (6.10) are taken over the hopping time distribution P
Q
(τ, T ). For

example,

- 1

1ωτ.3&dτ P
Q
(τ, T )

1

1ωτ
, (6.11)

where P
Q
(τ, T ) is obtained from Eq. (4.24), with the entropy S and T

G
given by their values

at Q : S!S (Q) and T
G
!T

G
(Q).

The diffusion coefficient obtained in this way is plotted in Fig. 23. At a rigorous dynamic

glass temperature T!
A
, where escape barriers on all timescales disappear, the system is free

to reconfigure at relatively fast Rouse–Zimm timescales (top curve in Fig. 23). Below T!
A

however, a distribution of barrier heights induces a stronger frequency dependence to the

diffusion coefficient. The dispersion arises from the number of deep traps versus the number

of shallow traps, and so maximal at an intermediate temperature between T!
A

and T
G
, where

both escape processes have large contributions to the diffusion coefficient.

Non-Markovian rate theory (Chandler, 1978; Grote & Hynes, 1980; Pechukas, 1981;

Pollak et al. 1990; Pollak, 1992; Berezhkovskii et al. 1992; Rips, 1998) proceeds by
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Fig. 23. Diffusion coefficient τ
!

D= (Q1, ω, TN ) for the 64-mer near the transition state Q1 E 0±3, as a

function of frequency (times τ
!
), at several temperatures between the thermodynamic glass temperature

and dynamic glass temperature, where the dynamics is no longer activated. The solid lines are from Eqs.

(6.10) or (D 8), and the dashed lines are for the closed-form approximate solution, Eq. (D 10). Here

temperatures TN are in units of T
G
. There is a rapid increase from the zero frequency value D= (Q, 0, TN ),

which depends on the typical escape time at that temperature, to a higher asymptotic value depending

on how many of the states are untrapped and have short lifetimes at that temperature. The dispersion

in the values of the diffusion for different frequencies is thus maximum at intermediate values of

temperature. The temperature T
A

here, where there is no frequency dependence left in the diffusion

coefficient, is above the dynamic glass temperature in, e.g. Fig. 13. This is because at T
A

here, all traps

must have downhill free-energy profiles for escape, not just the traps typically occupied (at the thermal

energy). The largest values of the diffusion constant are set by λ(Q) in Eq. (6.10), and at T
A
, D= (Q1,

ω, T
A
)¯λ(Q)E 0±0015}τ

!
for the 64-mer.

recognizing that the GLE is equivalent to a particle bi-linearly coupled to a bath of oscillators

(Zwanzig, 1973; Caldeira & Leggett, 1983) with an effective Hamiltonian

(¯
p#
Q

2m*
F (Q)

1

2
3
j

A

B

p#
xj

m
j

m
j
ω#

j

E

F

x
j
®

c
j
Q

m
j
ω#

j

G

H

#
C

D

(6.12)

with

ζ (Q, t )¯3
j

E

F

c#
j

m
j
ω#

j

G

H

cos(ω
j
t ). (6.13)

Because the dynamics in Q is overdamped, m* will be set to zero at the end of the calculation,

i.e. there are no inertial terms. The observable quantities m*ω1
#¯F§(Q1) and ζ (Q, t ) or

ζ# (Q, ω) are taken to remain finite in this limit.

The additional collective modes of the bath in Eq. (6.12) describe the dynamics behind the

fluctuations in Q within linear response. Rather than explicitly dealing with integral equations

accounting for memory in the non-Markovian dynamics of Q, we can study the dynamics of

an equivalent multi-dimensional system without memory, by re-projecting out onto the many

dimensions of the bath, as long as bath modes reproduce the spectral decomposition of the

friction, as ensured by Eq. (6.13).
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When a single barrier exists in F (Q) it makes sense to use multi-dimensional transition

state theory (TST). The Hamiltonian [Eq. (6.12)] is brought to normal coordinates through

an orthogonal normal mode transformation

m*"

#Q«3m*"

# (Q®Q1)¯ u
!!

ρ3
j

u
j!

y
j
, (6.14)

where u
!!

, u
j!

are coefficients of the transformation, which are a function of the friction kernel.

For example

u#
!!

m*
¯ 2

A

B

ζ# (Q1, λ1)

λ1 
¥ζ# (Q1, ω)

¥ω )
ω=λ1

C

D

−"

3 v#
!!

. (6.15)

The coordinate ρ in Eq. (6.14) is the reaction coordinate along the unstable normal mode,

having imaginary frequency iλ1 given by the solution of

λ1ζ# (Q1, λ1)¯m*ω1
#¯

¥#F (Q)

¥Q#
Q

1

. (6.16)

This frequency is identical to the (overdamped m*! 0) Grote–Hynes reactive frequency

(Grote & Hynes, 1980). Friction leaves the barrier height unchanged, but rotates the reaction

coordinate to a different direction in configuration space. The Grote–Hynes frequency arises

from solving diffusion with memory on an inverted parabolic potential, as we saw in Section

6.1. When the motion in Q is Markovian and diffusive, the reactive frequency is that of an

overdamped inverted harmonic oscillator corresponding to the Kramers prefactor in the rate.

That is

λ1 ¯
m*ω1

#

ζ# (Q1, 0)
. (6.17)

Once transformed, the Hamiltonian has the form

(¯ "

#
[ p#ρ®λ1

#ρ#3
j

( p#
yj

λ#
j
y#
j
)]F

AN
(m*−

"

# [u
!!

ρ3
j

u
j!

y
j
]), (6.18)

which is quadratic except for the anharmonic part of the potential F
AN

which mixes all the

coordinates nonlinearly. However this mixing is done only through the sum Σ
j
u
j!

y
j
. It is

therefore useful to define, in addition to the Grote–Hynes coordinate ρ, a residual collective

bath coordinate σ by

m*"
#σ3 (1®u#

!!
)−"

#3
j

u
j!

y
j
3

1

u
"

3
j

u
j!

y
j
, (6.19)

and calculate the TST rate k
F

(Hanggi et al. 1990) across a new thermodynamically

determined dividing surface on the 2D potential in (ρ, σ) space :

k
F
¯

!dpρ dρ dpσ dσ δ ( f ) (~f [p)θ (~f [p)e−β(1

!dpρ dρ dpσ dσ eβ(1 . (6.20)

The effects of dynamic friction, reflected by recrossings in the Q coordinate, are then

accounted for by ballistic motion across the surface f¯ 0 dividing reactants and products.

The delta function δ ( f ) in Eq. (6.20) localizes the integration to that surface, and ~f [p¯
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pρ¥f}¥ρpσ¥f}¥σ is the flux density across the surface, which the theta function insures is

in the forward direction. The function f¯ ρ®g (σ) serves as a new reaction coordinate in this

formulation of the problem. The problem is now reduced to determining the surface f¯
ρ®g (σ)¯ 0 that gives the slowest TST rate, or lowest upper bound to the true rate. Note

in this analysis no assumptions are made about the memory time of the friction, or how

anharmonic the potential is.

The shape of the dividing surface g (σ) that minimizes the TST rate k across the surface

can be found by using the calculus of variations (Miller, 1974; Pollak, 1991) as, for example,

in the derivation of Lagrange’s equations in mechanics, yielding a differential equation for the

shape of the dividing surface g (σ)

g§
1g«#

¯β

A

B

g«
¥E [g]

¥σ
®

¥E [g]

¥g

C

D

, (6.21)

where g«3dg}dσ, and

E [g]¯ "

#
(m*Ω#σ#®λ‡

#g (σ)#)F
AN

(v
!!

g (σ)σ), (6.22)

where m*Ω#¯ (v#
!!

}λ‡
#®1}m*ω1

#)−" is a collective bath frequency.

We can treat g and σ as parameterized variables in terms of an independent parameter t,

such that, e.g. g«¯ g0}σ0 , and set the first integral to an effective energy:

"

#
(gd#σd #)3E

!
®Vβ. (6.23)

This recasts the variational Eq. (6.21) into Hamilton’s equations of motion for g and σ,

gX ¯®
¥Vβ

¥g
(6.24a)

σX ¯®
¥Vβ

¥σ
, (6.24b)

on an effective temperature dependent potential :

Vβ ¯®
1

2β
exp(®2βE [g]) (6.25)

at total energy

"

#
( p#

g
p#σ)Vβ ¯ 0. (6.26)

The optimal dividing surface is a classical periodic trajectory (Pechukas, 1981) with infinite

period, on the potential Vβ at total energy zero, that divides the (ρ, σ) space into reactants

and products.

Equation (6.20) for the rate then becomes

k
F
¯ p

AN

λ1

ω1k
!
, (6.27)

where k
!
¯ (ω

!
}2π) exp(®βF1) is the TST rate, while λ1}ω1 is the Grote–Hynes

transmission factor.
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Fig. 24. Ratio of the Grote–Hynes (GH) rate (solid lines) and variational TST rate (VTST – dashed

lines) to the Kramers rate, for a 64-mer at folding equilibrium, as a function of how minimally frustrated

to protein is, characterized by T
F
}T

G
. The VTST result includes rate enhancement due to anharmonic

effects of a finite size barrier. The effect here is small, indicating that the Grote–Hynes prediction of

kGH}kKR ¯D= (Q1, λGH)}D= (Q1, 0) is a good approximation for proteins with a large, dominant folding

barrier. In fact the Grote–Hynes result is typically within a factor of about 3 of the Kramers rate,

indicating that even the Kramers result is a good approximation (see also Section 6.3). Larger

variational effects on the reaction coordinate are seen for shorter polymers that for longer ones. Inset

A: Thermodynamic potentials versus Q at T
F
. For more rugged landscapes the barrier is flatter, and this

reduces the overall prefactor to the rate since there are more recrossings. However, the non-Markovian

effects on rate are actually enhanced for these moderately rugged landscapes, because of the increased

dispersion in the spectral decomposition of the diffusion coefficient (cf. Fig. 23). The T
F
}T

G
values are

2±45, 1±84, and 1±24 in order of decreasing barrier size, which are marked by the dashed vertical lines

in the main figure. The small vertical bars near the barrier peaks are where the VTST dividing surfaces

cross the coordinate Q. These are close to the barrier peak, but need not coincide with it, due to the

fact that the barrier is not exactly an inverted parabola. Inset B: Enhancement of the rate k}kKR at the

maximum value when T
F
}T

G
E 1±6 by allowing the ‘step size ’ λ

Q
in the diffusion coefficient

D= (Q1, λGH) to vary (λ(Q)E 0±0015 is the value in the main figure, which gives k}kKR E 3±8).

The anharmonic correction p
AN

to the Grote–Hynes prefactor is given by the classical

action of a fictitious particle following the trajectory of the dividing surface on the effective

potential Vβ of Eq. (6.25) :

p
AN

¯
E

F

β#m*Ω#

2π

G

H

"

#&dso®2Vβ (6.28)

where ds is arc length along the trajectory.

For large heteropolymer globules (with larger folding barriers), the potential F (Q) is

nearly parabolic near the barrier peak, and the rate approaches the Grote–Hynes rate, with

p
AN

F 1 in Eq. (6.27). This is shown in Fig. 24, which plots the forward folding rate in units

of the Kramers rate, taking into account the effects of non-Markovian diffusion, on a model

protein of size N¯ 64 versus the amount of minimal frustration in the protein, T
F
}T

G
. For

these larger barriers (shown in inset A of Fig. 24), non-Markovian effects increase the rate
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Fig. 25. Autocorrelation function [Eq. (6.3)] from the lattice data for the 27-mer 3-letter code, at the

folding transition temperature (T
F
), in the unfolded free-energy minimum (see Socci et al. 1996). Inset

A shows the same data on a log–log plot. Inset B shows the corresponding diffusion coefficient from Eqs.

(6.30) and (6.9) as a function of frequency. The data cannot be fitted by one exponential ; the faster decay

at small times means that the high-frequency diffusion coefficient is larger than that for the low-

frequency modes. The diffusion coefficient and potential F(Q) in the inset are used to calculate the

non-Markovian forward folding rate.

about 4-fold over the Kramers approximation. In the limiting case where the potential F (Q)

is parabolic and the friction ζ
!

is frequency independent, the Kramers rate

k
KR

¯
m*ω

u
ω1

2πζ
!

exp(®βF1) (6.29)

is recovered from Eq. (6.27).

6.3 Application of non-Markovian rate theory to simulation data

The Kramers rate theory has already been applied to the data for the lattice 27-mer in Socci

et al. (1996), and shown there to give values within a factor of 2 or 3 of the simulated folding

rates. We can go a step further here and test the validity of the Kramers result by applying

non-Markovian rate theory to calculate rates for model proteins for which simulation data are

available, and compare the result to the one assuming white-noise diffusion.

For example, the thermodynamic reaction surface in one coordinate is shown for the

3-letter code 27-mer at T
F

in Fig. 25, inset B. From measurements of the autocorrelation

function defined by Eq. (6.3) and shown in Fig. 25 (see Socci et al. 1996), the friction ζ# (ω)

may be obtained from the GLE [Eq. (6.2)] at the position of the unfolded free-energy

minimum:

ζ# (ω)¯
F§(Q1)

1}(c# (ω))®ω
, (6.30)
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Fig. 26. Potential surface in the normal coordinates, E(v
!!

ρ, σ), and in Q and the bath coordinate,

E(Q®Q1, σ) (solid contours in inset), along with the variational dividing surface which minimizes the

TST flux (heavy curve), for a lattice-model 3-letter code protein of length N¯ 27. Contours are drawn

at intervals of about 2 k
B
T. Note the kinetic dividing surface is slightly off the thermodynamic saddle

point, towards the shallower well. The potential in the Markovian case (dashed inset), with the

corresponding Kramers rate, is further skewed with respect to the dividing surface, indicating paths in

this case are even more diffusive.¬marks the position of the unfolded minimum, and D the native

minimum. The short horizontal lines (and vertical lines in the inset) bound a region ofE 70% of

the total flux across the dividing surface. The distribution of flux across the surface as a function

of bath coordinate σ is shown in the lower inset. The shaded region containsE 70% of the flux. In

(Q®Q1, σ) space there is flux over a wide range of Q values, ∆Q}(Q
F
®Q

U
)E 0±44, so that the

TST that reproduces the multiple crossing physics in Kramers theory does not have a well defined

value of Q1. However in (v
!!

ρ, σ) space the TST surface tends towards orthogonality to the reaction

coordinate v
!!

ρ : ∆ρ}(ρ
native

®ρ
mg

)E 0±04, indicating trajectories behave more ballistically along ρ,

and would correlate more strongly with the probability of folding. The finite width of the strip in

(v
!!

ρ, σ) space is due to the finite range of Q : 0!MQ! 28.

where c# (ω)¯,
t
c (t ). By Eq. (6.9), the diffusion coefficient D= (ω) may then be obtained, as

shown in Fig. 25, inset B. The frequency-dependence of the friction near the barrier peak may

deviate from this function, and it will be interesting to investigate it for computational

models, and potentially for single-molecule probes at some future time.

The anharmonic corrections to the Grote–Hynes rate for the lattice 27-mer may be

calculated from Eqs. (6.27) and (6.28), which results in p
AN

F 0±85. The rate is thus

moderately reduced from the Grote–Hynes value of 1±57 kKR, giving k¯ 1±33 kKR for the

corrected rate in Eq. (6.27), in closer agreement with the Kramers value. Note that these rates

are all within a factor of 2 of each other. The numerically close agreement between the rate

calculated from the physics of a distribution of relaxation modes, to the Kramers value for

the rate, is a good justification for the Markovian approximation assumed in earlier analyses.

Envisioning protein folding as stochastic motion of a collective coordinate on an average
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thermodynamic potential, governed by Langevin dynamics or a Fokker–Planck equation, is

a reasonable description of the process of folding for a typical minimally frustrated protein.

However, from Fig. 26 (inset) we see that the flux through the TST dividing surface is

quite spread out over a large range in the coordinate Q. This is to be expected since Q behaves

as a diffusive reaction coordinate rather than a ballistic one. On the other hand, the TST

dividing surface tends to be nearly orthogonal to the Grote–Hynes reaction coordinate ρ,

indicating trajectories behave ballistically along this reaction coordinate. The function f¯
ρ®g(σ), when interpreted as progress across the barrier, generalizes the notion of a scalar

reaction coordinate such as Q. However, unlike Q, it is difficult to interpret precisely what

σ means for a conformational state. The non-Markovian effective potential in Eq. (6.22) and

the optimal dividing surface are shown in Fig. 26. One may infer from the considerable spread

of the transition-state region along the Q coordinate that the folding transition-state ensemble

does not have a well-defined value of Q, but rather includes configurations from a disperse

region. A disperse distribution of experimental φ-values supports this description (Onuchic

et al. 1996).

The observation that rates are well-predicted by Fokker–Planck diffusion on an average

thermodynamic potential has been made in several simulation studies (Socci et al. 1996; Pande

& Plaxco, 2001), while it is also observed that the transition states may be significantly spread

out around the barrier peak (Abkevich et al. 1994; Onuchic et al. 1996; Du et al. 1998; Pande

& Plaxco, 2001). The energy landscape theory applied here is indeed consistent with these

observations.

Important effects may be seen in analyses with several reaction coordinates, particularly if

the friction is anisotropic. In these cases phenomena such as saddle-point avoidance may

modify the value of the barrier height as well as the prefactor. The methods may also be

applied to dynamics in other condensed matter systems with rugged landscapes, e.g. RNA,

protein–ligand binding, glasses, and clusters.

7. Structural and energetic heterogeneity in the folding mechanism

The wide range of folding rates for different native structures indicates that native structure

is a strong determinant of at least some properties of the free-energy profile, such as the size

of the folding barrier. However, native structure is not an exclusive determinant of the

thermodynamics. Proteins folding to the same structure may have rates different by several

orders of magnitude (Kim et al. 1998; Dalessio & Ropson, 2000), and may even have different

folding mechanisms. For example, although the four-helix proteins Im7 and Im9 are

structural homologs, wild-type Im9 folds by a two-state mechanism while Im7 folds through

an en route intermediate (Ferguson et al. 1999) : the free-energy landscape may fluctuate

sequence to sequence for amino-acid chains that fold to the same native structure.

In this section we address the effects on folding rate and mechanism that arise from

distributions of quantities. That is, we quantify a model protein in terms of the full

distribution of native contact energies ²ε
i
´, as well as the full distribution of native contact

lengths ²l
i
´ (sequence lengths pinched off by each native contact), under the assumption that

the protein under consideration is well-designed, or minimally frustrated with T
F

reasonably

larger than T
G
. Native heterogeneity is retained explicitly, while non-native interactions are

treated through an average background field – the scalar quantity b in, e.g. Eq. (5.6c). We are
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thus isolating the effects of native heterogeneity on the folding mechanism. It has been found

(Plotkin & Onuchic, 2000, 2002) that even though there is a large entropy present in the

transition state of the system at T
F
, there are still in fact strong dependencies of the barrier

and folding mechanism on the distribution of native stability and distribution of native

contact lengths. In fact local fluctuations in native stability and structure do not average out,

but contribute extensively in determining properties of the folding mechanism.

A quantity such as folding temperature or folding barrier which fluctuates over an

incompletely specified ensemble may have a mean that is still useful in characterizing trends

as a function of one or more parameters. An example is the increase on average in folding

rate, or decrease in folding barrier, as mean native contact length l b (more specifically l b}N) is

decreased (Plaxco et al. 1998, 2000), for which several models have been proposed

(Munoz & Eaton, 1999; Fersht, 2000), and which we consider here within the theoretical

framework of this section as well (see Section 7.4). The observed correlation between rates

and l b implies that many proteins are sufficiently well-designed such that native topology

plays a role at least as important as native stability in governing folding rates and mechanism,

a topic recently investigated by several authors (Alm & Baker, 1999; Munoz & Eaton,

1999; Shoemaker et al. 1999; Galzitskaya & Finkelstein, 1999; Shea et al. 1999; Riddle

et al. 1999; Du et al. 1999; Fersht, 2000; Clementi et al. 2000a, b; Taverna & Goldstein,

2000; Maritan et al. 2000; Dinner & Karplus, 2001).

Here we will go beyond the first moments of the contact length distribution l- and stability

distribution ε- . We investigate how the full distributions of energetics and topology as well

as correlations between them affects the free-energy profile, corresponding barrier, folding

rate, and overall folding mechanism. Native heterogeneity, both entropic and energetic, plays

an important role in quantifying protein folding mechanisms. One can extend the analysis of

thermodynamic quantities in Section 5 by using functionals rather than functions to describe

folding properties which are not necessarily self-averaging, but which may depend on

distributions of coupling parameters. To this end we derive in this section a simple field

theory with a non-uniform order parameter to study fluctuations away from uniform

ordering, through free-energy functional methods (Shoemaker et al. 1997, 1999; Shoemaker

& Wolynes, 1999). An induced heterogeneity in the participation of candidate transition

states has also been observed in Monte Carlo simulations of sequence evolution for lattice

protein models, when the selection criteria involves fast folding rate (Gutin et al. 1995).

Here we see how, from general considerations of the energy landscape theory, selecting

for rate can induce heterogeneity in the transition-state ensemble. The folding barrier

for a well-designed protein is maximized when the nucleus is the most diffuse. For typical

values of native energies, well-designed proteins have heterogeneous funneled folding

mechanisms (Radford et al. 1992; Bai et al. 1995, Boczko & Brooks, 1995; Lazaridis &

Karplus, 1997, Sheinerman & Brooks, 1998).

These results are supported by several experiments in the literature, and also suggest

experiments which can test the results (see Section 7.6). For example the reduction of barrier

height with folding heterogeneity should be experimentally testable by measuring the

dependence of folding rate for a well-designed protein on the dispersion of φ-values. It is

important that before and after the mutation(s) the protein remains fast-folding to the native

structure without ‘off-pathway’ intermediates, and that its native state stability remain

approximately the same, perhaps by tuning environmental variables.

In the arguments below we associate reductions in the free-energy barrier ∆F1 to increases
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(a) (b)

Fig. 27. (a) lattice, and (b ) Rasmol representations of the native structure, characterized through the

distribution of contact energies ²ε
i
´ and contact entropies ²s

i
´, (defined through the distribution of loop

lengths ²l
i
´). The probability to form contact i having energy ε

i
and loop length l

i
, at partial degrees of

nativeness Q, is Q
i
(Q).

in the folding rate k
F
. This is true as long as the prefactor k

!
(ζ ) in the expression for the rate,

Eqs. (4.7b) or (6.29), is more weakly affected than the barrier height over temperature ∆F1}T

under redistribution of native stability. However it has been shown (Plotkin & Onuchic,

2002) that even for perturbations in native energy large enough to kill the barrier, the T
F

varies only weakly compared to the changes in barrier height, so that the ratio T
F
}T

G
should

also not vary significantly compared to the changes in barrier height. The prefactor which is

a function of T
F
}T

G
is then not strongly affected.

When the Hamiltonian consists of pair interactions alone, redistributions of native stability

can eliminate the barrier entirely at the T
F

(see Fig. 31). It is worth noting that many-body

interactions which are believed to be present in real protein interactions (Horovitz & Fersht,

1992; Hao & Scheraga, 1997; Sorenson & Head-Gordon, 1998; Klimov & Thirumalai,

1998a; Lum et al. 1999; Takada et al. 1999; Prince et al. 1999) tend to increase the barrier

height (Kolinski et al. 1996; Plotkin et al. 1997; Eastwood & Wolynes, 2001), and in their

presence the barrier may be more robust to redispersement of native stability.

7.1 The general strategy

We adopt here a coarse-grained description for the native structure, and describe it by its

distributions of native contact energies ²ε
i
´ and native loop lengths or contact lengths ²l

i
´.

Here ε
i
is the solvent-averaged effective free energy of contact i, and l

i
is the sequence length

pinched off by contact i (see Fig. 27). We use a single subscript index i for labelling native

contact i (rather than e.g. ij ) because we are only considering effects on the particular set of

native contacts for a given native structure. Non-native interactions are treated by an average

field, since the protein is assumed to be well-designed to its native structure, and native

interactions are then thought to be most important in determining the folding mechanism.

The index i runs from 1 to M, where M is the number of residue pair contacts in the lowest

energy native structure. At partial degrees of nativeness the equilibrium probability to form

contact i is defined as Q
i
(Q). Non-uniformity in Q

i
values indicates that the protein

prefers to fold some regions over others.
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Following the formalism used in inhomogeneous fluids (Percus, 1982; Evans, 1992) and

the theory of first-order phase transitions (Gunton et al. 1983) we write a free-energy

functional F(²Q
i
´, ²ε

i
´, ²l

i
´) to characterize the effects of structural and energetic heterogeneity

superimposed on the overall folding funnel. This approach has been used earlier to describe

domain growth in proteins (Bohr & Wolynes, 1992) and more recently as a calculational tool

to compute φ-values (Shoemaker et al. 1997, 1999; Shoemaker & Wolynes, 1999).

In the functional method, all the native contact energies ²ε
i
´ and the native loop lengths

²l
i
´ for a protein are initially assumed as given, and the thermal (most probable) distribution

native of contact probabilities ²Q*

i
(²ε

i
´, ²l

i
´, Q)´ is found by minimizing the free-energy

functional F(²Q
i
(Q)´r²ε

i
´, ²l

i
´) with respect to the distribution of occupation probabilities,

subject to the constraint that the average probability is Q, i.e. Σ
i
Q

i
¯MQ (Q then

parameterizes the values of the Q!
i
s). This procedure is analogous to finding the most probable

distribution of occupation numbers, and thus the thermodynamics, by maximizing the

microcanonical entropy for a system of particles obeying a given occupation statistics. Here

the effective particles (the contacts) behave like fermions, since no more than one bond can

‘occupy’ a contact. The system can be understood to have a set of free energy levels obeying

a distribution governed by the native structure and energies of the protein, and we seek the

fraction of time (the probability) those levels are occupied given a fixed overall number of

levels filled.

The free energy for a system obeying the thermal (most probable) distribution ²Q$
i
(Q, ²ε

i
´,

²l
i
´)´ is then considered a function of the contact energies for a fixed native structure : F(Q,

²ε
i
´ r ²l

i
´). That is, we consider the folding free energy barrier as a functional of the interaction

energies ²ε
i
´ for a given native topology. The free energy depends on the energies ²ε

i
´ both

explicitly and implicitly through the thermal contact probabilities ²Q$
i
(²ε

i
´ rQ, ²l

i
´)´. Then we

can seek the special distribution of contact energies ²ε$
i
(l

i
)´ that extremizes (minimizes or

maximizes, depending on the second derivative) the thermo-dynamic folding barrier to a

particular structure by finding the extremum of F1(²ε
i
´ r ²l

i
´) with respect to the contact

energies ε
i
, subject to the constraint of fixed total native energy: Σ

i
ε
i
¯Mε- ¯E

N
, i.e. while

maintaining the same overall stability of the native structure. Thus we are isolating the effect

of heterogeneity (as opposed to stability changes) on the folding mechanism. This distribution

when substituted into the free energy gives in principle the extremum free-energy barrier as

a function of native structure F1(²l
i
´), which might then be optimized for the fastest}

slowest folding structure and its corresponding barrier. However, we will find below that

in fact the only distribution of energies for which the free energy is an extremum is

in fact the distribution which maximizes the barrier by tuning all the contact probabilities to

the same value : Q
i
(Q1)¯Q1. In this case the coupling energies would be tuned to

eliminate any information contained in the native structure, except for the mean loop length

l b¯ (1}M )Σ
i
l
i
. Any perturbation away from this scenario lowers the free-energy barrier.

We also examine the effects of structural dispersion on the barrier, i.e. the free energy

for variable loop distribution (various native structures) but fixed coupling energies,

F(Q, ²l
i
´ r ²ε

i
´), and arrive at the same conclusion: at fixed native stability, increasing

structural variance (at fixed average loop length) lowers the barrier and thus speeds the rate,

as long as the protein is sufficiently well-designed that the rate is governed by the

free-energy barrier.
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7.2 An illustrative example

We illustrate the procedure by applying it to a more trivial system – an Ising paramagnet in

a non-uniform external field. The Hamiltonian for this system is

(¯®3
N

i="

ε
i
σ

i
, (7.1)

where σ
i
¯³1 is the ith spin and ε

i
is (minus) its local field energy. To obtain the free-energy

functional we need an expression for the configurational entropy in terms of the spin degrees

of freedom. If the field was uniform, the configurational entropy per spin s(q) could be written

in terms the fraction of up spins N
+
}N3 q as

s(q)¯
S(q)

N
¯

1

N
ln

N!

(Nq)![N(1®q)]!
F[®q ln q®(1®q) ln(1®q)]. (7.2)

Here q¯ (1σ- )}2 where σ- ¯ (1}N)Σ
i
σ

i
is the average magnetization per site. However if

the field (or the strength of the moment) varies from site to site, so will the equilibrium value

of the spin. To allow for this the entropy per spin must be written in terms of q
i
¯ (1σ

i
)}2,

and the total entropy is then a functional S(²q
i
´). The free-energy functional is then

F(²σ
i
´, ²ε

i
´)¯ 3

N

i="

A

B

®ε
i
σ

i
T

E

F

1σ
i

2
ln

1σ
i

2


1®σ
i

2
ln

1®σ
i

2

G

H

C

D

. (7.3)

The equilibrium values of the spins σ$
i

are obtained by finding the extremum of the free

energy, subject to a fixed overall magnetization -¯Σ
i
σ

i
:

δ

δσ
i

E

F

Fh
M
3
j

σ
j

G

H

¯ 0. (7.4)

This leads to the equation

σ$
i
¯ tanh

E

F

ε
i
h

M

T

G

H

(7.5)

for the equilibrium values of the spins. Each spin follows its local field according to the well-

known Brillion function (for spin "

#
). The Lagrange multiplier h

M
is determined from the sum

Σ
i
σ$

i
¯-. For a uniform field, h

M
¯T tanh−" (-}N )®ε. The second variation of F is

positive indicating the free energy is minimized and σ$
i

are the thermal equilibrium values :

δ#F

δσ
i
δσ

j
²σ$

i
´
¯ δ

ij

T

1®σ$#
i

" 0. (7.6)

Substituting σ*
i
(ε

i
) [Eq. (7.5)] back into the free-energy functional [Eq. (7.3)] gives the free

energy in terms of the coupling energies ²ε
i
´ :

F(²ε
i
´)

T
¯®N ln2®3

N

i="

ln

A

B

cosh

E

F

ε
i
h

M

T

G

H

C

D


h
M
-

T
. (7.7)

This free energy is equivalent to the form obtained from the partition function in the

canonical ensemble.
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Now we can seek the set of fields ε$
i

that extremizes the free energy subject to a given total

coupling energy E¯Σ
i
ε
i
:

δ

δε
i

E

F

Fp3
j

ε
j

G

H

¯ 0. (7.8)

This yields the condition that all the spins have the same value and thus that the field be

uniform:

σ
i
(ε$

i
)¯ p, (7.9)

ε$
i
¯ ε. (7.10)

However, second variation of the free energy gives

δ#F

δε
j
δε

i
²ε
i
´= ²ε´

¯®δ
ij

1

T
sech#

E

F

εh
M

T

G

H

, (7.11)

which is negative, indicating this choice of coupling energies maximizes the free energy. Thus

any perturbations away from the uniform field will lower the free energy. Although the

entropy functional is much more complicated for proteins, we find that there too the only free

energy extremum is a maximum.

7.3 Free-energy functional

We refer the interested reader to Plotkin & Onuchic (2000, 2002), for a derivation, and give

the result here for the free energy for a fast-folding protein which includes heterogeneity

in the folding mechanism:

F(²Q
i
(Q)´ r ²ε

i
´, ²l

i
´)¯F

MF
(Q, εa , l b)δF(²δQ

i
´ r ²δε

i
´, ²δl

i
´). (7.12)

We have written the total free energy here in terms of a mean-field term plus a fluctuation

due to variations in energy, loop length, and contact probability. The free energy that we saw

earlier in Eqs. (5.7), (5.8) is generalized here to account for these variations, and for a finite

average mean return length l . for native contacts. A distribution of native stabilizing inter-

actions is introduced directly into the Hamiltonian, much like the coupling energies ε
i
were

introduced into the Hamiltonian in the last section. Variations in mean return length are

accounted for by assuming a modified Flory law for the entropy of loop closure :

s
i
(l

i
, ²Q

k
´)E $

#
ln

E

F

a

l
eff

(l
i
, Q)

G

H

. (7.13)

Here l
eff

(l
i
, Q) is an effective loop length that depends only on the local ‘bare’ loop length l

i
,

and the mean contact probability field Q present. This approximation is analogous to the

Hartree approximation used in the theory of metals.

Equation (7.13) is consistent with the constraint that the conformational entropy be a state

function, and so have zero curl :

¥s
j

¥Q
i

(l
j
, ²Q

k
´)¯

¥s
i

¥Q
j

(l
i
, ²Q

k
´) for i1j. (7.14)
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After the calculation (Plotkin & Onuchic, 2002) the mean-field entropy loss due to

contact formation becomes a function of l b. This produces a dependence of the free-energy

barrier on l b, as shown in Fig. 29. The parameter l b here is proportional to a parameter known

as contact order (Plaxco et al. 1998, 2000), which is known to correlate very strongly with

folding rates.

The fluctuation term in Eq. (7.12) is in fact given by

δF

M
(²δQ

i
´ r ²δε

i
´, ²δl

i
´)¯©δQδεªTλ(Q)-Q

i
ln

Q
i

Q
(1®Q

i
) ln

1®Q
i

1®Q.$

#
T©δQδ ln lª,

(7.15)

where the angle brackets indicate averages over the native contacts. For example

©δQδ ln lª3
1

M
3
M

i="

(Q
i
®Q)(ln l

i
®ln l b).

Equations (7.12) and (7.15) describe the free energy for an arbitrary distribution of contact

probabilities ²Q
i
(Q)´. The most likely distribution, Q$

i
(Q), i.e. the thermal distribution, is

obtained by minimizing the free energy subject to the constraint Σ
i
Q

i
(Q)¯MQ. This yields

a Fermi distribution for the contact occupation probabilities, with an effective ‘chemical

potential’ determined by the mean occupation probability Q.

We can then vary the values of ²ε
i
´ at fixed overall stability (fixed total native energy)

Σ
j
ε
j
¯E

N
, to find the distribution ²ε$

i
(²l

j
´)´ that extremizes the free-energy barrier, i.e.

that satisfies

3
i

A

B

δ∆F1

δε
i

®p

C

D

δε
i
¯ 0 (7.16)

for arbitrary and independent variations δε
i

in the energies. The Lagrange multiplier p

imposes the constraint that the total native energy E
N

is constant. The minimization results

in :

Q
i
(Q1, ε$

i
, l

i
)¯Q1, (7.17)

meaning that this folding scenario is that of a symmetric funnel : the protein is equally likely

to order from any place within it. Equation (7.17) should be compared with Eq. (7.9).

Evaluating the second derivative stability matrix shows Q
i
¯Q1 in Eq. (1.17) to be an

unstable maximum:

E

F

δ#∆F1

δε
j
δε

i

G

H ε$
i ,

ε$
j

¯
¥Q

i

¥ε
j

F®δ
ij

Q1(1®Q1)

λ1T
, (7.18)

which is negative, meaning that tuning the energies so that Q
i
¯Q1 maximizes the free

energy at the barrier peak [cf. with Eq. (7.11)]. (See Fig. 28.)

Thus the free energy at the barrier peak becomes

∆F1²ε$
i
δε

i
´F∆F1

MF
®M

Q1(1®Q1)

2λ1T
δε#. (7.19)
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Fig. 28. Illustration of folding heterogeneity. At partial degrees of nativeness, a protein adopts

conformations containing various native cores as indicated schematically (the core may be globular or

ramified). These native cores are occupied with varying probabilities depending on their free energies

(larger probability is indicated here as a darker shade of grey). As folding heterogeneity increases, the

route entropy at degree of nativeness Q decreases. However the energy at Q always decreases, and the

polymer halo entropy increases, such so that the free energy at Q goes down. See also Burton et al. (1998)

for an illustration showing heterogeneity specifically for λ-repressor within the diffusion–collision

model.

For an energetic standard deviation of about a k
B
T from the optimal distribution, the

barrier goes down by about CNk
B
T}2. The barrier governed rate thus increases with native

energetic heterogeneity as
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Fig. 29. Dependence of the free-energy profile F(Q) at T
F

on the mean loop length l b, for the analytic

model with length N¯ 50, l
i
¯ l b, and ε

i
¯ ε- . The value of l . labels each curve. The barrier undergoes

an increase that is stronger initially (see inset). The inset plots the barrier height as a function of l b, in

units of ε- . The trend in barrier height with l b shown here is a lower limit to the full theoretical

dependence given in Eq. (7.22) (see text).

k¯k
!
exp

E

F

®
∆F1

T

G

H
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exp
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F

Q1(1®Q1)
Mδε#

2λ1T#

G

H

, (7.20)

where k
homo

is the rate in the absence of native heterogeneity.

The theory also allows us to investigate the effects of native structural variance on the

barrier, as well as the correlations between structure and energetics. Considering perturbations

in the free energy of a homogeneous system with l
i
¯ lb, ε

i
¯ ε. , Q

i
¯Q1 by letting l

i
¯ l bδl

i

and ε
i
¯ ε.δε

i
, and expanding to second order in the perturbations δε and δl results in

(Plotkin & Onuchic, 2000, 2002) :

∆F1²εbδε
i
, l bδl

i
´¯∆F1

!²εb , l b́ ®M
Q1(1®Q1)

2λ1T
δε#

®MT
9

8

Q1(1®Q1)

λ1

δl#

l b#
®M

3

4

Q1(1®Q1)

λ1

δlδε

l b
. (7.21)

The first term on the right-hand side is the mean-field free-energy barrier. The second term

on the right-hand side describes the lowering of the barrier with random energetic variance,

and the third term indicates that structural dispersion (fluctuations from the mean native loop

length) also lowers the barrier. The fourth term indicates that the free-energy barrier is

additionally lowered in the model when shorter range contacts become stronger energetically

(δl
i
! 0 and δε

i
! 0) or longer range contacts become weaker energetically (δl

i
" 0 and

δε
i
" 0). This means in general that the free energy barrier is additionally lowered when

fluctuations are correlated so as to further increase the variance in contact participations. Note

again that all reductions in free energy due to structural and}or energetic heterogeneity are

second order effects, and scale extensively with system size.
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Fig. 30. Log of the ratio of rates (here taken to be equivalent to the difference in barrier heights) as

a function of structural variance δl # at fixed l ., obtained in the theory by following the recipe in Section

7.4. - - -, Approximate perturbation result using Eq. (7.22). , Full non-perturbative result from

Eqs. (7.12) and (7.15), which accounts for changes in the unfolded free energy with increasing variance.

The barrier is calculated at T
F
, where T

F
changes only mildly with δl # until the barrier height

approaches zero at δl #}l .#E 0±25.

7.4 Dependence of the barrier height on mean loop length (contact order) and structural
variance

Experimental evidence has shown a strong correlation of folding rate with a quantity in our

model equal to the mean loop length divided by the total chain length (Plaxco et al. 1998,

2000). Since no strong correlation with N is observed experimentally at least for smaller

proteins, we are interested in testing if the barrier height in our model correlates with l b, at

fixed N.

We seek the change in free energy δF upon a change in the quantity (1}M)Σ
i
l
i
. This can

be found by utilizing the directional derivative to yield (Plotkin & Onuchic, 2002) :

¥F
¥l

¯®T
¥S

bond

¥la
¯

3

2

MT

(lb®1)#
[ln(1(l b®1)Q)®Q ln l b]$

#
MT -δQ

l .. (7.22)

The first term in Eq. (7.22) is always positive for Q" 0. The second term weights loops with

smaller l
i
more heavily, and for these loops δQ" 0, so the second term is always positive

when entropic effects are considered alone. Moreover the whole expression is zero when

Q¯ 0, so we conclude that the effect of increasing the mean loop length is to increase the

barrier height ∆F1. This effect is illustrated in Fig. 29 for the simple case where l
i
¯ l b, i.e.

where the second term in Eq. (7.22) is zero. This is a lower limit to the actual increase in

barrier. As Eq. (7.22) implies, the change in barrier height with mean loop length is an
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Fig. 31. The effects on folding barriers and mechanism, as heterogeneity in contact participation is

increased top to bottom (see text).

entropic effect in the model ; proteins with native structures having larger mean loop length

have lower entropy near the transition state.

Inspection of the third term on the right-hand side of Eq. (7.21) reveals that the folding

barrier is lower for structures with larger variance in loop energies δl #, given the structures

have approximately the same l b. Figure 30 shows the increase on average in folding rate for

structures having larger variance in loop lengths. Structural variance is generated here by

letting the loop lengths be given by l
i
¯ l bα(l !

i
®l b) where l bF 9±14 and l !

i
is taken from the

loop length distribution of the structure in Fig. 27a, and α is a parameter allowed to vary

from zero to one. Following this recipe the mean loop length l b remains unchanged, but the

structural variances δl # increases.

7.5 Illustrations using lattice model proteins and functional theory

We illustrate in Figure 31 the general effects of introducing heterogeneity to a model system.

Results are shown for a Go. protein, modeled with the free-energy functional theory using the

loop-length distribution of the lattice structure of Fig. 27a, and also simulated directly on the

lattice (Plotkin & Onuchic, 2000). Coupling energies were chosen by first running a simulated

annealing algorithm to find the set of native energies ²ε$
i
´ that makes all the contact
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probabilities equal at the barrier peak: Q
i
(²ε$

i
´)¯Q1. Energies are always constrained to

sum to a fixed total native energy: Σ
i
ε
i
¯Mε. , i.e. overall stability is fixed. Here M¯ 28 and

ε. ¯ 1. Energies are then relaxed from ²ε$
i
´ by letting ε

i
¯ ε$

i
α(ε.®ε$

i
).

Heterogeneity in contact probability is increased from top to bottom in Fig. 31. The effects

on barrier height F1, folding temperature T
F
, and folding heterogeneity are summarized

here. In Fig. 31, simulation results to the same native structure (cf. Fig. 27a) are in yellow

and the analytic theory is shown in red. In the top row of Fig. 31, energies are

tuned for both simulation and theory to fully symmetrize the funnel : Q
i
(ε$

i
)¯Q. In

the second row, energies are then relaxed – in the simulation results they are all equal :

ε
i
¯ ε. ; in the theory, energies are relaxed the same way until a comparable T

F
is

achieved. In the third row, energies are then further tuned to a distribution ε
i
F ε!

i
that kills

the barrier (there are many such distributions – all that is necessary is sufficient contact

heterogeneity). The top 3 rows have many routes to the native structure. In the last

row, energies are tuned to induce a single or a few specific routes for folding. The energies

always sum to E
N
.

The free-energy profile F(Q) (in units of ε. ) is plotted in the left column at T
F
. Curves are

red for the theory, yellow for the simulation. The next column shows the distribution of

thermodynamic contact probabilities Q
i
(Q1)¯φ« at the barrier peak, taken from the

simulations. The next column shows a measure of how single-route-like folding is (2(Q)¯
©δQ#ª}Q(1®Q)) by giving the normalized fluctuations in contact probability. The dispersion

in native energies required to induce the scenario of that row is also given. Here the route

measure is taken at the T
F
; at lower temperatures the route measure tends to increase. The

right column shows schematically the different folding routes as heterogeneity is increased,

from a maximum number of routes through Q1 to essentially just one route. In the uniform

funnel (top row), we can see first that P(φ«) is a delta function (all contacts have the same

probability of formation at the barrier peak: Q
i
EQ1 E 0±6) and 2(Q1)¯ 0, so ordering at

the barrier peak is essentially homogeneous. The number of routes through the bottleneck

is maximized, as drawn schematically on the right. The free-energy barrier is maximized [Eq.

(7.19)], and T
F

at fixed native energy is maximized. T
F

in the simulation is defined as the

temperature where the native state (Q¯ 1) is occupied 50% of the time. Thus for this largest

barrier scenario, conformational fluctuations around the native state are most dramatically

reduced. In the theory, at T
F

the probability for Q&Q
cut

¯ 0±8 is 0±5 (this criterion is only

weakly dependent on the value Q
cut

, at least for the top 3 rows). A very large dispersion in

energies is required to induce the scenario in the top row; some contact energies are nearly

zero, others are several times stronger than the average.

In the funnel with constant native interaction energies (second row), the barrier height is

roughly halved while hardly changing T
F
, for the following reason. In a Go. model, as the

contact energies are relaxed from ²ε$
i
´ to a uniform value ε

i
¯ ε. , the energy of the transition

state is essentially constant : initially the energy is E(Q1)¯Σ
i
Q$

i
(Q1)ε$

i
¯QΣ

i
ε$
i
¯QE

N
,

and as the contact energies are relaxed to a uniform value, the energy of the transition state

approaches E(Q1)¯Σ
i
Q

i
ε. ¯ ε.Σ

i
Q

i
¯QE

N
once again. However the transition-state

entropy increases and obtains its maximal value when ε
i
¯ ε. , for the following reason. For

a Go. -like model, when ε
i
¯ ε. , the probability of occupying a microstate at Q1 is

p
i
¯

e−Ei(Q
1
)/T

Z(Q1)
¯

e−Q
1
EN/T

3
i
e−Q

1
EN/T

¯
1

Ω(Q1)
, (7.23)
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where Ω(Q1) is the total number of conformational states at Q1. The thermal entropy is then

S¯®3
i

p
i
lnp

i
¯ lnΩ(Q1) (7.24)

which equals the conformational entropy – the largest possible value of the entropy. So the

barrier initially decreases because the total entropy of the bottleneck increases (drawn

schematically on the right).

The distribution P(φ« ) is broad indicating inhomogeneity in the transition state, due solely

in this scenario to the topology of the native structure since all contacts are equivalent

energetically. Routing is more pronounced: when ε
i
¯ ε. , 2(Q) is measure of the intrinsic

fluctuations in order due to the natural inhomogeneity present in the native structure.

Different structures will have different profiles and it will be interesting to see how this

measure of structure couples with thermodynamics and kinetics of folding. Loops and dead

ends in the schematic drawings are used to illustrate local decreases and increases in 2(Q).

The solid curves presented for the theory are shown for a reduction in T
F

comparable to the

simulations. There is still some energetic heterogeneity present as indicated. When ε
i

¯ ε.
in the theory (dashed curves), the fluctuations in Q

i
are larger than the simulation

values, and the entropic heterogeneity is sufficient to kill the barrier – hence the downhill

dashed curve. The free-energy barrier results from a cancellation of large terms and is

significantly more sensititve than intensive parameters such as route measure 2(Q). As

folding heterogeneity continues to increase, the free-energy barrier continues to decrease until

some sets of energies ²ε!
i
´ where the barrier at T

F
vanishes entirely (third row). All the while

the folding transition temperature T
F

decreases only C10%, so that slowing of dynamics (as

T
F

approaches T
G
) is not a major factor. At this point the φ« distribution at the original

barrier position Q1(ε. ) is essentially bi-modal. A relatively small amount of energetic

heterogeneity is needed to kill the barrier at T
F
: for the simulations δε is such that α" 1, for

the theory α! 1. Numbers are shown in the figure of the route measure. There are still many

routes to the native state since 2(Q1)E 0±3–0±4, but some contacts are nearly fully formed

in the transition state (some φ«F 1).

As the energies continue to be perturbed to values that cause folding to occur by a single

dominant route (bottom row), folding becomes strongly downhill at the transition

temperature, which drops more sharply towards T
G
. Here, to induce a single pathway T

F

must be decreased to about "

%
the putative estimate to T

G
[approximately T

F
(²ε. ´)}1±6]. In this

scenario, the actual shape of the free-energy profile depends strongly on which route the

system is tuned to. Non-native interactions not included here will become important, and

dynamics would become slow. Contact participation at intermediate Q is essentially one or

zero, and the route measure is essentially one. The energetic heterogeneity necessary to

achieve this scenario is agian very large – comparable to what is needed to achieve a uniform

funnel.

7.6 Connections of functional theory with experiments

Several experiments support these results on folding heterogeneity. Enhancement of folding

rates by weighting entropically likely contacts has been observed in Escherichia coli Che Y

(Viguera et al. 1996). Depending on the variance of native interactions and how native

interaction strength correlates with the entropic likelihood of contact formation, sequences

may be designed to fold both faster or slower to the same structure as a wild-type sequence.
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Enhancements or suppressions of folding rate to a given structure due to changes in sequence

are modeled in the functional theory through changes in native interactions. A minimally

frustrated sequence may fold to a given native structure by a variety of folding mechanisms,

including through both on and off pathway intermediates. Thus for example folding in Im7

and Im9 may possibly initiate from different places within the native structure depending on

the distribution of native stabilizing interactions (Ferguson et al. 1999). Folding in the IgG

binding domain of protein L may tend to initiate from a specific region of higher stability,

indiscernible from the apparently symmetric native structure (Kim et al. 2000) ; contact

formation probability at the transition state depends on both energy and entropy. For a large

range of native energy distributions, barrier heights, and corresponding rates, there are many

routes to the native structure. Folding rates in mutant proteins that exceed those of the wild

type have been studied in several experiments (Viguera et al. 1996; Munoz & Serrano, 1996;

Hagen et al. 1996; Kim et al. 1998; Brown & Sauer, 1999). Folding rates often increase

due to increased stabilization. Here we see how effects due to a heterogeneous transition state

can be important as well, and can be understood by applying general principles of the energy

landscape. Folding rates in the theory were seen to increase with the variance in contact

formation probability, a thermodynamic quantity closely related to the dispersion in

experimental φ values. The general trend of reduced rate with larger contact order (Plaxco

et al. 1998) is captured by the theory fairly well, but the trend is weaker than in the

experiments. We found that additionally, for fixed contact order, folding rate is expected to

increase with larger variance in the contact lengths which constitute the native structure.

Also recently observed is the intriguing discovery that, at least in some proteins such as

S6, native stabilizing interactions are tuned to optimize folding cooperativity and reduce

conformational fluctuations in the native state, by maximizing the folding barrier at the

expense of the folding rate (Lindberg & Oliveberg, 2002). These observations are fully

consistent with the theory. That is, for S6 there is an evolutionary bias in the wild-type

protein towards row 1 of Fig. 31, by correlating strong contact energies with longer loop

lengths. The loop lengths can be inverted, with long loops becoming short ones, by circular

permutating the S6 protein (Lindberg & Oliveberg, 2002). When this is done the strong

native interactions have short loop lengths, which polarizes the transition state. The result is

a faster folding protein with a less rigid native state, somewhere between rows 2 and 3 of

Fig. 31. It is also worth mentioning that the bias towards a uniform folding mechanism

bolsters

the use of Q as a reaction coordinate at least for some wild-type proteins.

The experimental results of the Oliveberg group on S6 in fact give a possible explanation

for the reduced transition-state drift in wild-type CI2, compared with CI2 mutants (Oliveberg

et al. 1998). The reduced drift seen in some wild-type proteins may come from an evolutionary

tendency for some proteins to fold cooperatively with higher barriers, whose peak positions

are thus naturally more robust to environmental perturbations.

The phenomenon that fluctuations in native contact energies contribute extensively to the

free-energy landscape indicates that the prediction of numerical values for folding rates and

mechanisms from approximate energy functions may be even more difficult than originally

suspected, i.e. even if systematic error in the calculation of potentials is eliminated, /(.)

corrections to the folding barrier may still remain.

It is encouraging that such a general theoretical framework can be used to explain the

effects of heterogeneity in native stability and structural topology on folding. Quantities such



273Understanding protein folding

as folding rates, transition temperatures, and the folding mechanism may all be investigated

within this framework. Such a theory should be a useful guide in interpreting and predicting

future experimental results on many fast-folding proteins.

8. Conclusions and future prospects

An understanding of protein folding provides a link between the genetic code in the DNA

molecule and the structure and function of a living organism. While a description of protein

folding is impeded by the complexity of the process, much of this complexity can in fact be

exploited by taking a statistical approach to the energetics of protein conformation, that is to

the energy landscape. The energy landscape approach explains when and why self-averaging

behavior will govern the folding process, and when sequence-specific behavior, such as

specific folding pathways or intermediates, should be observed.

Proteins provide a unique system to inspire investigations into deeper theoretical issues.

We began by investigating the thermodynamic phases of a RHP, which included a replica-

symmetry breaking phase where the entropy vanishes. We constructed the phase diagram,

which can include a microphase-separated region and a micro-phase separated glass. We later

saw the analog of this in the phase diagram of a model protein, which contained folded and

folded-glass phases.

We then studied the theory of polymers under topological constraints, and found that the

weakly constrained and strongly constrained regimes demanded different approaches. The

polymer theory was then applied towards an in-depth study of the replica-symmetry breaking

transition that took into account higher order correlations not included in the REM. The

effect of higher order correlations is to round the glass transition in the following sense. While

the glass transition temperature is only weakly affected, there is significant residual entropy

below the transition temperature, arising from the entropy contained in ergodically localized

basins, which shrink in phases-space to one conformational state as the temperature is

lowered. Levinthal searches on a correlated landscape are significantly faster than the numbers

typically taken from back of the envelope calculations.

The kinetics in a disordered system was investigated by applying the statistics of micro-

scopic escape processes to the diffusion coefficient appearing in a Fokker–Planck equation for

the probability distribution of an order parameter. Thus the friction appearing in the

prefactor of the folding rate equation was calculated. A new transition temperature, distinct

from the thermodynamic glass temperature, appeared from a study of disordered dynamics.

At this temperature, reconfigurational barriers for thermally occupied states disappear.

The studies of polymer entropy and many-body interactions came together in a theory for

folding thermodynamics. Many-body interactions are believed to be present generically when

solvent or side-chain degrees of freedom are integrated out. The effects on folding rate and

mechanism as a function of the cooperativity in the interactions were studied. A kind of T
G
,

where the system folds through only one or a few routes, arose when native heterogeneity

was sufficiently large. As we saw in Part I, heterogeneity in the entropies of partially native

cores could also contribute towards increasing this temperature. For a given set of allowable

interaction energies in the Hamiltonian, the low energy of the native state tends to reduce the

variance of the stabilizing interaction energies in that state.

Experimental results on transition-state drift compared favorably with predictions from

the theory. The theory gives a framework for interpreting magnitudes of the drift, and why
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different measurements can yield different transition-state values and drifts. The functional

theory developed later in the review also provides an explanation as to why mutants of a wild-

type protein which fold to the same native structure can have larger transition-state drift.

The Kramers theory for folding rates can be tested by applying multi-dimensional TST to

the protein folding data taken from lattice simulations. Only small modifications in the rate

are observed, but the transition-state region is seen to be significantly spread out in the

fraction of native contacts, indicating that transition-state configurations can have large

variations in the amount of native structure present.

By generalizing the mean-field theory of folding to include fluctuations in the order

parameter, one may deduce universal consequences of the effects of heterogeneity on folding

rate and mechanism. Specifically, a protein with its native stabilizing interactions tuned to

induce a uniform folding mechanism tends to have the largest folding barrier at a given

stability. This reduces conformational fluctuations in the native state, and can be important

for function or to prevent aggregation arising from locally unfolded regions. Mutants or

permutants which have a more heterogeneous folding mechanism with a more polarized

transition state have smaller barriers, are faster folding, and have larger conformational

fluctuations in the native state.

Structures having approximately the same contact order but larger variance in native loop

lengths should tend to fold faster. Imposing larger random energetic heterogeneity in the

native stabilizing interactions, uncorrelated with the native structure, should also lower the

folding barrier at fixed stability.

The study of protein folding has undergone a dramatic transformation over approximately

the last decade, evolving to include a diverse group of scientists who study equally diverse

aspects of this self-organization process. However, it is now apparent that for many parts of

the problem, theory, simulation, and experiment are all currently in a process of convergence

to make the study of protein folding a truly quantitative branch of science.
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Appendix A. Table of common symbols

Symbol Definition Equation

N Total number of residues in the protein or heteropolymer chain (2.3)
M Total number of contacts in a given configuration (2.29)
z Average number of contacts per residue (2.3)
ε- Average attraction energy per contact ( in section 7, mean native

contact energy)
(2.4), (7.21)

s
!

Conformational entropy per residue, in units of Boltzmann’s
constant k

B

(2.3)

ν Number of conformational states per residue (2.10), (2.26)
η Packing fraction of the polymer (2.22), (2.26)
b Standard deviation of the energies of contacts (2.3)
T Temperature in units of Boltzmann’s constant k

B
(2.6a)

T
C

Collapse temperature (2.17)
T

F
Folding temperature (5.9)

T
G

Glass temperarture (2.7)
T

A
Temperature above which reconfigurational barriers disappear (4.27)

TG Reduced temperature in units of the glass temperature (4.26)
λ(q) Parameter accounting for a reduced number of folding nuclei in

a polymer
(2.31b)

q Fraction of contacts in common with a given conformational
state

(2.25)

Q Fraction of contacts in common with the native state (5.5)
p Number of contacts in a cluster contributing to a many-body

Hamiltonian
(3.4), (5.5)

k
F

Forward folding rate (4.7b)
τ-
F

Mean first passage time to fold (4.6)
©τª Mean reconfiguration time on a rugged landscape (4.8), (4.25)
τ
!

Rouse–Zimm reconfigurational time scale (4.24), (4.26)
E

GS
Random heteropolymer ground state energy (2.4)

E
N

Energy in the native conformational state (5.5)
ε
N

Average energy per native contact (ε- in Section 7) (5.6a)
b
N

Standard deviation of the energies of native contacts (5.5)
c Fraction of total possible contacts present in a given conformation (5.6a)
D(Q, T ) Configurational diffusion coefficient (4.6), (4.8)
D(Q, ω, T ) Frequency-dependent configurational diffusion coefficient (4.5), (6.10)
ζ(Q) Friction kernel for configurational diffusion (4.7b)
ζ#(Q, ω) Frequency-dependent friction kernel (6.9)
Q1 Fraction of native contacts at the barrier peak (5.17)
β1 Effective experimental transition state position (5.18)
ω1 Frequency of barrier peak (6.16)
λ1 Grote–Hynes reactive frequency (6.16)
ε
i

Energy of native contact i (7.12)
l
i

Sequence length of native contact i (¯rα®βr when native
contact i is made between residues α and β)

(7.12), (7.13)

l b Mean sequence length between all native contacts (7.12), (7.22)
Q

i
(Q) Probability of forming native contact i at Q (7.12), (7.17)

† Equation where the symbol is first defined, or representative equation. Symbols may occasionally
have other meanings which should be clear from the context.
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Appendix B. GREM construction for the glass transition

In the GREM, one considers the νN states of a polymer as the end points of an ultrametric

tree of n levels, where n is taken to be large (see Fig. 7). To each level i of the tree

one associates three quantities α
i
, a

i
, and q

i
. Two configurations a and b have an overlap

q
ab

¯ q
i
, where q

i
is the level on the tree where the branches coming from a and b join.

q
i

is an increasing function of i with 0¯ q
"
! q

#
,…,! q

n+"
¯ 1. At the ith level one

branch divides into a αN

i
branches, so at level i there are (α

"
, α

#
,…, α

i
)N branches, and

(α
"
, α

#
,…, α

n
)N¯ νN.

On each branch of the tree at level i, one chooses a random variable ε(b)
i

according to a

distribution ρ
i
(ε(b)

i
) whose width is a

i
:

ρ
i
(ε(b)

i
)¯

1

(2πa
i
Nb#)"#

exp

E

F

®
(ε(b)

i
)#

a
i
Nb#

G

H

. (B 1)

The energy of each configuration b is then given by

E
b
¯ 3

n

i="

ε(b)
"

, (B 2)

where the ε(b)
i

are the energies associated with the n branches that connect each state to the

top of the tree. States a and b with overlap q
ab

¯ q
i
have ε(a)

j
¯ ε(b)

j
for j% i®1 and ε(a)

j
1 ε(b)

j

for j& i. The model is defined once the two sequences α
i
and a

i
are given for 1% i% n. If

we choose the normalization

3
n

i="

a
i
¯ 1, (B 3)

then the energies E
b
of the N states are distributed as Gaussian random variables :

P
a
(E

a
)¯

1

(2πNb#)"#
exp

E

F

®
(E

a
)#

2Nb#

G

H

. (B 4)

The probability distribution P
ab

(E
a
, E

b
) that two configurational states a and b have energies

E
a

and E
b
is

P
a,b

(E
a
, E

b
)¯ const.¬exp

A

B

®
1

4Nb#

E

F

(E
a
E

b
)#

1v
ab


(E

a
®E

b
)#

1®v
ab

G

H

C

D

(B 5)

where v
ab

is a measure of the correlation in energy between two configurations with

overlap q
i
:

v
ab

¯ v
i
¯ 3

i−"

j="

a
j
. (B 6)

Given a configuration (a), the number of configurations that have an overlap of q
i
with

(a) is

Ω
i
¯ eNsi ¯ (αN

i
®1)(α

i+"
,…, α

n
)N. (B 7)

This is the number of states to which Eqs. (B 5) and (B 6) apply. In the thermodynamic limit

(N!¢), the entropy at level i is
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s
i
¯ 3

n

j= i

lnα
j
. (B 8)

We assume this equation holds approximately for fairly large N. For N fairly large there is

almost a continuous range of possible overlaps (0% q% 1) which means the number of levels

in the ultrametric tree is large. So s
i
and v

i
may be treated as continuous quantities s(q) and

v(q), which means

lnα(q)¯®
ds(q)

dq
(B 9)

and

a (q)¯
dv(q)

dq
. (B 10)

There are two cases where the GREM has been solved (A third scenario is if T(q) is

monotonically increasing or constant – in this case we just retrieve the REM results).

Continuous-type GREM

If the freezing (glass) temperarture as a function of q, defined by

T
G
(q)

bo2
¯

E

F

a(q)

logα(q)

G

H

"

# ¯
E

F

dv(q)}dq

®ds(q)}dq

G

H

"

#

(B 11)

is a monotonically decreasing function of the overlap q, then the freezing occurs from the top

of the ultrametric tree downward (most dissimilar states freeze out first), and the

thermodynamic free energy is given by

®
F

N
¯Ts

!


b#

2T
T"T(0)

®
F

N
¯Ts (q (T ))

b#

2T
[v (1)®v (q (T ))]

bo2&q(T)

!

dq

E

F

®
ds(q)

dq

dv(q)

dq

G

H

"

#

T(1)!T¯T(q)

®
F

N
¯ bo2& "

!

dq

E

F

®
ds(q)

dq

dv(q)

dq

G

H

"

#

T!T(1) (B 12)

where q (T ) is the inverse of T
G
(q), s

!
¯ lnν, and s(q)¯S(q)}N is the specific entropy (per

monomer). At the highest temperatures (i.e. those higher than T
G
(q¯ 0) if T

G
(q¯ 0)!¢)

the system can freely explore all of its states regardless of dissimilarity. At lower temperatures

there is a continuous freezing which gradually causes states to be more localized. When

T
G
(1)!T!T

G
(0) the system is frozen into basins of size q(T ) given by the inverse of T

G
(q)

in Eq. (B 11).
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Discrete-type GREM

The function T
G
(q) has a single maximum, say at q*. There will be a REM transition with a

discreet jump in the order parameter q, and then a gradual freezing as in the continuous-type

GREM above. Define q!
g

such that

v (q!
g
)®v (0)

s (0)®s (q!
g
)
¯

(dv}dq)(q!
g
)

®(ds}dq)(q!
g
)
. (B 13)

q!
g
is always greater than q*. For a Hamiltonian with pair interactions as analyzed in Sections

3 and 3.1, v (q)¯ q and Eq. (B 13) becomes

®
ds

dq
(q!

g
)¯

s
max

®s (q!
g
)

q!
g
®q

min

(B 14)

so that q!
g
can be interpreted as the point where a line of smallest negative slope drawn from

the peak of the entropy curve lies tangent to the entropy curve at q" q
min

.

Now define what will be a REM-like transition temperature, where the freezing will have

a sudden onset at q!
g
:

T!
g

bo2
¯

E

F

(dv}dq)(q!
g
)

®(ds}dq)(q!
g
)

G

H

"

# ¯
E

F

v (q!
g
)®v (0)

s (0)®s (q!
g
)

G

H

"

#

. (B 15)

For a Hamiltonian with pair interactions as analyzed in Sections 3 and 3.1, v(q)¯ q and

Eq. B.15 becomes

T!
G
}bo2¯

E

F

®
ds

dq
(q!

g
)

G

H

−
"

#

. (B 16)

The thermodynamic free energy is given by

®
F

N
¯Ts

!


b#

2T
T"T!

G

®
F

N
¯Ts (q (T ))

b#

2T
[v (1)®v (q (T ))]

bo2 & q(T)

q
!
g

dq

E

F

®
ds (q)

dq

dv (q)

dq

G

H

"

#

bo2 [(v (q!
g
)®v (0))(s (0)®s (q!

g
))]"# T(1)!T!T!

G

®
F

N
¯ bo2 & "

q
!
g

dq

E

F

®
ds(q)

dq

dv(q)

dq

G

H

"

#

bo2 [v (q!
g
)®v (0)) (s (0)®s (q!

g
))]"# T!T(1). (B 17)
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Appendix C. Effect of a Q-dependent diffusion coefficient

To estimate the effect of D(Q) on folding, note that the static diffusion coefficient may be

obtained from Eq. (6.10) by letting s! 0. Then

D(Q)¯
1

©τ(Q, T� )ª
(C 1)

and we use either Eqs. (4.26) or (4.28) for the mean escape time, which is a function of

T� 3T}T
G
. Several folding models give T

F
}T

G
(Q) as an increasing function of Q, see for

example, Fig. 15. We can numerically approximate the function in Fig. 15 along the ‘most

probable path’ of the free-energy surface in Fig. 16, which has a moderate decrease in

T
F
}T

G
(Q), by letting

T
F
}T

G
(Q)E 2®(#

$
)Q (C 2)

and substitute this into Eqs. (4.26) or (4.28) to obtain D(Q, T
F
). For simplicity we

approximate the thermodynamic potential at T
F

by a parabolic function with barrier height

C 10 k
B
T

F
and barrier peak position Q1 ¯ "

#
:

F(Q)}T
F
E 10®40(Q®"

#
)#. (C 3)

Taking for illustration the high temperature regime of Eq. (4.28), G(Q) in Eq. (4.7a) is

G(Q)}T
F
¯F(Q)}T

F
®R¯F(Q)®S

!

E

F

1

(T
F
}T

G
(Q))#

®
1

(T
F
}T

G
(0))#

G

H

. (C 4)

Taking S
!
to be about 50 k

B
, we find that G(Q) has a maximum at Q*D 0±7®0±75 rather than

Q1 ¯ 0±5. This is a significant shift in the transition state position towards more native states.

However the ratio of the rates, accounting for Q-dependent friction and ignoring it, is

τ(Q*)

τ(Q1)
¯ eβ[G(Q*)−G(Q

1
)] D 5, (C 5)

which is a relatively small effect : the change in barrier height is only (1®2)k
B
T. This is due

to the fact that the change in effective barrier height is a second order effect since we are

looking at perturbations about a maximum.

Appendix D. A frequency-dependent Einstein relation

A system governed by a generalized Fokker–Planck equation in Eq. (4.5) shows the same

linear response as one governed by an overdamped GLE [Eq. (6.2)]. To see this, we show

that the response of the GLE and GFE to a weak external harmonic field gives mobilities such

that the friction and diffusion coefficient are related by

ζ#(Q, ω, T )¯
k
B
T

D= (Q, ω, T )
. (D 1)



280 S. S. Plotkin and J. N. Onuchic

The mobility µ(ω) of an overdamped GLE, defined through the response to an external

harmonic driving force by

©Q~ (t)ª32%(µ(ω)F
ext

(t)), (D 2)

is given by

µ(ω)¯
1

ζ#(ω)
(D 3)

in response to a harmonic driving force (Kubo, 1966). Now we find the response of a system

obeying Eq. (4.5) to this same external driving field 2%(F
!
eiωt). Taking the time transform

of Eq. (4.5) gives

¥ρ(Q, t)

¥t
¯

¥
¥Q &

t

!

dt« D(t®t«)
A

B

¥ρ(Q, t«)
¥Q

®
F

!

k
B
T

eiωt« ρ (Q, t«)
C

D

. (D 4)

To this we seek the linear response in the form ρ(Q, t)¯ ρ
eq

(Q)δρ(Q, t) where ρ
eq

(Q)¯
ρ
!
exp(®ω#

!
Q#}2k

B
T ) is the equilibrium probability density for a harmonic well potential,

and in the end we can let ω#

!
! 0 (though it is not necessary for the result). Neglecting higher

order corrections due to a position-dependent diffusion constant, and using linear response

so only the equilibrium density couples to the weak external field, Eq. (D 4) becomes

¥δρ(Q, t)

¥t
®& t

!

dt« D(t®t«)
¥#δρ(Q, t«)

¥Q#

¯ ρ
eq

(Q)««D
o
®ρ

eq
(Q)«D= (ω)

F
!

k
B
T

eiωt, (D 5)

where ρ
eq

(Q)«¯dρ
eq

(Q)}dQ. To find the response ©Qª to the field we can multiply Eq.

(D 5) by Q and integrate : !dQ Qδρ(Q, t)3©Qª(t) to give

¥
¥t

©Qª(t)®& t

!

dt« D(t®t«) &
¢

−¢

dQ Q
¦#

¦Q#

δρ(Q, t«)¯ 0®D= (ω)
F

!

k
B
T

eiωt&
¢

−¢

dQ Qρ
eq

(Q)«.

The second term on the left-hand side vanishes by symmetry. Performing the integral on the

right-hand side yields :

©Q~ ª (t)¯D= (ω)
F

!

k
B
T

eiωt. (D 6)

By Eq. (D 2) the mobility is thus

µ(ω)¯
D= (ω)

k
B
T

, (D 7)

which, equating with (D 3), generalizes the Einstein relation for response at frequency ω [Eq.

(D 1)], and justifies using the reciprocal of Eq. (6.10) in the calculation of the friction ζ#(ω),

appearing in the overdamped GLE.

The friction kernel ζ#(ω) is expressed through Eqs. (6.10) and (D 1) by averaging over the

distribution of escape times P
Q
(τ, T ). We can rewrite Eq. (6.10) as

D= (Q, ω, T )¯λ(Q)
,

t
©e−t/τª

,
t
(®d}dt) ©e−t/τª

, (D 8)
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where ,
t
is the Laplace transform. Then to evaluate D= (Q, ω, T ), note that ©e−t/τª is of the

form

©e−t/τªC& lnτ
U

lnτ
L

d(lnτ) e−S(lnτ)# exp

A

B

®C
"

t

τ
!

e−C
#
S(lnτ)

C

D

, (D 9)

which is reminiscent of the after-effect function f (C
"
t}τ

!
, C

#
}oS), which has been used to

describe non-exponential decay in glasses (DiMarzio & Sanchez, 1986). For mesoscopic

systems relevant to folding (N# 100), a good approximation to evaluate the after-effect

function is to linearize the Gaussian term on the range (lnτ
L
, lnτ

U
). Carrying out this

calculation, a closed form for the friction can be obtained as an accurate approximation for

small proteins

D= (Q, ω, T )¯λ(Q)

w
BL

1ω


F

1®c
[ f c−"

#
F

"
(1, 1®c, 2®c, ®ω}f )®

#
F

"
(1, 1®c, 2®c, ®ω)]

w
BL

1ω


F

c
[
#
F

"
(1, ®c, 1®c, ®ω)®f c

#
F

"
(1, ®c, 1®c, ®ω}f )]

,

(D 10)

where
#
F

"
is the hypergeometric function, ω is in units of 1}τ

o
where τ

o
is the timescale for

the fastest Rouse–Zimm modes, F, f and c are temperature dependent coefficients, and ω
BL

(T )

is the weight of the fast modes in the distribution P
Q
(τ, T ). The function Dq (Q, ω, T ) is

plotted in Fig. 23.
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