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Structural and energetic heterogeneity in protein folding. I. Theory
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A general theoretical framework is developed using free-energy functional methods to understand
the effects of heterogeneity in the folding of a well-designed protein. Native energetic heterogeneity
arising from nonuniformity in native stabilizing interactions, as well as entropic heterogeneity
intrinsic to the topology of the native structure, are both investigated as to their impact on the
folding free-energy landscape and resulting folding mechanism. Given a minimally frustrated
protein, both structural and energetic heterogeneity lower the thermodynamic barrier to folding.
When energy functions consist of pair interactions, designing in sufficient heterogeneity can
eliminate the barrier at the folding transition temperature. Sequences with different distributions of
native stabilizing interactions and correspondingly different folding mechanisms may still be good
folders to the same structure. This theoretical framework allows for a systematic study of the
coupled effects of energetics and topology in protein folding, and provides interpretations and
predictions for future experiments which may investigate these effect20@ American Institute

of Physics. [DOI: 10.1063/1.1449866

I. INTRODUCTION for example'®~22By analyzing the energetic statistics of en-
sembles of states, landscape theory provides a framework to
Theories of protein folding currently focus primarily on distinguish folding processes common to an ensemble of se-
predicting properties of the folding mechanism given that thequences from those peculiar to individual sequences. A par-
native structure and/or energy function is knoarpriori. ticular property, for example folding transition temperature
One of the most powerful approaches to this end has beemn., is not strongly dependent on the detailed Hamiltonian of
the energy landscape theory, used in one form or another ithe protein, but only on a few thermodynamic parameters.
most descriptions of folding:** This approach takes advan- The folding temperature may then be expected to be a uni-
tage of the huge number of conformational states available tgersal or self-averaging property for the ensemble of se-
a protein by treating the energetics of those conformationguences having these parameters. Becdyses found by
statistically, just as the description of a phase transition fronequating the total free energy of the folded and unfolded
a liquid to a crystal is understood through the application ofstates, it should be only weakly sensitive to the details of the
statistical mechanics to the numerous degrees of freedom ictual distribution of native state stabilizing interactions
the problem. However, in understanding the self-organizationvithin the protein. On the other hand, properties such as the
of proteins and biological systems in general, it is necessarfolding barrier and its corresponding rate may depend
to study properties particular to finite-sized systems, e.g.strongly on the distribution of native stability throughout the
barrier heights and corresponding rates. For a finite systerprotein, i.e., on the distribution of native stabilizing interac-
such as a protein, characteristic features present in the amitions.
acid sequence give rise to residual signatures in thermody- To theoretically treat the thermodynamics of folding and
namic and kinetic properties. For example, although the fourunfolding, we quantify a model protein in terms of the full
helix proteins Im7 and Im9 are structural homologues, Im9native Hamiltonian{¢;}, as well as the full distribution of
folds by a two-state mechanism while Im7 folds throughnative contact length$l;}, under the assumption that the
an en routeintermediate’® the free-energy landscape may protein under consideration is well-designed, i.e., with its
fluctuate sequence to sequence for a chains that fold to tHelding temperaturd ¢ larger than its glass temperaturg .
same native structure. Other experiments also indicate th&tere,i is a single index which labels a native contact having
rates and/or intermediates may differ for structuralloop lengthl; and energy; . Here, the overall native topol-
homologues/® ogy is characterized by the distributigh}. Native hetero-
Since a knowledge of the native structure alone does nageneity is retained explicitly, while non-native interactions
completely determine the free-energy profile, we might aslare treated through a scalar background field representing the
what information does, and also what parameters must baverage effects of non-native trappifie’* We are thus iso-
known to predict other properties of the folding mechanismjating the effects of native heterogeneity on the folding

such as the specificity or diffusivity of the folding nucleus, mechanism.
The formalism we develop here allows us to treat both
dCurrent address: Department of Physics and Astronomy, University of Brit-the e'r?ergetlc's and the eptropms mVOIVe.d n f0|d|ng. .In the
ish Columbia, 6224 Agricultural Road, Vancouver, BC V6T 171, Canada.SPeCIfic functional we derive, the energetics enter straightfor-

Electronic mail: steve@physics.ubc.ca wardly, and a mean-field approximation is made to treat the
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entropics. Other treatments for the entropics are of courseonuniform order parameter to study fluctuations away from
possible within the general framework we develop, e.g., auniform ordering, through free-energy functional methods
spatially contiguous or capillarity nucle@®?® or even an introduced earlier by Wolynes and collaboratdts’>! The
exact entropy functional obtained from enumeration oftheory is in good agreement with simulations of model
states. proteins*>®2 Similar effects have also been observed in
Certainly, if the entropy around the transition state wereMonte Carlo simulations of sequence evolution for lattice
small, as occurs when a protein is not well-designed, thé@rotein models, when the selection criteria involves fast fold-
position and height of the rate determining bafgewould  ing rate>® Here we see how, from general considerations of
fluctuate wildly from sequence to sequence. However, sincéhe energy landscape theory, selecting for rate can induce
proteins have evolved native stabilities larger than their rmgieterogeneity in the participation of contacts which make up
non-native energy scafé’ **the temperaturd where the the transition state ensemble. The folding barrier for a well-

native state is stable is sufficiently higher tiBg, so there designed protein is maximized when the nucleus is the most
is an extensive amount of entropy in the transition state undiﬁuse. This minimizes conformational fluctuations around
der fo|d|ng Conditions(e_g_, see F|g )7 Neverthe'eSS, we the native state. For typ|CaI values of native enel’gies, well-
find that even though there is a large entropy present in théesigned proteins have funneled folding _n18echan|sms with
system, there are still in fact strong dependencies of the baReterogeneous native contact participatighs

rier and folding mechanism on the distribution of native sta- ~ Our results are also supported by several experiments in
bilizing interactions and distribution of native contact the literature as described in the Conclusions section, and

lengths. In fact, fluctuations in the native stabilizing interac-SU99est experiments to be performed. For example, the re-

tions as well as in native contact lengths do not average oufiuction of barrier height with folding heterogenetgy fold-
but contribute extensively in determining properties of thel’d mechanism with preferred folding routeshould be ex-
folding mechanisni perimentally testable by measuring the dependence of

If a property is not self-averaging over a given ensemblefOIding rgst)e for a weII-desig_ned protein on the dispersion of
of sequences, the parameters specified to determine the eﬂ_vgluels, as might be ()lbtglqed from strhuctlérafl homolggL;es
semble are either not sufficiently accurate or are incompleteOr clreutar permutants. .t IS |mportant t at_ efore and after
For example, the folding transition temperatufe is not the mutatiols) the protein remains fast-folding, preferably a

self-averaging over the ensemble of sequences that fold tot% (;r;st:t? ';?;?riré dF:te;thgiz\;? 'tzt;ua?u;est::gh;t:tb'l'to ﬁr-e
particular native structure, since these different sequencé% way" | ! ' : v "ty

may have different native stability, flexibility, etc. Nonethe- main approximately the same, perhaps by tuning environ-

less, a quantity such as folding temperature or folding barrie'r”nental variables.
' Y In the arguments below we associate reductions in the

which fluctuates over an incompletely specified ensemblef}ree_energy barrieAF* to increases in the folding rate..

may have a mean that is still useful in characterizing trendﬁ_hiS is true as long as the prefaciay in the expression for
as a function of one or more parameters. An example is th e rate g P P

increase on average in folding rate, or decrease in folding
barrier, as mean native contact lendtiimore specifically, ke= koe*AF*’T, 1.1

I_/N) is decreased, for which several models have been is more weakly affected than the barrier height under redis-
proposed®3” and which we consider here within our theo- y 9

. . tribution of native stabilizing interactions. While the distri-
retical framework as wel(see section IV ¢ The observed . . e . .
bution of native stabilizing interactions must indeed couple

correlation between rates ardimplies that many proteins it the specific distribution of non-native interactions, for
are sufficiently well-designed such that native topology playsye||-designed proteins with large transition-state entropy, it
an important if not dominant role in governing folding js more likely that the effect on the prefactor comes from the
mechangsr?s, a topic recently investigated by severatoypling of the folding transition temperatufg to the dis-
authors®®*®That is, if these proteins were poorly designed, ribytion of native stabilizing interactions, as long as the pro-
folding rates would strongly fluctuate sequence to sequencegin still folds to the same native structure. In other words we
even for sequences with the same ground state structure. myst consider the effect on the prefactor as the ratio of the
Our intention here is to go beyond the first moment ofansition temperature to glass temperatligé T changes,
the contact length distributioh or stability distributione.  or as the protein becomes more strongly well-designed or
We investigate how the full distributions of energetics andless well-designed. However, it has been shtiwh that
topology as well as correlations between them affects thehere is a range of heterogeneity and corresponding folding
free-energy profile, corresponding barrier, folding rate, andmechanism wherd /T is approximately constant, while
overall folding mechanism. Expanding on our previousthe barrier height varies significantly. As long as the contact
work,*® we find that native heterogeneity, both entropic andenergies follow a range of parameters such that the global
energetic, plays an important role in quantifying protein fold-properties of the folding funnel do not change, iB:/Tg
ing mechanisms. We show how one can extend the analysisrying slowly and sufficiently larger than 1, lowering the
of thermodynamic quantities by using functionals to describdree-energy barrier is essentially equivalent to increasing the
folding properties which are not necessarily self-averagingate. However, one has to be careful that the folding hetero-
but which may depend on distributions of coupling param-geneity is not so large that this regime breaks down. We
eters. To this end we derive a simple field theory with afocus here on this funneled regime, where the barrier height
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designed to its native structure, and native interactions are
then most important in determining the folding mechanism.
The indexi runs from 1 toM, whereM is the number of
residue pair contacts in the lowest energy native strucire.
scales roughly extensively, i.eM =zN, with N the number

of residues in the polymer chain. Hems the mean number

of contacts per residue: a function of either the lattice coor-
dination number or the off-lattice cutoff length. It is of order

; ; ; =1/3 73
FIG. 1. Schematic, lattice, and off-lattice representations of the native struc:-l" with surface area corrections dylng awayNas ™. ™ We

ture, characterized through the distribution of contact enefgi¢sand con- ~ €an _quantify r.‘ativeness in the first approximation by the
tact entropieqs;}, (defined through the distribution of loop lengtfis}). fraction of native contact®), with 0<Q<1. Other param-

The probability to form contadthaving energy; and loop length; is Q. eters are also reasonable for stratifying the landscape: the

fraction of correct(native) dihedral angles! coarse-grained
osition in space in the native structfe’* or even the en-
embles having a given probability to fold before
unfolding’® But, Q is the most suitable for calculation in the
present theory. At partial degrees of nativeness the probabil-
ity to form contacti is defined asQ;(Q), and we define

is the strongest determinant of the folding rate. It can beg
shown?? that for Getype models with native interactions

alone® %2 the distribution of native contact energies does
not strongly affect the reconfiguration kinetics appearing in

the prefactor, compared to its effect on the barrier height. . . L -
P P 9 Q" (Q) as the fraction of time contactis formed at equilib-

When the Hamiltonians consists of pair interactions . in the ensemble WithMQ native contacts, or equiva-

alone, redistributions of native stabilizing interactions canIently the fraction of proteins in a macroscopic sample with a
eliminate the barrier entirely at the folding temperature. It is

. . . . , iven degree of nativeness having that contact formed. Non-
worth noting that many-body interactions which are behevecﬂ

. e 5369 X niformity in Qf values at partial degrees of nativeness
to be prgsent.m riz% g)lrotew_] |nter_act|8?156 tend to INCrease \ould indicate that the protein prefers to fold some regions
the barrier height"%"*and in their presence the barrier may

b b di f nati bilizing i over others. The distributiofQ;(Q)} for all Q is a measure
agﬂrgﬁsre robust to redispersement of native stabllizing interg e folding mechanism for the protein under consider-

. . - ation.
A funnel folding mechanism consisting of a large hum- Following the formalism used in inhomogeneous

ber of routes to the native structure is preserved for a wid uids’®7” and the theory of first-order transitioffsye write

variety of folding scenarios and barrier heights, inCIUdingafree-energy functiondt ({Q;},{e},{1}) to characterize the

fpldmg throggh on-pathway |ntermed|_ates. For the dIStrIbu'effects of structural and energetic heterogeneity superim-
tions of native energy necessary to induce folding througrg

. osed on the overall folding funnel. This approach has been
one or a few routes, the folding temperature drops by about sed previously by Bohr and Wolynes to describe domain

factor of 6,” which indicates that for realistic energy func- growth in protein&’ and more recently as a calculational tool
tions which are also composed of non-native interactionsg §39.50,51

) . or experimentakp values:
folding would be exceedingly slow at the low temperatures The free-energy functional is first interpreted as depend-
where the native state would be stable. However, for proteinﬁ]

. : ST . ) upon the local contact probabilitie®Q;(Q)=(0O(r;
which are I_arge and mult!domaln,_lt is poss_lblt_e_that entrop|c_riN)>T(Q), wherei labels the native contact between two
or energetic heterogeneity may induce significantly route

X - . . " Tesiduesy; the distance between thei@, is a function that
like folding near typical folding conditions.

Thi . ed as foll - First tine th measures proximity such as a step function for off-lattice
IS paper 1S organized as Tollows. FIrst, we outling e, , 4o\ or 3 Kronecker delta for nonbonded nearest neighbor
general strategy of the calculation in Sec. Il. The free-energ

. . ) ) ¥ites on-lattice, and- --)7 indicates an average over the en-
functional is then derived in Sec. Ill, and the general effects, |0 aD. We will typically take(- )y to be a Boltzmann-

?f helt(.arogenellt\% '2. follijmg are 'mlle;’t'gat%d for th'i ffutnc- weighted average; the; is the thermally averaged frac-
lonal in sec. 1. Fnally, we conciude and suggest Ttur€y,n, " of the time two parts of the protein are in proximity

research. (contac 80

Il. THE GENERAL STRATEGY exp( — E,/T)

@ @

o~ B .
It is first necessary to characterize the generic properties Qi (Q)_<5i>T_c§Q o(1.¢)
of the native state. We adopt a coarse-grained description for
the native structure, and describe it by its distributions ofwhere§(i,c)=1 if contacti is made in configuratioe, and
native contact energigs;} and native loop lengths or con- &(i,c)=0 otherwise, andZ(Q):EéEQexp(—EC/'I') is the
tact lengthgl;} (see Fig. 1 Here,¢; is the solvent averaged partition function for the configurations &. The sum may
effective energy of contadt andl; is the sequence length be taken over any ensemble of theoretical interest. Here, we
pinched off by contact (see Fig. 1”> We use a single sub- have in mind the ensemble defined as having a given degree
script for the labeling index because we are only consider- of overall orderQ=(1/M)3,;Q, .5
ing effects on the particular set of native contacts for a given  In the functional method, all the contact energ{es}
native structure. Non-native interactions are treated by aand loop lengthgl;} for a protein are initially assumed as

average field, since the protein is assumed to be wellgiven, and a free-energy functiong({Q;(Q)}/{&}.{li}) is
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Qi fixed total native energyZ,; ,=Me=E,, i.e., while main-
taining the same overall stability of the native structure.
Thus, we are isolating the effect of heterogeneity on the fold-
ing mechanism. This distribution, when substituted into the
free energy, gives in principle the extremum free-energy bar-
rier as a function of native structufe’({l;}), which might
then be optimized for the fastest/slowest folding structure
and its corresponding barrier. However, we found that the
only distribution of energies for which the free energy was
an extremum is in fact the distribution whichaximizeghe
barrier by tuning all the contact probabilities to the same
value:Q;(Q")=Q". In this case the coupling energies would
be tuned to eliminate any information contained in the native

structure, except for the mean loop Ieng_th(llM)Ei ;.
Any perturbation away from this scenario lowers the free-
FIG. 2. The fraction of time or probabilit; (Q) that a contact is made as energy barrier. We also examine the effects of structural dis-

a function ofQ, for folding to the lattice structure shown in Fig. 1. Solid pgrsﬁon on the t_)arrierv i.e.., a free energy for variable loop
curves are the result of the functional theory of Sec. Ill, and dashed curvedlistribution but fixed coupling energidS(Q,{l;}|{¢}), and

are Monte Carlo simulation results for folding to this struct(Refs. 49, arrive at the same conclusion: for fixed energiesy increasing

52). Short-ranged contacts tend to be formed earlier than long-ranged con: - -
tacts. Shown here are a representative contact for the loop lehgths I]Strucwral vananceéat fixed average |00p Iengtﬂowers the

—3,7,23. The contacts are indicated by thin solid lines on the lattice modeParrier and thus speeds the rate, as long as the proteins are
native structure in the upper left. Note that occasionally nonmonot@nic  Sufficiently well-designed that the rate is governed by the
dependence is observed in the simulations. Also, some short-ranged contagige-energy barrier.

near the protein surface remain only partially formed until large degrees of

nativeness.

lll. FREE-ENERGY FUNCTIONAL

derived in terms of a gener&rbitrary distribution of con- In this section we derive the free-energy functional to be
tact probabilities{Q;(Q)}. The thermal(most probable used in the main analysis. We first show how the functional
distribution of contact probabilities{Qf ({€;}.{l;},Q)} s related to the Hamiltonian. Then in section Il B the en-
is found by minimizing the free-energy functional tropic terms present in the functional are derived. In Il D the
FUQi(Q)}{e}.{l;}) with respect to the distribution of con- thermal contact probabilities are obtained by minimizing the
tact probabilities, subject to the constraint that the averagfree-energy functional.
probability isQ, i.e., Z; Q;=MQ (Q then parametrizes the
values of theQ/s). Examples of the function®;" (Q) are
plotted in Fig. 2. This procedure is analogous to finding the = We can motivate the form of the free-energy functional
most probable distribution of occupation numbers, and thuérom landscape arguments, i.e., by considering energy distri-
the thermodynamics, by maximizing the microcanonical enbutions of states with structural similarity to the native. Con-
tropy for a system of particles obeying a given occupationsider a contact Hamiltoniat of the form
statistics. Here, the effective particléthe contacts obey
Fermi-Dirac statistic¢see Eq.(3.34], since no more than  H({A ,zH{AN = 2 [eNsA pAN g+ €aplap(1— AN,
one bond can “occupy” a contact. The system can be under- a<p
stood to have a set of free-energy levels obeying a distribu- (3.9)
tion governed by the native structure and energies of thevhich gives the energy of a particular configuration defined
protein, and we seek the fraction of tinfthe probability by the set of contact interactioq@ ,z}. This Hamiltonian
those levels are occupied given a fixed overall number ofives energyegﬂ to the contacts which are native contacts,
levels filled. and energy,,z to non-native contacts. We embody the prin-
The free energy for a system obeying the thertnabst  ciple of minimum frustratiof by making the mean of the
probable distribution{Q;" (Q,{€;},{l;})} is then considered distributions from which native contact energies are chosen
a function of the contact energies fofigednative structure: be lower than the mean of the distribution for non-native
F(Q.,{€}|{li}). That is, we consider the folding free-energy contact energies. Native contacts may also have a smaller
barrier as a functional of the interaction energjeg for a  variance, depending on the effective number of letters in the
givennative topology. The free energy depends on the enersequence. For example, simplified models consisting of only
gies{¢;} both explicitly and implicitly through the thermal two types of residues “H” and “P”(2-letter codeshave a
contact probabilitiedQ;* ({€;}|Q.{l;})}. Then, we can seek 2X2 matrix of pair interaction energies, and tend to have
the special distribution of contact energigsg (1;)} that ex- nearly all H—H contacts in the ground state, resulting in
tremizes(minimizes or maximizes, depending on the secondhearly zero variance in the native stabilizing energies. The
derivative the thermodynamic folding barrier to a particular energies in3.1) are internal free energies of spatially short-
structure by finding the extremum &' ({¢;}|{1;}) with re-  ranged interaction between effective monomeric units, after
spect to the contact energies, subject to the constraint of averaging over side chain and solvent degrees of freedom.

A. Obtaining the functional from a Hamiltonian
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The double sum is over residue indices, dng;=1 if resi- When the number of states(E|[{Q;}) is large, it can be
duesa and g are in contact in a configuratios ;=0 oth-  replaced by the disorder-averaged number
erwise.A§B=1 if these residues are also in contact in theQ({Q;}) P(E|Ey,{Q;}), since the relative fluctuations in the
nativeconfiguration, and&ﬁfﬁzo otherwisefﬂﬁ ande,gare  number die away a2 for uncorrelated disorder. Then,
again the energies of native and non-native contacts, respec- = 2
tively. W ara . (ETE—Zi€Qi)

Y _ _ , logn(E[{Q:H)~S({Qi}) 71 o) (3.9

We obtain the thermodynamics for this system by con- 2Mcb*(1-Q)
sidering statistical properties of an ensemble of partially naThe termS({Q;}) is the configurational entropy, discussed
tive states. Once the density of statg€|{Q;}) is known,  below. The thermal energl(T|{Q;}) is obtained from the
the thermodynamics at temperatuFecan be obtained. We density of states above throughog n(E)/dE=T"*
obtain a statistical average of E[{Q;}) from a knowledge _ Mcb?
of the overall number of partially native states, and the prob- E(T|{Q;})=E+ E €0Q;— 7(1—Q). (3.5
ability each of these states has a given energy. A similar :
derivation for a homogeneous order param@ewas calcu-  This procedure is applicable in the high-temperature regime
lated in Ref. 24. The probability a configuration with a par-when the number of states occupied at such temperatures is

ticular set of native contac{a ;A% 5} has energf is given  large. The energy consists of an integration over an energy
by density, i.e., by an energy per contact times the probability

that contact is made;Q;, summed over all contacts, minus

P(E{A,5ANgH = (S E~H{A .5} D non-nat (3.2  aterm corresponding to a lowering of the thermal energy due
to the net effect of non-native traps. We ignore any coupling
%t non-native packing fraction with nativeness; since this
subtle effect only enters in here at the mean-field level and

we are focusing on heterogeneity effects, we tieaas a

<"'>non—nat:f n!;[natp(eaﬁ)deaﬁ- constant?
] Substituting(3.5) into (3.4) gives the thermal entropy

Residual features in the folding mechanism may be present M cb?
due to non-self-averaging effects of non-native interactions, S(T|{Q;})=S({Qi})— W(l_Q)’ (3.6
resulting in phenomena such as “off-pathway” intermedi-
ates. We preclude the existence of any distinct non-nativé/hich consists of the entropy of the polymer chain subject to
traps with the above procedure, and consider only an averadBe geometric constraint§Q;} of contact formation,
non-native background field, while native interactions areS({Qi}), and a lowering term due to the presence of non-
explicitly retained. This is a formal way of asserting that native traps(fluctuations in Boltzmann weights due to the
native interactions are more important than non-native interfluctuations in state energies reduces the effective total num-
actions in determining rates and mechanisms for a minimally?er of states occupied The temperature dependence of
frustrated heteropolymer. Thus, “on-pathway” intermediates,S({Qi}) appears through the implicit temperature depen-
or fluctuations in the free-energy landscape due to nativélence of the contact probabiliti€y; [see Eq(3.34)].
structural or energetic heterogeneity are retained in this pro- At this point, since no exact solution for the entropy of a
cedure. Averaging the Fourier-transformed delta functiorfhree-dimensional polymer containing topological con-

over non-native interactions chosen from a Gaussian distriStraints is known, we must either resort to an accurate solu-
bution tion for an approximate, idealized model system, or an ap-

proximate phenomenological treatment of the real system.
1 (osaﬁ—?nn)2 We choose the latter approach for the theory, and the former
P(eqap) = Wex;{ T opZ ) approach in the simulations we perfornf€d?While still an
. approximation, the entropy we derive captures many of the
results in same quantitative effects we see in the simulations, which
1 contain an accurate computation of the entropy for the ide-
5 m alized lattice model, to the extent that higher-order correla-
[27mMcb*(1-Q)] tions between the formation of various contacts are implic-
= 2 itly accounted for. When computing the entropy in the
(E-E-Zi6Q) - -
X eXp( - 5 ) , (3.3 contact representation, we must first calculate how much en-
2Mcb(1-Q) tropy the unconstrained polymer hass,. Then, we define
the entropy that corresponds to the degeneracy of contact
patterns  having  functional order {Q;(Q)} as
Sroute{Qi(Q)}) (Sroute>0), and the configurational en-
tropy lost from the coil state to induce the ordering specified
by {Qi} asSgono({Qi}|{li}) (Ssonp<0). The total confor-
mational entropy is then given by

where the averaging is over the non-native contact couplin
energies

P(E{A gAYz =

where E=Mce,, with ¢ the packing fraction (&cc<1),
and where the sum over native contaE@Be’:BAaBAgﬁ iS
written in the shorthand single index notatidhe;Q;, i.e.,
QiEAaBAZ‘B. Here,Q;=0, 1 but in the free-energy func-
tional, fractional values are allowed. We will see that the
thermal values of the contact probabiliti€ =<AQBA§B)T
are the fractional values that minimize the functiofwl! Eq. SH{Qi}) = Nso+ Sroure({Qi}) + Seono({ Qi {1}

(3.39]. (3.7
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These contributions are discussed below in Sec. Il B.

The free-energy functional at temperatdrend native-
nessQ is written asE— TS in terms of the field Q;}, using
Egs.(3.5), (3.6), and(3.7)

F(THQi(Q) e}, {1i})
= Z €iQi — TSroute{Qi}) — TSeono({ Qi {1i})

_ Mch?
+E-NTs- ——(1-Q). (3.9

The terms on the first line of E¢3.8) depend on the native
density field{Q;}, while the remaining terms depend only on
the uniform “background field'Q, and are not central to the
main analysis, which considers specifically the effects of na- "Q
tive heterogeneity in structure and contact enéfgy.

The native stability gap is composed of a sum of two-
body interaction energies betwekhpairs of native residues.
Cooperat“/e contributions to the energy func%% neces- FIG. 3. IIIustratlon of folding heterogenelty At partlal degre.es of natiVe"
sery forde novopredictor?** and accurately representing %, " A9 conlomatons coniing s e coes s
barrier$*"* are not studied here, since native stability is cores are occupied with varying probabilities depending on their free ener-
present priori in the free energy of our model, and thus we gies (stronger probability is indicated here as a darker shade of) ghey
focus specifically on the properties of already well-designed 203 e EuarCy 0 E0ce e Geereases more. so that ne free
sequen_ces toa g|ver1 SJ_[rUCture’ for WhI_Ch _cooperatlve ?ﬁec ergy :.;\tQ goes cjown. Seegglso Ref).l 118 for an iIIustraiion showing het-
should induce quantitative but not qualitative changes in th@rogeneity specifically fox repressor within the diffusion—collision model.

results presented here.

B. Entropic terms

If we imagine the ensemble of configurations that has avhich we interpret here as the product Mffactors of the
given amount of order, say a given numbde of native  number of states per contact & Q° (e.g., atQ=1/2,
contacts, then within this ensemble there is a multiplicity ofQ2°=2), and is readily generalized to the case where
subensembles of states having different setslQfcontacts, the numbers of states per contact are not all
whose thermal occupation we identify as a measure of thequal: expSaou({Qi)=11",Q°, where Q?EQfQi(l
number of distinct routes in folding to the native state. Each—Q,) ~(1~@). The principal modification introduced here for
subensemble contains many states corresponding to the gproteins is that, due to chain connectivity, as contact density
tropy of the disordered polymer around the particular nativeéincreases, there is less sterically allowed space for a mono-
core(e.g., see Fig. )3 We define the entropy that correspondsmer to move around when one of its constraining contacts is
to the degeneracy of contact patterns having functional ordesroken. Thus, not alM!/MQ!(M—MQ)! contact patterns
{Qi(Q)} as Sroute{Qi(Q)}) (Sroute>0), and the con- have an entropy~Ns,+Sgonp. N other words, making
figurational entropy lost from the coil state to induce thesome native contacts forces spatially nearby contacts to be
ordering specified by{Q;} as Sgono({Qi}/{li}) (Seono  made because the corresponding monomers are forced to be
<0). in each other’s proximity. So, there is a reduction from the
putative number of state€)’)M since not allM contacts are
independently contributing to mixing, and several contact

We make no capillarity or spinodal assumptions, anthatterns correspond to the same constrained state. Here, we
treat the route entrop§roure({Qi}) s a fairly simple modi-  yemove this degeneracy by dividing out the.3)M:(@
fication of the entropy of a binary fluid mixtufé.Binary  states that have been overcounted. Making a mean-field ap-
fluid approximations to the route entropy in proteins, whichproximation for the local field around contaictwhich re-
scale e“i@?é’fé{mﬂ? system size, have been usegyces its number of state§,. 8Qap/Zq+p(1)=Q, the
previously” ®he amount of route diversity in  aw total number of states B 014 Here, 7(Q) is
folding has also been analyzed in terms of the Shannog monotonically increasing function @, from £(Q—0)
entropy;” Jwhich is similar ‘in spirit to the following  — g to £(Q—1)=1, since a nearly fully constrained polymer
treatment’ The entropy of a binary fluid mixture is given pas all its entropy on the surface, making the mixing entropy

1. Route entropy

through per monomer negligible in the thermodynamic limit. We in-
I troduce the forny(Q)=Q*, with « a parameter determined
eXpSgouTe Q) = WE(QO)M, (3.9  phenomenologically by a best fit to the lattice data, for ex-
' ' ample. Such a fit"*?yields a~1. The route entropy appear-
0°=Q 1-Q) 19, (3.10  ing in the free energy Eq3.8) then becomes
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(Qi.Q;+8Q;)) (Qi+8Q;,Q;+8Q;)

M
Sroute{Qi}) = Iogi:H1 QM@

@ §
M A
=MQ 2 [-QiInNQ—(1-Q) i
i=1 !
....... S St
XIn(1—-Qy)], (3.113 (Q;,Q;) M (Qi+5Q;,Q))
)\(Q)E 1— Q“, (3_11t) FIG. 4. lllustrating constraints on the functional form of the entropy, given

it must be a state function. Path) dashed. Patk2) solid.
The factor\ (Q) measures the entropy reduction due to the
coupling of chain connectivity with the native topology un-
der study. The power in A(Q) should be a decreasing

function of the persistence length, and also of systemisjze 1) _ J’Qi”Qi 5Q's,(1.,Q/ Q)

since for larger systems more polymer is buried and thus BOND Q PR

more strongly constrained by surrounding contacts. Varia- 0.+ 60,

tions in contact probabilitie®; will lower the route entropy +f : J5Qj’Sj(|j Qi+6Q;,Q))
[see EQ.(3.32]. More detailed studies which treat the en- Q

tropy loss due to chain connectivity are of course possible
and are an interesting topic of future research.

=s(1;,Q;,Qj) 8Q; +5;(1;Q;,Q;) 6Q;

3QF s 5Q? 55,
+ Ta_Qi(li ,Qi,Q))+ - a_QJ-(Ij Qi Qj)
2. Bond entropy .
]
The calculation of the total entropy lost due to contact + 5Qi5QJa_Qi(|i QinQ)). (3.13

formation is rendered difficult because the entropy loss of a )
given contact depends not only on the contact's sequencihile along path(2) the entropy change is the same as ex-

length or bare loop length, but also on the configuration of Pression(3.13 except that the last term is replaced by
contacts{Q;} already present when the contact is formed. In9Qi9Q;(951/9Q))(1;,Q;i,Q;). For these two expressions to
spite of this difficulty some general statements can still be?® €qual
made, as follows. Js: JS:
If we make the assumption that the entropy loss to form &—J(Ij AQH = a_l(li AQy}) for i#j. (3.19

- s i Q
contacti depends explicitly only on the sequence length of ]
contacti, as well as the full contact pattern pres¢qy;}, For M dimensions, it follows that Eq(3.14 holds for all
then the most general form for the change in entropy due tpairs(i,j), yielding M (M — 1)/2 nontrivial constraints on the
contact formation, to go from configurations having one seform of the configurational entropy loss at each valu&of
of Q;s parametrized in terms of a varialie{Q;(t,)}, to When the entropy loss satisfies E§.14), the total en-
another state havinfQ;(ts)}, is tropy difference only depends on the initial and final states

and can be rewritten as

tf
SBOND({Qi(tf)}l{Qi(to)}):Zi ft DQi(H)si(1; ,{Q;(1)})-
’ (3.12

Here, si(1;,{Qj(t)}) is the entropy loss to form contact Now we seek an approximate formula frthat satisfies
having sequence separatibn in the presence of the contact Eqg. (3.14). As mentioned above, we make a mean-field ap-
pattern{Q;(t)}, which is itself parametrized through®®  proximation to treat the entropics. Other treatments for the
Eachsi(1;,{Q;(1)}) in Eq. (3.12 is functionally integrated entropics are possible within the general framework, for ex-
along theM-dimensional path specified byQ;(t)}. How- ample a spatially contiguous or capillarity nucléa$® or
ever, the entropy as a function of the §&} must be a state even an exact entropy functional taken from computational
function, meaning that the value of the integral depends onlylata.

on the end points and not on the path taken. The condition In forming a contact from the unconstrained molten
for path independence is obtained as follows. We can enviglobule or coil state, the segment of polymer loses the en-
sion a small subsection of tiM-dimensional path as travers- tropy of a free chain with the length of that segment,
ing a hypercube of volum&M ,5Q;. Then, path indepen- s;(l; ,{Qj}E{O})zln(a/Ii)m, where a is a Q-independent
dence means the entropy incremedizonp({Qi}{Qi constant related through a sum rule to polymeric properties
+6Q;}) is independent of the order the edges are traversefbee Eq.(3.24)]. However, contacts formed in a near-fully
in going from {Q;} to {Q;+ dQ;}. Consider two possible constrained polymer cost almost no entromy(l;,{Q;}
paths labeled1) and (2) along two of these coordinates ~{1})=0. To account for this we introduce an effective loop
1Qi.Q;}, as shown in Fig. 4. Along patfl), the entropy lengthlge((l; ,{Q;}) into si(l; ,{Qj})=ln(a/IE,:,:)3’2. We ig-
change to second order #Q is nore here possibly important changes in the power of the

SBOND<{Q{}|{Qf’}>=Ei f;dei s {Q)). (319
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\F The quantityl E,:F_is the_ renormalizgd loop Iepgth after. trac-
EFF = ing over all configurations with a fixed fractia@ of native
= S contacts. The number of non-native contacts is not fixed, and

i their presence does not reduce tanfigurationalentropy,

Q=0 0<Q<1 Q=1 so they need not be considered here. Their effect on the

thermal entropy is accounted for in E@.8). Note thatl ggr

has the mean-field behavior whén-1 and| is large, and

FIG. 5. lllustration of the mean-field approximation for calculating the en- also hgs.t_he right l”_mtmg behavior EQ_)O and approxi-

tropy of loop closure in the presence of partial degrees of nativéeesgshe ~ Mmate limiting behavior wherQ—1. Equations(3.19 and

text. (3.18 are accurate for weak dispersion in loop lengths; for
larger values obl; they must be modifiefsee the comments
after Eq.(3.28].

ideal chain exponent 3/2, since it becomes cumbersome to EXpressiong3.15 and (3.18 reduce to the Flory form

incorporate an exponent dependent{@} and to Simulta_ f0r the Cﬂ]ﬁgurational entropy IOSS in the mean'ﬁeld limit

neously satisfy Eq(3.14). whenl;=1 andQ;=Q. Then, Eq.(3.15 becomes

Because of the path independence of the configurational

entropy 10ssSgono({Q1H{QP}), the change in entropy for a

small change in one of the conta@$— Q! + 5Q; is simply BOND(Q|O)_f dQ Min

the integrand evaluated at the upper limit

1
0

— 3/2
a[1+(l—1)Q])
|_ t

(3.20
0SBOND o . . .
({Q HIQTH =si(l; AQMh), (3.16  which can be interpreted as a summation of entropy losses
from 0toQ

which can be shown from Eq€3.14) and(3.15 by using the
definition of the derivative. SMF)

In this paper we satisfy Eq(3.14) with the following BOND(Q|0)— 2 AS(Q")
ansatz for the functional form dfgr:

_ § 0@
lereli {QiH) =TI 9({QH) =Tf(I) ( Z Qk): o—aqg AUQ'-AQ)
.17 0(AQ) 0(24Q) Q)

so that the loop length is decreased by a function of the mean =In Q(0) Q(AQ) Q(Q—AQ)
of the contact density fieldy(Q). This is in the spirit of the
Hartree ansatz in the one-electron theory of metals, where = Q) =sMP(Q)—SMF)(0)
electrons interact only through an averaged fiskk Fig. 5. Q(0) '
The conditionlge(l;,Q=0)=I,; gives f(l,)=I, and g(0) _ _
=1. The condition thatge(l;,Q=1)~1 givesg(l)~1/l_ WhenlQ>1, Eq.(3.20 gives
[sinceg(Q) cannot depend oh], wherel =(1/M)Z;l;. To S%'LD 3Q
approximate theQ dependence ofgrg, let the probability (Q|0)— (lna—1+InQ), (3.29

that a monomer is constrained@tbe Q, under the assump-
tion of a uniform contact probability. Then, given a chain of
unbonded monomers, the probability of it being lenbths 1 ,can-field limitE
thenp, = Q(1- Q)" "*. So, the average length of strings of |, the presence of heterogeneity, E¢3.15 and (3.18
unbonded monomers & is thenL=2=,Lp /2 p =1/0. give

For low values ofQ, 9=2M/N=2zQ, while for high val-

uesQ, 9=Q.8" We do not go into detail on this issue here; 3

instead, we approximat@=Q for all values ofQ. Then,L Seono{Qi}|0)= EMQ In a_zl Qilnl;

=1/Q can be interpreted roughly as the total length of poly-

mer N over the total number of constrained monomerQat Moo

We approximate the effective loop length@f |« ,Q), +2 f dQ/ In
in the same way by dividing the total loop lendthby the 1=1Jo

which is essentially the Flory result derived earlier in the
-t87,91,92

1-1
1+72k Qk}

number of constrained residues in the Ioa@_Q, so that 1
finally =-M| Q(Ina)— =2 Q;Inl;=Q
2 M T
lerd1.Q)) ~
IEF +[1+(_'—1mln[1+<l_—1>@]),
lere(l, Q) ~ ————. (319 -t
(1-1)Q+1 (3.22

Downloaded 24 Sep 2002 to 142.103.234.177. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 116, No. 12, 22 March 2002 Heterogeneity in protein folding 5271

where the last integral can be done by charging up €ch system, and Eq(3.25 can be thought of as generalizing
one at a timin any ordey to its value aQ, i.e., the integral  (3.26) to include variations in the return length.
is EifoQiin’ IN[1+(1—1/M)(2;-Q;+Q/)]. This gives an The effect of these fluctuations or variations(8129 is
expression identical to the mean-field result for this term/typically to increase the bond entropy of partially native
since the integrand only depends@rand is integrated up to  states. Forming entropically likely contacts with higher prob-
eachQ;(Q). ability leaves more residual entropy than if all contacts are
Because the free energy of the native statetaken to have the same return length and formation probabil-
F({1}{&}.{1i}) is Ey [cf. Eq.(3.8)], all the polymer entropy ity, as in the mean-field approximation. The trend in the fold-
is lost upon folding in the model. Therefore, there is a suming barrier with heterogeneity results from the interplay of
rule for the entropy loss this effect with the effects of fluctuations on the route en-
M tropy and native energetic fluctuations. The magnitude of the
1 . . . .
SBOND({]-HO)ZZ f dQisi(li {QH)=—NInv=—Ns,, effect scales extensively with the size of the system..To il-
i=1Jo lustrate, recall that for a Gmodel the total entropy & is
(323 Nsy+ Sroute{Qi}) +Seono({Qi(Q)0}) [cf. Egs.(3.6) and
which, using Eq(3.22, determines the coefficietin the ~ (3.7)]. Thus, if we look at loops longer than the averdge
entropy of bond formation >1, and since the log function is concave downl;¥dnl),
o then they are less likely to be formécf. Eq. (3.34)], so that
na(r{ll)—— E So N 1+ﬁ—_'—m? (3.24 Qi<Q and the second term {8.25 is negative, _thus raising
37z -1 the bond entropy. If;<I, Q;>Q and the effect is the same.
The halo entropy of the systelis,+ Sgonp(1Qi(Q)|0}) in-
The coefficienta depends on the distribution bfas well as  creases when we relax the condition that all contacts must be

the entropy per monomes, . Using (3.24 and (3.22, the  equally probable, and allow differences in contact probability
final expression for the entropy loss arising from contact fory)aseqd on their entropic likelihood.

mation is
_ ™ _ 3 (Sue<0) at values ofQ<1 when %,/3z<1. However, the
Seono{QiH0) = Sue(Q.1) = zM(3QaIn1), 3.29 entropy in Eq(3.25 is interpreted as being decomposed into
where the first term i13.25 is the mean-field entropy loss two terms, only the sum of which is physically meaningful.
The first term is an idealization, and the second term de-
scribes deviations from that ideal model when realistic fluc-
tuations are accounted for. Here, these fluctuations alleviate
the problem of the entropy crisis. A regime where one term
X[1+(1—1)Q]In[1+(1-1)Q], (3.2  inthe expression for the entropy is negative is an indication
that it may be more meaningful to develop an expression
and the second term i(8.29 is the change in entropy l0ss starting from a different limit, e.g., perturbing from the fully
due to fluctuationgagain the notatiodX;)=X=1/MZ;X;is  constrained(native) conformatior?* Typical values of the

From (3.28 it can be seen that there is an entropy crisis

_ 3 IInl 3 1
Sve(Q,)=—QNg——-MQ——+-_M —
2 -1 2 |-1

used parameters from off-lattice simulations of chymotrypsin in-
. hibitor or the a-spectrin SH3 domaffi give s,=3.4, z
M<5Q5Inl>=2 (Qi—Q)(Inl;=Inl). (3.27 =24, 2,/32=0.94; here, the entropy crisis occurs rather
1

late in folding, if at all, because of entropy increase by the
From inspection of Eq93.25—(3.27, we can confirm that above-mentioned effects.

Seonn(Q=0)=0 and Sgonp(Q=1)=—Ns,. When I_Q On the other hand, E(3.18 breaks down for suffi-
>1, (3.26 reduces to Eq93.21) and(3.24 ciently large structural heterogeneity. Inspection (8f18)
. shows that the entropy loss has the same derivative as a
Sur(Q,1>1)~—QNs,+3zNQInQ, (3.28 function of Q for all contacts, but the initial values are dif-

which has lost the information about the mean loop Iength];erem' This leads to some problems with the shorter loops

and only retained information about the total chain lerigth or high Q values, which is worth noting as a word of caution

as in the Flory mean-field theory. The first term(8126 or here. The crude way in whic_h the entropy loss for a loop is_,
(3.28 is the loss in entropy to constrain a given fraction of coupled to the degree of nativeness of the rest of the protein

the protein and is linear iQ. The remainder in(3.26) or leads to a non-negative entropy changg to close some of the
(3.28 is the extra entropy loss this constraint induces on th&hOrter 100ps nea@~1. We resolved this problem by actu-
remaining free parts by pinning down regions of the polymera”y truncating the entropy loss formula for the shortgr loops
chain. The analogous quantity in the capillarity theory is theVhen they reached a value of zero. Putting Ej24 into
surface entropy cost in forming a nucleus of folded(3.18, letting |Q>1, and expanding to first order iél/I
structure®*3In capillarity theories, the surface entropy cost (weak dispersion limjt we obtain the approximate value of
scales likeN?3, whereas in mean-field theories it scales likeQ where the entropy loss crosses zero, nan@ly-2s,/3z

N. Equation(3.26) can be thought of as a generalization of + 51, /1. Whendl;=0 this is consistent with the Flory analy-
Eqg. (3.28 to finite mean return length for a finite-sized sis above; however, wheél;<<0 (shorter loops Qg is de-
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creased. We truncate the entropy formula at zero Qor 6F
> Qs. v ({9QiH{ o€} {alih)
As a simple illustration of how dispersion in loop
lengths affect®Qg, consider a structure whose loop distribu- Qi +(1-Q)in —Q|>
tion is gi)éen by first returns of a random wallg(l) Q 1-Q
~(3/2)l 72 and thus from EQq.3.18 P(s)=exp—s(l;
=1)),  where s(I;=1)=5/2—(9/4)In3-s,/z+(3/2)In(L +2T(6QsInl). (3.3D
+2Q) is the entropy of closure for the smallest loqpsere
the problem is the worktUsing the above values fef and
z all s; are negative untiQg=0.76. Since the barrier peak The mean-field free energy in E(.30 contains six param-
typically occurs aQ values smaller than this, errors due to eters which characterize the systeN):s,, z, b E, and «
truncation would be small for these structures. Deviationgwhich appears inn(Q) of Eg. (3.11h]. Once chosen, these
from the random walk distribution arising from regularities parameters are fixed for the rest of the analysis. Equation
in return length for real protein structures also alleviate thg(3.31) has no new adjustable parameters. All other quantities
problem slightly?* On the other hand, protein structures tendsuch ag, I, 812, etc. arise from the structural and energetic
to have distributions with a wider dispersion than the randondistribution of a given protein at overall nativene®sand
globule, and in these cases the problem would be worsg@emperatureT. In the analysis here, we study trends in the
Applying the theory to the lattice structure of Fig. 1, we mustthermodynamics by varying these distributions.
truncate the entropy loss for loops with=3 at Qg3~0.4 The free-energy functional consists of an integration
and for loops withl;=5 at Qs5~0.75; for all other loops over a free-energy density whose only information about the
there is no entropy crisis. Numerically there is some quantisurrounding medium is through the average field preg@nt
tative error introduced by this truncation, since in the theoryF =3.f,(Q;,Q). Explicitly accounting for cooperative en-
these loops no longer contribute to the total entropy lossropic effects due to correlations between conficis®®%
above Qg, whereas in the actual simulation they do. Of would be an important extension of the model, and terms that
course, implementing a cutoff in loop entropy causes theead to such effects have been introduced into the functional
total entropy to deviate from a state function by E8.14).  in similar model$®>!
Theories of polymer entropy which take more complete ac-  We can now investigate the effects of heterogeneity on
count of correlations should remedy this and are a topic otach of the three terms in E(B.31). As mentioned above,
future work. For now we content ourselves with the Hartree<for longer loops the contact probability is expected to be less
style entropy formulation in E¢(3.18), implementing a cut-  than average, and for shorter loofs is expected to be
off if needed. In general, however, the barrier height stillabove average. So, relaxing tfg values to accommodate
shows the same decreasing trend with heterogeneity whethgtis makes the third term on the right-hand side(8131)
this approximate entropy formulation is used, or whether thenegative, lowering the free energy. Also, since the fluctuation
computational entropy taken from the lattice model iss5Q; is expected to be positive when a contact is stroriger
used?>? Se; is negative, the first term on the right-hand side @ 31)
is negative and the free energy is lowered. Last, the second
term in Eq.(3.3)) consists of two terms inside the average
Equationg3.8), (3.113, and(3.29 together give an ana- which are both concave up, i.e., have a positive second de-
lytic expression for the free energy for a fast-folding proteinrivative with respect t®; . Thus, the average of the terms is
which includes heterogeneity in the folding mechanism greater than the term evaluated at the average, i.e.,

(5Q56>+T)\(Q)<QI In—

C. The free-energy functional

FEUQi(Q}H e} {lib)

R (R, 629 [and)=@in{T-o
(3.32
where we have written the total free energy in terms of a
mean-field term plus a fluctuation due to variations in energy, _0o, 1-(Qy)
loop length, and contact probability. (8.29), Fye/M is the <(1 Q )In >>(1_<Qi>)|n =0,
mean-field free energy per mono 1-Q 1-Q
FMF LU o T—— %(Q - SROUTE(Q) and so the second term i{8.31) is positive. Fluctuations
away from uniform ordering raise the terms in the free en-
b2 E ergy due to route entropy. This effect competes with the
- ﬁ(l_QH —, (3.30 two lowering effects above. To find which terms dominate,

we find the functional dependence of the contact probabili-

ties Q; on the energieg; and entropies; in the next sub-
with Syr given by Eg.(3.26, and Sgoute given by Eq. section, and then investigate the trend on barrier height under
(3.113 with all Q;=Q. The fluctuation in(3.29 is given by  variations ofe; ands; in Sec. IV.
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D. The most likely distribution of contact probabilities

Equationg3.29), (3.30, and(3.31) describe the free en-
ergy for an arbitrary distribution of contact probabilities
{Qi(Q)}, subject only to the constraint that the average
probability (Q;) is Q. The most likely distributiod Q;* (Q)}
of the contact probabilitie®;(Q), i.e., the thermal distribu- X _
tion, is obtained by minimizing the free energy E9S- (329, (3.30, and (3.3 into Eg. (3.33 yields a

FU{Qi(Q{e}{IiH}) subject to the constrainE;Q;(Q) Fermi—Dirac distribution for the most probable thermody-
=MQ, i.e., (F+uZ;Q;)=0, or namic occupation probabilitig®} } for a given{e;} and{l;}

J
Ei &—QF({Qi}|{€i}’{|i})+M 0Q;=0, (3.33

for arbitrary and independent variatiod®; . Substituting

1
(3.39

Qf (Qfe{lih=

2
ut€—Ts(1;,Q)— TN (Spoure + >T

},

where \'=d\(Q)/dQ [cf. Eqg. 3.118 and (sioure)(Q) ing mechanism will maximize the barrier. Increasing hetero-
=(—QjInQ—(1-Q)In(1—Qy)). Thus, each probability geneity in the folding mechanism systematically decreases
Qi , referred to below simply a®;, is a function of all the the folding barrier and may eliminate it entirely, at least in
{Q;}, and must be solved for self-consistently. Non-nativethe absence of cooperative interactions. The corresponding
ruggedness introduces a term with anomalod® émpera-  folding rate increases, as long as the protein remains well
ture dependence in the distribution. By the structure of Eqdesigned. In Sec. IV B we develop a perturbation expansion
(3.34), all contact probabilitie®); are between zero and 1. of the free energy to incorporate structural as well as ener-
The Lagrange multiplierw is determined by the con- getic heterogeneity, and the effect on the free energy of cor-
straint2;Q =MQ, and so is a function o and the distri- relations between them. In Sec. IV C we illustrate the effect
butions of{¢;} and{l;}. It can be interpreted as proportional of contact order or mean contact length on the folding barrier

1+exp{ﬁ

to an effective force along th® coordinate, since in the model, and in Sec. IV D we investigate the effects of
1 oF structural variance on a hypothetical ensemble of well-
== — — (3.35  designed protein fold motifs. We find that for fixed average

M Q loop lengthl, native structures that have larger disperssbn

by the properties of the Legendre transformatigee the in the distribution of return lengths tend to have smaller fold-
AppendiX. Thus again, since the free enefgys of course a ing barriers. In Sec. IVE we show how the folding barrier
function of Q and the distributions{e;} and {I;}, x  decreases with the degree of route-like folding in the system,
=—(1/M)3IF/9Q also. so long as the protein remains well designed.

The second variation oF ({Q;}|{€},{li}) [neglecting
terms of order®(1/M)] is indeed positive

AN TR (3.36
dQ;dQ; Qi(1-Q) ) First, we consider the free energy as a functio®aind

o . the field of energie$e;}, given the field of loop lengthf;}.
verifying that the extremal values &J; are the ones which Each contact probgdiiitygi in the Free-energs Ec(g.gg)l}{s

A. Energetic heterogeneity for a given structure

minimize F({Qi}|{&}.{li}). considered through Eq3.34 to be a function ofQ, its
energy, its loop length, and the Lagrange multiplier

IV. CHANGING FOLDING MECHANISMS BY ©w(Q.{},41;}), which is itself a function ofQ and the dis-

TAILORING NATIVE INTERACTION ENERGIES AND tributions{¢;} and{l;}. Thus, the free energy depends both

ALTERING NATIVE STRUCTURAL MOTIFS implicitly and explicitly on{e;}.

Most single domain proteins must fold over a free-  We now seek to tune the values{ef}, at fixed stability
energy barrier of a fewkgT at the transition temperature. (fixed total native energy
This barrier is small compared to the total thermal energy in
the system, reflecting the exchange of energy for entropy as 2 €=Ey, 4.7
a protein fold*%However, the barrier height can vary sig- J
nificantly depending on which parts of a protein are most
stable in the native structure, i.e., how the native energy is 2 0€;=0, 4.2
distributed throughout the native structure. In Sec. IV A we !
look at the effects on the thermodynamics when native interto the distribution{ €] ({I;})} that extremizes the free-energy
actions are changed in a controlled manner. We find that harrier. Under variations of the energi€se;} for a given
distribution of native energy which induces a uniform fold- structure{l;}, the free energy becomes
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S Experimental measurements of quantities more closely re-

Fleio+ o6} =Fleio}+ > g) O€i lated to Q; may be made by performing double muta-
' ' €io tions®319°This method measures changes in rate and stabil-

1 S5°F ity after mutating two residues in proximity, then subtracts
+§Z (56-56-) o€ 6ej+--+, the sum of the changes after mutating each residue sepa-

T P € €40 rately, thus effectively measuring the rate/stability change

4.3 due specifically to the interaction between the residuva®/

stability changes due to varying in our language When
whered/ J¢; is the total derivative with respect 9. So, the  the prefactor to the rate is unaffected by the mutation, this is
distribution {€ ({1;})} that extremizes the free-energy bar- equivalent to the change with mutation in the barrier height
rier subject to the constraint Eq4.1) is the solution of over the change in the difference of the free-energy

S(AF*—pZ€)=0, or minimaZ2%>°which we refer to asp’
SAF* . N
> S P|66=0, (4.4) ,_ (F71d€) — (9Fu/de) _ Qi(QY)—Qi(Qu)
' ! ' (dF¢lde) = (dF lde))  Qi(Qr)—Qi(Qu)”
for arbitrary and independent variatiods; in the energies. (4.10

The Lagrange multipliep imposes the constraint that the When the nativeness in the unfolded state can be neglected,

total native energyEy is constant. Changes in the barrier N . i
height are roughly equal to changes in the free energy at thgi(QU)wo’ and when the native contacts in the folded state

barrier peak, since the free energy in the unfolded <fate gre essentially fully formedQi(Qg)~1. Then, Eq.(4.10
~0 is more weakly dependent ofe;}, i.e., SAF*/ ¢ ecomes
=5F(Q")/b¢;, becausesF(Q,~0)/5¢,=0; less native SAE*  OAF*
structure is present in the unfolded state. The effect on the ¢/= = =Q;(Q%). (4.1
free energy due to perturbations{ig} is largest at interme- o€ I€i
diate Q; there is no effect at the end points becaus&at

_ T ) ) Comparing¢ values with contact probabilities assumes the
i?\t% rg}ce'iirgnaslrglrzo ?:s“e\:/r?t 'glt%rarﬁﬂ?z diinu[ lEttoltr?él tr(l) ?glver:lativuse of contact probability as a kinetic reaction coordinate. In
P P Fact, it has been observed for lattice simulations thaalues

stability Ey, which is fixed. In fact in the equations for the correlate withQ; values as well as any other reaction coor-
free-energy perturbation this effect is manifested by the fac- ; y

. -2 dinate currently proposef*
tor of Q(1—Q) which multiplies every term, see, e.g., Egs. L ) . . .
(4.19 and (4.34). Continuing now to find the energie$ which extremize

; : - 0.(0Of %
Because of the implicit functions mentioned above t_he iree _en.ergy, Eq.(4.49 gives fmqlly. Qi(Q*% u
=0,¢] ,1;)=p: the free energy is extremized when all Qe

OoF JF JF 9Q; dF 9Q; du values are tuned to the same number at the barrier peak. This
e (9_€i+ ~ 9Q; (?—ei+ ~ 9Q: du e (4.5 folding scenario is that of a symmetric funnel: the protein is
J ! equally likely to order from any place within it. Thus, since
IF 9Q; dQ; d ZiQi=MQ
:_+M2 &_}_&_’u (4.6) el
(9Ei j ﬂEi (9,U. &ei

Qi(Q,u*=0 1)=Q". (4.12
However, the term in square brackets is just the total deriva-

tive 5Q;/Je;, so the sum vanishes becau®eis a fixed  Solving Eq.(4.12) for the energies using E¢3.34) gives
parameter independent ef*°

d
5Q, & ) € =Ts+Tgg(M-QINQ-(1-Q)IN(1-Q)])¢r
3 e “das U MO0 @D ;
Differentiating Eq.(3.8) immediately yields o7 (4.13
IAF* - _ .
e =Q;i(QY), (4.8  Subtractinge from €; by averaging Eq(4.13 yields
I
so the perturbative change in the free-energy barrier by vary- € —€=T(s;—5) (4.143
ing a contact’s energy is equal to the probability that contact o
was formed aQ?. =—3T(Inl;=Inl), (4.14b

This is closely related to experimenta| values, which
measure the change in the log folding ragelcf. Eq.(1.1)]  Where Eq.(3.19 was used to obtain Eq4.14h. The free-
after mutation over the change in difference in equilibriumenergy fluctuationsf; =0 in a uniform folding mechanism.
populations of the folded and unfolded state§® Thus, contacts pinching off longer loops%1;) have lower
(strongey energies €< ¢;) to make all the contact probabili-
b= §In(ke/ko) _ (4.9 ties equal at the barrier ped® If correlations between con-
OAF¢ tacts are fully accounted for, th®; values deviate slightly
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from Q away from the barrier peak, but the fluctuations away AF# M Se2
from uniform ordering are still strongly suppres$&d. k=Kq ex;{ - ?) =Kpomo exp( Q*(1-Q% W) .

Evaluating the second derivative stability matrix in Eq. (4.20
(4.3) showsQ;=Q*" in Eq. (4.12 to be an unstable maxi- '
mum, as follows. From Eq4.8) A similar result may be obtained through the following
S5°F 8Q; 9Q; 99, du intuitive argument. Consider making random energetic per-
= =—dF — — turbations on the contact energies of an initially homoge-

oejoe  dej  dej I € neous idealized systerfwhere all contact probabilities are

Qi(1-Qy) p the sameQ;=Q) with free-energy barrieF 4oyo and fold-
e o R de,)" (419 ing ratek, exp(—Fhomo/T). Then, the new rate is
by Eq.(3.34. Thus, the second-order change in the free en- FromoT SF(T) SF(T)
ergy at the extremum is =Ko ®XP — 5 | =Knomo®XP T 5 |»
( ) 56i 561 . . .
7\ O€j0€i] I where again we have ignored the change in prefactor as be-
1 ] . . .
; R ing a smaller effect. If the total nativ@einconstrainedener-
1- — d i i 5€2 i 2 i i i
__ M M562+2 [t b€ 0¢; . 4.16 getic .\/arlanceE,éeI is .A_E , the variance |n.nat|ve chre
AT 7\ € energies at the transition state is approximat@lfy

=Q*%(1-Q%)AE2, given that the energies must sum to total
native energyey . The variance vanishes @=0 since there
are no native contacts made there, and vanishe®=ai

Since the perturbationge; are independent, cross terms in
the double sum of Eq4.16 vanish, making the sum equal

to since all theX,e;=E, i.e., all the energies must sum to a
M I fixed number and thus their sum cannot vary. Approximating
2 (£> 5ei2. (4.1 the transition state as an ensemble of states with uncorrelated
i=1 i

energies, i.e., a random energy motféland considering
This term is negligible for the following reasons. First, noteOnly the effects of changing native interactions, the energy
that 9F/de;=Q; is ~O(1). Then, sincedu/de;=—(1/M)  Will always decrease twice as much as the entropy times the
X (319Q)(JF1de;) by Eq. (3.39, the termsaulde; in Eq.  temperature, under the influence of heterogeneity. Thus, the
(4.17) are ~O(1/M). So, the sum oM terms in(4.17) is  free-energy barrier decreases

~0O(1)8€%, whereas the first term in Eq(4.16 is

~O(M)ﬁ and dominates in the thermodynamic limit. SF(T)=SE(T)~TSS(T)

Thus, to orderO(1/M) - AE2*  AEY - Q¥(1-QHAE}
S?AFF [ 9Q; _ s Q*(1-Q% T 2T 2T ’
Seidei) o v 0| 4 0 TN (4.22
i€ [
4.1
(4.18 and the rate in Eq4.2)) increases as
which is clearly negative, meaning that tuning the energies
so thatQ;=Q* maximizes the free energy at the barrier Q¢(1_Q¢)AE§I
peak. The extremizations have been done for an arbi@ary Ki~Kuomo X — 7z |- (4.23

and we need not additionally extremize to find the barrier

position. Wherever the barrier is, whether or not it is movingrhjs crude argument yields essentially the same result as the
around as the; change, its free energy is going down. To ,uch more detailed functional analysis abofe. Eq.
actually calculate the change in barrier height nonperturba@hz@] without the additional factor ok*. By this argu-
tively, we can calculate the free energy for @land then  ment even for an initial unperturbed funnel which is fully
extremize to find the unfolded minimum and the maximumgy mmetric(an idealized case where all contacts are equally

at the barrier peak. This is what is done in Fig. 9. likely to be formed, introducing arbitrary heterogeneity low-
Substituting Eqs(4.8), (4.12, and(4.18) into (4.3) gives g5 the folding barrier.

the perturbative expression for the change in barrier height  Angther argument for the lowering of the barrier makes

Qf(1-QH)— use of thermodynamic perturbation the8tyConsider a Go
AFH e + e} =AF{-—M —onFT Se. (4.19  model withM contacts, whose configurational states are per-

turbed in energy by a random contributisf= 6E. so that
For an energetic standard deviation of abol;@ from  the new energy of state is E;.=E.+ V.. Let the native
the optimal distribution, the barrier goes down by aboutenergy be unchangedE=0 in the native state. Let the frac-
~NkgT/2 [we've let M~2N, A*~1—Q* since the expo- tion of native contacts be-0 in the unfolded state for sim-
nente in (3.110 is about 1, and)*~1/2]. The barrier gov- plicity (the results are not qualitatively changed when this
erned rate increases with energetic variance from the optimalssumption is removedThen, the change in free energy to
distribution as second order itV is
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1 scales extensively~M) with the size of the system as op-
IF(Q)—Fy(Q=0)]=6AF(Q)=(V)— ﬁ((V—<V>)2>- posed to the first-order term. Thus, the free-energy change
(4.24  due to random perturbations in the native energies is nega-
tive in the thermodynamic limit. Since native contacts are
less formed in the unfolded state than in the transition state,
1 the change in barrier height is also negative in the thermo-
V)=5 > Veexp(—EYT)=(5E), (425  dynamic limit. It is important to note that here the original
°eQ distribution of energies did not have to be at an optimum. As
is calculated by summing over all configurationbavingQ  long as the perturbations were random, the barrier is low-
native contacts. Now, since the change in a configuration’ered. Thus, for example if all the were the saménot the
energy is the sum over perturbations of native contacts madgptimal €/ as long as there is a loop length distributiotine

where

in that state barrier would still be lowered after a random perturbation of
' o EclT the native contact energies.
(SE) =, OE, That higher-order terms do not reverse the trend in bar-
ceQ Z rier height can be ensured by the Peierls—Bogoliubov in-
, QEc/T equality F<F,+(V),, whereF, is the free energy in ab-
— 2 E 8(j,c) 561,7: E (5,5¢;) sence of.the_random component ands the random part of .
ceQ jecy jecy the Hamiltonian averaged over the unperturbed states, which

M M is just the first-order term in Ed4.24). Thus, the transition

_ E (8;)0€;= 2 Q;d€; . (4.26 state free energyper volume F(TQT)/N is always less tha}n
i=1 i=1 the unperturbed free energy(Q")/N in the thermodynamic

limit, and sinceF(0)=F,(0) in the unfolded state, the bar-

The last equality follows from Ed2.1). Thus, the first-order . "™
ger is always lowered.

change in free energy is simply the sum of the perturbation
times the fraction of time those perturbations are felt, as in

Eq. (4.8). However, here the first-order term is the sum of aB. Including structural heterogeneity and correlations
large number of random uncorrelated terms, and so is distrilsetween energetics and structure

uted in a Gaussian-type manner over realizations of the per-
turbation. The mean of this distribution is zero since the
perturbation is randomly made contact to contact

The theory also allows us to investigate the effects of
native structural variance on the barrier, as well as the cor-
relations between structure and energetics. A perturbation
M _ analysis shows that structural variance lowers the barrier, and
5AF=Z Q;5¢,=MQde=0, (4.27)  that entropically likely contacts should be made stronger to

! lower the barrier. In the model, entropically likely contacts
ie., 55:(1/|\/|)2i’\"56i:0, because the native energy is are short-ranged. However, they may occasionally be long-

unchanged® The standard deviation ranged when entropy is more precisely accounted for by ac-
_ curately accounting for correlations between contacts.
\/(5AF)2= \/M Q(1—-Q)b, (4.28 Consider perturbing the free energy of a homogeneous
scales likeyN sinceM =zN. Therefore, the first-order term SyStem to second order, with=1, =€, Qi=Q", by letting
in (4.24 will be +constxNY2 Here, we've let the indi- |i=1+dl; and€= e+ de;. Then

; e 212 Qimi _
vidual contact varlanc.eiﬁei =b~. S|m|lgr arguments _of the AF*e+ e 1+ 61}
effects of heterogeneity on the barrier were considered in

Ref. 25. R SAF? SAF*

On the other hand, the second-order term(4r24) is :AFMF{E|}+Z 3e, 7_56i+2i = li
proportional to(sV?2) and so scales lik&l, and is always el ©
negative. By the reasoning in E¢4.26, the average over 1 S°AF*
realizations of native disorder of the thermal fluctuation is o1 = | € 0¢; 7T55i J¢;

" ,
— 24t
(VA= (V)= X oede [(56)—()(5)]. (4.29 LS (OAR Sa
=1 2145 5|i5|]- - Y
Since the perturbations are independent of each other the o\t
. : — 5 1 S°AF
cross terms in the sum vanisle; de; = de; 6;; =b“5;;, and + — ———| Ol,0¢---. (4.31)
M 2! i 5||5€J ?I_ e
(V) —(V)2=2 b2Qi(1-Qy), (430  The first term in the expansiohF (€1} is the mean-field

=t free-energy Eq(3.30. The second term is zero at the extre-

where the last equality follows from the fact that the fluctua-mum whereQ,=Q* by Egs.(4.8), (4.12), and(4.2), and the
tions of particles obeying Fermi—Dirac statistipsf. Eq.  fourth term is given in Eq(4.19. The calculation of the third
(3.34] obey the property 62) —(8)?=(5,)(1—(5))). The  term proceeds along the same lines as the derivation of Eq.
sum in (4.30 has the form ofM positive terms and thus (4.8). Like Eq. (4.6), SAF/§l; contains a term involving an
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explicit derivative ofl;, and implicit derivatives which are trap, perturbations of contacts involving residues anoma-
identically zero. The explicit term itself vanishes whenlously formed in the unfolded state, or situations where

evaluated for homogeneous fields. From E331) strengthening one of the contacts lowers the free energy of
SAE? 3 At an on-pathway intermediate; for these exceptional cases the
( 5 ) :§T<Q‘ I Q ) =0. (4.3  rate-enhancement effect may not be observed.
il i el

&l C. Dependence of the barrier height on mean loop

Calculation of the fifth term involves calculatingQ;/sl;,  length (contact order )
Wh"(:;‘ 1p3roceeds analogously to the derivation of E418 Experimental evidence has shown a strong correlation of
via (4.

folding rate with a quantity in our model equal to the mean
8Q; 3Q,(1-Q) loop length diyided _by the total chain lengthSince no
oL % T o (4.33 strong correlation withN is observed, at least for typical

! ] protein sizes, we are interested in testing if the barrier height
which is again diagonal and negative as is Bql8); raising  in our model correlates with, at fixedN.
the energy of a contact or increasing its loop length decreases \\e seek the change in free enedfy upon a change in
that contact’s probability of formation. From Ed4.32 and  the quantity (1¥)3;l;. This can be found by utilizing the
(4.33, the fifth and sixth terms in Eq4.31) can be calcu- directional derivativdsee the Appendix and E¢A5)]

lated, yielding
- _ _(2 s s ) _y
AF*He+ de,1 +81;} Sl 8(Zil) i i 5|].J ool
Q'(1-Q%— (436
T&Z Using again the analog of E¢4.6) that we already used to
obtain Eq.(4.32), the total derivative of with respect td;
o4 B g2 trq i is equivalent to the partial derivative. The free enefggle-
—MTgMi—M EM&__& pends onl; explicitly only through the bond entropy Eg.
8 N |2 4 N | (3.29, which is composed of a mean-field term depending
(4.34 on the sum plus a fluctuation term, Eq$3.26) and(3.27).
Noting that

oF oF
—=M

=AF*fE 1} —M

The second term on the right-hand side of E4.34 de- . .
scribes the lowering of the barrier with energetic variance, as  JdSye(Q,l) 1 ISue(Q,I)
discussed in the last section. The third term in E§34) al. - M i '
indicates that structural dispersion also lowers the barrier. '
The fourth term indicates that the free-energy barrier is adwe obtain
ditionally lowered in the model when shorter-range contacts
become stronger energeticallysl;<0 and 5¢;<0) or
longer-range contacts become weaker energetically>0 gl gl
and 5¢;>0). This means in general that the free energy is

additionally lowered when fluctuations are correlated so as to 3

further increase the variance in contact participations. Note B E (I_— 1)2
again that all reductions in free energy due to structural
and/or energetic heterogeneity are second-order effects, and 3 < 5Q>

i: TaSBOND

[In(1+(1-1)Q)—QIn1]

scale extensively with system size. +—MT (4.37)
To see intuitively how the fourth term in Eq4.34)
arises, consider taking two contacts1, 2 within a protein, The first term in expressiot4.37) is always positive foiQ
having formation probabilitie€);, Q,, and making equal >0. The second term weights loops with smallermore
and opposite energetic perturbations on théa»0. Now, heavily, and for these loopdQ>0, so the second term is
by Eq. (4.8 the total change in free energy to first order is always positive when entropic effects are considered alone.
The native energies would have to be specially tuned to
OF=—Q10e+ Q0= —(Q1~ Q) Je, (4.39 change the sign of this term. Moreover, the whole expression
so if Q;>Q, the change in free energy is negative and ifis zero wherQ=0, so we conclude that the effect of increas-
Q,>Q,, SF>0. Since contacts argpically unformed or ing the mean loop length is to increase the barrier height
less formed in the unfolded state, we can say that ifAF*. This effect is illustrated in Fig. 6 for the simple case
Q:(QN>Q,(Q"), SAF*<0 andvice versa whereli:I_, i.e., where the second term {#.37) is zero.
Since for well-designed two-state folders the rate is con-This is a lower limit to the actual increase in barrier.
trolled most strongly by the free-energy barrier rather than  As Eq. (4.37) implies, the change in barrier height with
the prefactor, the assertion that heterogeneity in folding inmean loop length is an entropic effect; proteins with native
creases the rate is then demonstrated. Some obvious cavesatsictures having larger mean loop length have lower entropy
include perturbations on a protein not well-designed, or anear the transition state. Another perhaps simpler way to see
mutation which anomalously strengthens an off-pathwaythis is to note that the entropy of loop closure must become
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FIG. 6. Dependence of the free-energy profilg) at T on the mean loop

FIG. 7. Entropy vQ for ¢; =?and|i=l_, for various| . The contact order

length |, for the analytic model with lengthi=50, 1;=1, ande =" [Eqs. — —
9 nay™ W 9 o a=el .q =I|/N (N=27 here labels each curvéRef. 105. As | increases, more
(3:29 and(3.30]. | labels each curve. The barrier undergoes an IrEreaseentropy is lost initially, leading to a larger free-energy barrier and corre-

that is stronger initially. The inset plots the barrier height as a functidn of  spondingly slower folding ratélnsed: The model shows a weak increasing
in units of e. The trend in barrier height with shown here is a lower limit  dependence of),, value with contact order, defined here as the relative
to the full theoretical dependence given in £4.37). degree of partial order at the barrier pe#;=(Q"—Qu)/(1—Qy). The

trends seen here are again lower limits to the full dependendegaren in
Eq. (4.37; we illustrate just the mean-field term here.
larger (more negativeas the loop length for that contact is

increased. From Eq$3.18 and(3.19 and settingizl_for

purposes of illustration effect. We have also let*~1—Q¥, sincea in Eq.(3.11B is

Js 1-Q approximately %52 Most importantly, the perturbation re-
—~-——— <0. (4.38  sult neglects changes in the unfolded free energy on struc-
al I(1+(1-1)Q) tural variance, as well as changes in the amount of native

Therefore, more entropy is lost in contact formation forstructure in the unfolded state. These reduce the trend on the

structures with larger mean loop length. Furthermore, sinceate due to structural variance. In general, we should use
9%s, 1 N2 ¥ 512

(PO >0, (4.39 Ke(01?) _ AFF(0) AFH(al?)

aQal  (1+(1—-1 n = - —
e (drd=he) kd(0)  Te0)  Te(al?)

this effect is largest at low degrees of nativen¢ssy.,

from Eq. (4.38 at Q=0, ds/dl~—1/I while at Q  for the log ratio of rates. The barrier height is then obtained

=19s;/9l %_O]: the entropy becomes more of a convex downfrom Egs.(3.29 and(3.34). It is seen in Fig. 8 that there is

function asl is increased; see Fig. 7. Since the free-energya significant increase in folding rate for structures having

barrier arises from the incomplete cancellation of entropylarger variance in loop lengths. Structural variance is gener-

and energy(which is independent Of_) as Q increases, a ated here for a system with parameters characterizing the

: iy 4105 ;
more convex down entropy indicates a larger barrier heightSystem in Fig. £ but the loop lengths are given by

(4.41

D. Dependence of barrier heights and rates li=1+a(°-1), (4.42
on structural variance

By Eq. (4.34), if we let ¢,=¢ and fix 1, the folding wherel? is taken from the full loop length distribution. As

barrier is lower for structures with larger variance in loop varies from zero to 1, the mean loop lendtiremains un-
energiess2. For proteins sufficiently well-designed that the changed [=9.14), but the structural variane#? increases
folding ratekg near the transition temperature is governed by(see Fig. 8.

the free-energy barrier as in Ed..1), then

ke( 812 5
A )~|\/| — (4.40 E. Measures of routing

In ,
ke(0) |2

Since the free-energy barrier is maximized for a uniform
where we have also neglected changes in the folding transfunnel folding mechanisrfEq. (4.18], we expect the barrier
tion temperature, since accounting for this is a higher-ordeheight to be a decreasing function of the dispersiorQjn
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FIG. 8. Log of the ratio of rates given by E¢4.41) as a function of

structural variance’l? at fixed I, obtained by following the recipe of Eq.
(4.42. (Dasheg: Approximate perturbation result of E@t.40. (Solid): Full
nonperturbative result using Eq€3.29 and (3.34), which accounts for
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0.3 0.4

FIG. 9. Free-energy barrier at the transition temperafyrim units of e, vs

the route measure at the barrier pgafQ?). (Solid line): Theoretical result

with parameters modeling a lattice protéRef. 105. (Long dashel per-
turbative result in Eq4.45. (Short dashed folding transition temperature.
Also shown are the folding temperature weighted by the entropy at the
barrier peak, and standard deviation in energies in units of the mean native

changes in the unfolded free energy with increasing variance. The barrier ignergy(see the tejt

calculated af ¢, which changes only mildly witid!2 until the barrier height

approaches zero #%/12~0.25.

values at the barrier peaBQ?(Q*)=((Q;—Q%)?). Let us
introduce a measure of “routingR(Q*) through the bottle-

neck by the function

L5 (6Q2)
Q= 507w Q(1-Q)°

The denominator is the most route-like the system can get
Q, i.e., if MQ contacts were made with probability 1 and
M—MQ contacts were made with probability 0, th&fQ;
—Q)?) = (IM)(MQ(1-Q)*+(M-MQ)Q*)=Q(1-Q).
Thus,R(Q) is between 0 and 1R(Q) is proportional to the
lowest-order correction to the route entrof8.113 when

fluctuationssQ are present

M\
Sroutd{Q+8Qi}) =SZoute— TR(Q)-

In the (nonperturbative limit R(Q)=1, Sgoure=0, and
only one route to the native state is allowed, i.e., sinc&all

(4.43

(4.44

Again, the reduction in the barrier height due to ordering
heterogeneity scales extensively with system size. A disper-
sion in contact participation$$Q?=0.05, which is about
20% of the maximal dispersiop=1/4, takingQ*~1/2), low-
ers the barrier by about ANKgT or about %gT for a chain
lengthN~50, believed to model a protein witk 100aa.>
We should note here that renormalizing real amino acids into
coarse-grained monomers may underestimate the heteroge-
neity effect, because small-scale free-energy fluctuations do
E'ﬂOt average out upon coarse graining, but will still add up
extensively. Plots of the route measure as a functioQ @r
the various possible folding scenarios were given in Ref. 49.
Figure 9 shows the barrier height at the folding transition
temperatureT¢ in units of €, vs the route measure at the
barrier peakR(Q?). There is a monotonically decreasing
trend in the barrier height away from the uniformly folding
state governed by E@3.30, when routing is increased from
zero by randomly perturbing the native energies. The solid
line in Fig. 9 is the theoretical result for a model parametriz-
ing a fast-folding 27-mer mod®¥P (see Refs. 49 and 52 for
further comparison The short dashed line is the perturbation
result for this model from Eq(4.45, which agrees reason-

are only zero or 1 at any degree of nativeness, each succeably well with the full nonperturbative result for smai.
sive bond added at that degree of nativeness must always s®me discrepancy is present because routing may affect the
the same one. This was the pathway-like folding mechanisrfree energy of the unfolded state to a smaller extent, i.e., as

originally proposed by Levinthaf®

Using Eq.(4.18 we can relate the fluctuations in opti-
mal energiede; in terms of fluctuations from the uniform
contact probabilitieséQ; as dej=—\T8Q;/Q*(1—Q%),
and then substitute this along witd.18 into Eq. (4.3 to
obtain the decrease in barrier height with route measure

NT O 802

AFie B T ,

(4.45

local contacts are made stronger they are more likely to be
present in the unfolded state. A moderate to large variance in
energies is required to eliminate the barrier, when energetic
perturbations are made randomly as shown here. When en-
ergies are allowed to correlate with native topology as in Eq.
(4.34), a significantly smaller variance is required to elimi-
nate the barrie?? The folding temperatur@g. is itself weakly
dependent oR(Q"), for small to moderate degrees of rout-
ing. Another measure of the degree of self-averaging weights
the folding temperature by the entropy at the barrier peak,
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which is itself a function of the degree of routing. However, many-body forces are not too large the barrier may be re-
because polymer halo entropy increases compensate fduced to zero, either by adding random native heterogeneity
route entropy decreases & Q%) is increased from zero, or by correlating native energy to native structure so that
this measure remains roughly constant over the full range afore probable contacts are stronger, as in Sec. IV B. Tuning

barrier heightgsee Fig. 9. the energies further so that probable contacts have even
lower energy(or allowing native energies to have a very
V. SUMMARY AND CONCLUSIONS large varianceeventually induces the system to take a single

In this paper we have introduced a general theoreticaioute or very few folding routes at the transition temperature.

framework to study the effects of heterogeneity on the theréo‘ large dispersion of energies is required to achieve this, and

modynamics and mechanism of protein folding. We have ex" this regime the folding temperature drops well below the

plored in minimally frustrated sequences how folding is af-9/ass temperature range, where folding rates are extremely

fected by heterogeneity in native contact energies, as well a3°W- The funnel p|ctL_Jre, with dlﬁerent structural details, is
the entropic heterogeneity inherent in folding to a specificv@lid for the above wide range of native contact energy dis-
three-dimensional native structure. The general method wiiPutions. ,

utilized here should be amenable to systematic refinement, 1he formalism we developed here allowed us to treat

and should be sufficiently accurate to compare with experipOth the energetics and the entropics involved in folding. We

mental results derived approximate expressions for the conformational en-

Specifically, we found that heterogeneity in the folding tropy functional for_ a well-designed protein_. We generalized
mechanism, i.e., in the native contact probabilities, alwaydh€ €ntropy of native core placeme(rgge mixing entropy
lowers the folding free-energy barrier, as long Bs/Tg  used previously in models of f0|dlﬁé to account for the
>1. This heterogeneity may arise from variations in native€ffects of chain connectivity; for a highly constr_amed chain,
contact energies, or variations in native loop lengths. Whef'@ny contact patterns degenerate to essentially the same
the energy landscape is funneled overall, the barrier can stiffonformation. In Sec. Il1B 2 we derived a general condition
be sensitive to the details of the energetics and entropics. F&p" the conformational entropy to be a state function, viz. Eq.
sufficiently well-designed proteins it can be shown that thel3-14- A Hartree-style approximation was taken to account
corresponding rate also increases as heterogeneity in foldidg" the entropy loss of loop closure in the presence of other
mechanism increas@8The effects of heterogeneity on bar- contacts already formed. Equati¢d.29 gives the confor-
riers and rates are stronger than the effects on transition terf@tional entropy loss given a distribution of native contact
perature, so that barriers may be reduced while kinetic preflengths{l;}. When each;—1, the expression reduces to Eq.
actors are not strongly affected. We investigated the effect§3.26, which is the entropy loss for a finite system with
on the folding barrier due to correlations between energeticenean return length for all contacts. Wher —«, (3.26
and topology, and found that for well-designed proteins thdurther reduces to Eq3.28, which is the entropy loss for a
rate may be increased by making initially likely contactspolymer system in the Flory mean-field thedhOther treat-
stronger while making unlikely contacts weaker. Thus, overments for the entropics are possible within the general frame-
all stability is conserved, but the energetic distribution iswork we developed, for example a formulation of the en-
coupled to the native structure. tropy within the capillarity approximation, or even a

Associating a decrease in thermodynamic barrier with artomputationally derived entropy functional taken from simu-
increase in rate assumes that not too much dynamic informaation data.
tion is lost when one projects the free-energy landscape onto  Several experiments support results from our theory. En-
one reaction coordinate such @s This is a good approxi- hancement of folding rates by weighting entropically likely
mation for proteins with a single dominant time scale gov-contacts has been observeddscherichia coli Che Y'° De-
erning folding'®” Even for proteins with several time scales pending on the variance of native interactions and how na-
undergoing kinetic partitioning® the correlation between tive interaction strength correlates with the entropic likeli-
barriers and rates should be a good one so long as the protdiood of contact formation, sequences may be designed to
is minimally frustrated. As long as the heterogeneity is in afold both faster or slower to the same structure as a wild-type
regime where the global properties of the folding funnel dosequence, even at the same overall stability. Enhancement or
not change, i.eT/Tg varying slowly and sufficiently larger suppression of folding rate to a given structure due to
than 1, lowering the free-energy barrier is essentially equivachanges in sequence are modeled in our theory through
lent to increasing the rate. However, one has to be carefudhanges in native interactions, which induce significant
that the folding heterogeneity is not so large that this regime&hanges in the rate-governing free-energy landscape of a
breaks down. In lattice simulations to well-designed struc-well-designed protein. A minimally frustrated sequence may
tures it has been observed thatvalues correlate with; fold to a given native structure by a variety of folding
values as well as any other reaction coordinate currentlynechanisms, including both on-and off-pathway intermedi-
proposed® for example, probability to fold before ates. Thus, for example folding in Im7 and Im9 may likely
unfolding’® However, it is still possible that some proteins initiate from different places within the native structure de-
may be poorly designed, or have very specific folding nuclepending on the distribution of native stabilizing
due to their native structure. interactions-® Folding in the 1gG binding domain of protein

Residues in proximity are assumed to be in contact enk may tend to initiate from a specific region of higher local
ergetically, and a pair contact Hamiltonian was u¥&df stability, indiscernible from the apparently symmetric native
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structuret'! contact formation probability at the transition malleability or rigidity requirements of the active site may
state depends on both energy and entropy, as expressediihibit or enhance its tendency to order.
Eq. (3.34). The notion expounded here that rates increase with het-
For a large range of native energy distributions, barriererogeneity at little expense to transition temperature con-
heights, and corresponding rates, a funneled folding mechdrasts with the view that nonuniform folding in real proteins
nism is preserved. Folding rates in mutant proteins that exexists merely as a residual signature of incomplete evolution
ceed those of the wild type have been receiving much interto @ uniformly folding protein, if rate is exclusively selected
est in recent experiment§1%1?here, we see how these for. Moreover, the phenomenon that random fluctuations in
effects can be understood by applying general principles opative contact energies contribute extensively to the free-
the energy landscape. Folding barriers in the theory wer€nergy landscape indicates that the prediction of numerical
seen to decrease with the increasing variance in contact foralues for folding rates and mechanisms from approximate
mation probability, a thermodynamic quantity closely related€nergy functions may be even more difficult than originally
to the dispersion in experimentd values. We believe that suspe(.:ted{ .e., even if systematic error in the .calculat.|on of
testing this theory should be quite possible with the experiPotentials is eliminated)(\) corrections may still remain.

mental techniques utilizing point mutations which are avail-  1N€ amount of route narrowness in folding was intro-
able today. The observed trend of reduced rate with largefluced as & thermodynamic measure through the mean-square

contact orde¥® is also seen in the theorgee Fig. 6 how- fluctuations in a local order parameter. The route measure
ever, the trend seems to be not as great, indicating that conay be useful in quantifying the natural kinetic accessibility
oper'ative interactions may be playing a ’role. Additionally, of various structures. While structural heterogeneity is essen-

for fixed contact order, folding rate was shown to increas tially always present, the flexibility inherent in the number of

) . ) . . qetters of the sequence code limits the amount of native en-
with larger variance in the contact lengths which constitute : : ;

. ergetic heterogeneity possible. However, some sequence
the native structure.

Fluctuations in rate due to weakening or strengthenin flexibility is in fact required for funnel topographis and
- . - 9 9 %o is probably present, at least to a limited degree.
specific non-native kinetic traps or generally changing non- We have seen here how a very general theoretical frame-

native interaction s_trength_ are npt treated in detail by th(?Nork can be introduced to explain and understand the effects
theory, and are an interesting topic of future research. ot haterggeneity in native stabilizing interactions and hetero-
~Itis important to note that the enhancements or reduCqeneity in structural topology on such quantities as folding

tions in rate we have explored here are mild compared to thgyie transition temperatures, and the degree of routing in
enhancement by minimal frustratiofiunneling the land- e funnel folding mechanism. Such a theory should be a

scape: the fine tuning of rates may be a phenomenon maniysefy| guide in interpreting and predicting future experimen-
fested byin vitro or in machinaevolution, rather tham vivo {5 results on many fast-folding proteins.

evolution. Nevertheless, folding heterogeneity may become

an important factor for larger proteins, where, e.g., destabi-

lizing partially native intermediates may decrease the overalA\CKNOWLEDGMENTS

rate but prevent aggregation. For some proteins such as S6,

rate measurements imply that folding is more cooperative for ~ The authors thank Peter Wolynes, Hugh Nymeyer, and
the wild type than for several permutant&:however, the Qecilia Qlementi for their generous and'insightful Qiscus-
trend in rate can be explained largely by changes in Coma(ﬁlons..Tms work was supported by NSF Bio-Informatics Fel-
order®® On the other hand, it was noticed that for the permu-/OWship  No. DBI9974199 and NSF Grant No.
tants, heterogeneity in the transition state had increased MCBO084797.

well. Transition state drift measurements imply that folding
is more cooperative for wild-type chymotrypsin inhibitor
than for several mutants® The suggestion that wild-type
proteins fold more cooperatively implies that evolutionary
selection for either reduced conformational fluctuations from  Consider the free energy of E(®.8) as the integral over
the native state or reduced Boltzmann weight of partiallya semilocal free-energy density({Q;})=2fi(Q;,Q)
structured conformations may have been more important=,;f;(Q;,2;Q;). Taking the differential of a new thermo-
than selection for the mild rate enhancements due to heterglynamic functionG=F+ uX;Q;

geneous folding, at least in some proteins. It is also possible Jf
that selection for native stability induces passana larger 5G=, (_' tu > Qj}d,u, (A1)
folding barrier when conditions are adjusted so the wild-type i IQi w ]

protein has the same stability as the mutant. However, thigq demanding tha#G/aQ;=0 for all j Legendre trans-
issue of what evolution chose to select for does not beafyyms to a new variablew, with 9G/dgu=MQ. This is
upon the statistical mechanical conclusions we found hergqyivalent to minimizing the free energy subject to the con-
Adjusting the backbone rigidity or the nonadditivity of straint of fixedQ. The equationyG/JQ;=0 means that

APPENDIX: INTERPRETING THE LAGRANGE
MULTIPLIER AND DIRECTIONAL DERIVATIVE

oQ;+

interaction$*"1®4can also modify the barrier height, possi-
bly as much as the effects we are considering here. There ‘9_fi: —u (A2)
may also be functional reasons for nonuniform folding— JQ;
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for all i, which enforces Eq.3.34) for each Q;. The
Lagrange multiplien is interpreted as the force correspond-
ing to the potentiaF(Q)

1 F{QD)
M Q

by the following arguments. From E¢AL) (9G/9Q;),=0
is equivalent tadF/dQ;+ u=0, or

JF
aQ;
w=—(8Q13Q,)(9F15Q) = — (1IM)(3F/9Q).

(A3)

n=— for any i, (A4)
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