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Abstract
The calculation of Euclidean distance between points is generalized to one-dimensional objects
such as strings or polymers. Necessary and sufficient conditions for the minimal transformation
between two polymer configurations are derived. Transformations consist of piecewise rotations
and translations subject to Weierstrass–Erdmann corner conditions. Numerous examples are
given for the special cases of one and two links. The transition to a large number of links is
investigated, where the distance converges to the polymer length times the mean root square
distance (MRSD) between polymer configurations, assuming that curvature and non-crossing
constraints can be neglected. Applications of this metric to protein folding are investigated.
Potential applications are also discussed for structural alignment problems such as
pharmacophore identification, and inverse kinematic problems in motor learning and control.

1. Introduction

The standard variational definition of distance can be
generalized to higher dimensional objects such as strings or
membranes. In a previous paper [1], one of us has introduced
the formalism for this calculation. Consider first zero-
dimensional objects (points). The distance between two points
A and B is defined through a transformation that takes A to B,
an object of dimension one higher than the points themselves
(here one dimensional). The transformation minimizing
the arc-length travelled between A and B gives the scalar
distance D∗. The differential increment of arc-length may
be defined as either

√
1 + (dy/dx)2 + (dz/dx)2 dx , or without

the assumption that y, z are functions of x , parametrically. To
be specific, introduce a ‘time’ parameter t such that 0 � t � T ,
and r(0) = rA, r(T ) = rB, and r(t) = (x(t), y(t), z(t)). The
distance between rA and rB can be found variationally [2]:

D∗ = D [r∗(t)
]

where r∗(t) satisfies (1a)

δ

∫ T

0
dt
(
gμν ẋμ(t)ẋν(t)

)1/2 = 0 (1b)

or δ

∫ T

0
dt

√
ṙ2 = 0 (Euclidean metric). (1c)

Here we have let ẋ ≡ dx/dt , and ṙ ≡ dr/dt . The
boundary conditions on the extremal path are r∗(0) = rA and
r∗(T ) = rB.

Taking the functional derivative in equation (1c) gives
Euler–Lagrange (EL) equations for the Lagrangian L = √

ṙ2:

d

dt

(
∂L
∂ ṙ

)
= 0

or ˙̂v = 0

(2)

with v̂ the unit vector in the direction of the velocity.

Since the derivative of a unit vector is always orthogonal
to this vector, equation (2) says that the direction of the velocity
cannot change, and therefore straight line motion results.
Applying the boundary conditions gives v̂ = (rB − rA)/|rB −
rA|. However, any function v(t) = |νo(t)|v̂ satisfying the
boundary conditions is a solution, so long as

∫ T
0 dt|νo(t)| =

|rB − rA|. The solution is reparametrization invariant. Then
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Figure 1. Continuum (a) and discretized (b) polymer chains. The EL equation for the continuum polymer is a nonlinear (vector) PDE, while
the EL equations for the discretized polymer are a set of nonlinear ODEs.

the extremal functional r∗(t) is given by

r∗(t) = rA + rB − rA

|rB − rA|
∫ t

0
dt |νo(t)| (3)

and the distance by

D∗ =
∫ T

0
dt
√

ṙ∗2 =
∫ T

0
dt |νo(t)| = |rB − rA| (4)

which represents the diagonal of a hypercube, as expected.
At this point we could fix the parametrization by choosing
|νo(t)| = |rB − rA|/T (constant speed), for example.

The extremal transformation (3) is also a minimum. In
section 2.4 we will give the sufficient conditions for an
extremum to be a (local) minimum, where we will return to
this example.

The above idea can be generalized to space curves,
surfaces, or higher dimensional manifolds [1]. The distance
is defined through the transformation between the objects that
minimizes the cumulative amount of arc-length travelled by all
parts of the manifold.

2. Distance for polymers or strings

Describing the transformation r(s, t) between two space
curves rA(s) and rB(s) requires two scalar parameters: s the
arc-length along the space curve, and t the ‘time’ as in the
above zero-dimensional case measuring progress during the
transformation. The boundary conditions are then r(s, 0) =
rA(s) and r(s, T ) = rB(s). The minimal transformation
r∗(s, t) is an object of dimension one higher than A or B, i.e. it
yields a distance that is two dimensional.

The distance D∗ = D[r∗(s, t)], where the functional D[r]
is given by

D[r] =
∫ L

0
ds
∫ T

0
dt

√
ṙ2. (5)

Here we have used the shorthand r ≡ r(s, t) =
(x(s, t), y(s, t), z(s, t)) (a 3-vector), and ṙ ≡ ∂r/∂ t .

It has been shown previously that the problem of distance
does not map to a simple soap film, nor to the minimal area of
a world-sheet (which corresponds to the action of a classical
relativistic string) [1].

Formulated as above, the string can contract and expand
arbitrarily in order to minimize the distance travelled. The
transforming object is akin to a rubber band, and all points

on rA(s) will move in straight lines to their partner points
on rB(s) to minimize the distance. It is worth mentioning
that protein chains for example only change their length
by about one per cent at biological temperatures. To
accurately represent the transformation of a non-extensible
string, a Lagrange multiplier λ(s, t) must be introduced into
the effective Lagrangian, weighting the constraint:

√
r′2 = 1, (6)

where r′ ≡ ∂r/∂s.
Under this constraint, points along the string can no longer

move independently of each other, but must always be a fixed
(infinitesimal) distance apart. The tangent vector t̂ = r′ is
now a unit vector, and the total length of the string is L =∫ L

0 ds
√

r′2 = ∫ L
0 ds.

Consider the minimal distance transformation between
two configurations rA(s) and rB(s) of an ideal polymer of
length L. Let us derive the EL equations for this case. From
equations (5) and (6), the effective action is

D =
∫ L

0

∫ T

0
ds dt L (ṙ, r′) (7a)

where L =
√

ṙ2 − λ
(√

r′2 − 1
)

(7b)

and the Lagrange multiplier λ ≡ λ(s, t) is a function of both
s and t . The extrema of the distance functional D in (7a) are
found from δD = 0. Taking the functional derivative gives EL
equations [1]: ˙̂v = λκ + λ′ t̂ (8)

where v̂ is the unit velocity vector, t̂ is the unit tangent vector,
and κ is the curvature vector. In equation (8) we see explicitly
that if the non-extensibility constraint is set to zero (λ = 0) all
points on rA(s) move in straight lines to rB(s).

2.1. Discrete chains

To make the problem more amenable to solution, we can
discretize the spatial variables while letting the time variable
remain continuous, i.e. we implement the method of lines
to solve equation (8). Rather than directly discretizing
equation (8), however, it is more natural to consider a
discretized chain as shown in figure 1 from the outset, and to
calculate the EL equations for this system. This recipe then
gives the same result as properly discretizing equation (8). For
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the discretized chain, the constraint in equation (6) becomes
|�r| = �s = L/(N−1), giving the length of each link. As the
number of beads N → ∞ the system approaches a continuous
chain. For finite N , the Lagrangian becomes a function of the
positions and velocities {ri , ṙi } of all beads i , 1 � i � N + 1.
We use the shorthand notation L(ri , ṙi ).

This recipe yields the distance metric for an ideal, freely
jointed chain, which has no non-local interactions and no
curvature constraints. While this approximation is often used
as a first step, real chains may behave quite differently for
several reasons. In many cases, the configuration which is an
energetic minimum is a straight line, or a single conformation
dictated by the chemistry of the polymeric bonds. At
finite temperature, energy in the bath induces conformational
fluctuations. Real polymers also cannot cross themselves, and
because of their stereochemistry also take up volume. We leave
these interesting features for later analysis.

Equation (6) for the discretized chain becomes N
constraint equations added to the effective Lagrangian:

N∑

i=1

λ̂i,i+1

(√
(ri+1 − ri)2 − �s

)

where each λ̂i,i+1 ≡ λ̂i,i+1(t) is a function of t , and λ̂N,N+1 =
0. Letting λ ≡ 2λ̂ �s and ri+1/ i ≡ ri+1 − ri we rewrite this
strictly for convenience as

∑ λi,i+1

2

(
r2

i+1/ i

�s2
− 1

)

.

We next convert to dimensionless variables by letting r =
(�s)r̂. To simplify the notation, from here on we simply refer
to r̂ as r. The distance for the discretized chain becomes

D[ri , ṙi ] = �s2
∫ T

0
dtL (ri , ṙi ) (9)

with effective Lagrangian

L (ri , ṙi ) =
N∑

i=1

(√
ṙ2

i − λi,i+1

2

(
r2

i+1/ i − 1
))

. (10)

The derivatives ṙ and ri+1/ i are raised to different powers
in (10); however, so long as ri+1/ i satisfies the constraint
|ri+1/ i | = 1, the EL equations for ri (t) will be the same

whether the constraint
√

r2
i+1/ i = 1 or r2

i+1/ i = 1 is used.

The reparametrization invariance present for point
particles (cf. section 1) is still present for beads on the chain,
but the parametrization of arc-length along the chain is taken
to be fixed by the discretization.

2.2. General variation of the distance functional

For reasons that will become clear as we progress, we consider
the general variation of the functional D, allowing for broken
extremals. That is, we allow the curves describing the particle
trajectories to be non-smooth in principle at one or more points

Figure 2. General variations of a functional with fixed end points
allow for broken extremals. In the text we derive the extra ‘corner’
conditions for a piecewise continuous path to still be extremal for our
distance functional.

in time. Consider the case of one such point at time t1. The
distance can be written as

D =
∫ t1

0
dtL(ri , ṙi ) +

∫ T

t1

dtL(ri , ṙi ). (11)

The space trajectories of the particles must be continuous
at time t1, so ri (t1 − ε) = ri (t1 + ε), or in shorthand

ri
(
t−
1

) = ri
(
t+
1

)
. (12)

Let ri (t) and r̃i (t) be two neighbouring trajectories from
ri (0) = rAi to ri (T ) = rBi (see figure 2). Neighbouring curves
will differ by the first order quantity hi (t) = r̃i(t) − ri (t). The
fixed boundary conditions at t = 0, T dictate that hi (0) =
hi (T ) = 0. The difference in distance between the two
trajectories is

�D = D[ri + hi ] − D[ri ]
=
∫ t1+δt1

0
dtL(ri + hi , ṙi + ḣi ) −

∫ t1

0
dtL(ri , ṙi )

+
∫ T

t1+δt1

dtL(ri + hi , ṙi + ḣi ) −
∫ T

t1

dtL(ri , ṙi ). (13)

Taylor expanding the Lagrangian to first order in hi ,2

L ≈ L(ri , ṙi ) +
N∑

i=1

(Lri · hi + Lṙi · ḣi
)

and integrating by parts using the fixed boundary conditions at
t = 0, T , the difference in distance up to first order in hi is

�D ≈
∫ t1

0
dt
∑

i

(
Lri − d

dt
Lṙi

)
· hi

+
∫ T

t1

dt
∑

i

(
Lri − d

dt
Lṙi

)
· hi + L(t−

1 )δt1 − L(t+
1 )δt1

+
∑

i

Lṙi · hi |t−
1

−
∑

i

Lṙi · hi |t+
1

(14)

with the shorthand L(t) ≡ L(ri (t), ṙi (t)).

2 We use the notation Fr ≡ ∂F/∂r, Fṙ ≡ ∂F/∂ ṙ.
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2.3. Conditions for an extremum

The variation δD differs from �D above only by second order
terms. Then for the transformation from {rAi } to {rBi} to be an
extremum, δD = 0. Thus, the EL equations (in the top line
of equation (14)) must vanish in each regime [0, t1), (t1, T ].
Using the form of the Lagrangian in equation (10), the EL
equations become

˙̂v1 + λ12 r2/1 = 0 (15a)

˙̂v2 − λ12 r2/1 + λ23 r3/2 = 0 (15b)

...

˙̂vN − λN−1,N rN/(N−1) = 0. (15c)

According to equation (14) there are additional conditions for
the transformation to be an extremum. To find these first note
that up to first order (see figure 2)

hi (t1) ≈ δri (t1) − ṙi (t1) δt1. (16)

Then the first variation in the distance is

δD =
[(

L −
∑

i

ṙi ·Lṙi

)∣∣∣∣
t−
1

−
(

L −
∑

i

ṙi ·Lṙi

) ∣∣∣∣
t+
1

]
δt1

+
∑

i

[
Lṙi |t−

1
− Lṙi |t+

1

]
· δri(t1) (17)

which must vanish at an extremum. Because the variations
δri and δt1 are all independent, the terms in square brackets
in equation (17) must vanish. Writing these expressions in
terms of the conjugate momenta pi = Lṙi and Hamiltonian
H =∑i ṙi · pi − L gives the conditions

pi |t−1
= pi |t+1

(18a)

H|
t−1

= H|
t+1

. (18b)

These conditions are called the Weierstrass–Erdmann condi-
tions or corner conditions in the calculus of variations [2].

According to the Lagrangian in equation (10), the
Hamiltonian is given by

H = −
N∑

i=1

λi,i+1

2

(
r2

i+1/ i − 1
)

which is identically zero, so corner condition (18b) provides
no further information.

The conjugate momenta according to (10) are given by

pi = ṙi

|ṙi | = v̂i . (19)

Therefore, according to corner condition (18a), extremal
trajectories cannot suddenly change direction: each ri (t)
follows a smooth path continuous up to first derivatives in the
spatial coordinates.

The fact that one corner condition provided no information
due to the vanishing of the Hamiltonian is related to our
choice of parametrization in formulating the problem. For
example, in the case of the distance of the single point

particle mentioned in the introduction the Lagrangian may
be defined either through independent variable x as L(x) =√

1 + y ′2 + z′2 (with e.g. y ′ = dy/dx) or parametrically
through independent variable t as L(t) = √

ṙ2. The conjugate
momenta are then either L(x)

y′ = y ′/
√

1 + y ′2 + z′2 and L(x)
z′ =

z′/
√

1 + y ′2 + z′2, or L(t)
ṙ = ṙ/|ṙ| ≡ v̂. The Hamiltonian are

either H(x) = 1/
√

1 + y ′2 + z′2 or H(t) = L(t) − ṙ · (ṙ/|ṙ|) =
0. The corner conditions can be shown to be equivalent
for both choices of independent variable: for L(t) they give
v̂(t−

1 ) = v̂(t+
1 ), so that the direction of the tangent to the

curve cannot have a discontinuity. Together, the Hamiltonian
and two conjugate momenta for L(x) can be interpreted as
components of the unit tangent vector to the curve, i.e. t̂(x) =
(î + y ′ ĵ + z′k̂)/

√
1 + y ′2 + z′2, and so once again the corner

conditions enforce a continuous tangent vector, here t̂(x−
1 ) =

t̂(x+
1 ).

2.3.1. Boundary conditions. In the continuum limit, the
boundary conditions on r(s, t) are r(s, 0) = rA(s), r(s, T ) =
rB(s), where rA and rB are the two configurations of the
polymer. For discrete chains, these boundary conditions
become

{ri (0)} = {r(A)

i } (20a)

{ri (T )} = {r(B)

i }. (20b)

There are also boundary conditions that hold for the end
points of the chain at all times. From equations (15a) and (15c)
we see that there are three solutions for the end points of the
chain.

(1) If λ 	= 0, purely rotational motion results. This can be
seen by taking the dot product of equation (15a) with
v1, which yields λ12v1 · r2/1 = 0, so the velocity of
the end point is orthogonal to the link. The rotation
must be about a point that is internal to the link, i.e. on
the line between points 1 and 2 for end point 1. This
can be seen straightforwardly for the case of one link by
removing point 3 from equations (15a) and (15b). Then
the accelerations ˙̂vi must be in opposite directions. This
can only occur if rotation is about a point on the line
between points 1 and 2.

(2) If λ = 0, ˙̂vi = 0, and straight line motion of the end point
results.

(3) Writing out the time-derivative in (15a) yields

v2
1v̇1 − (v1 · v̇1) v1 = −λ12 |v1|3 r2/1 (21)

which has the trivial solution v1 = 0. The end point can
be at rest, while other parts of the chain move.

2.4. Sufficient conditions for a minimum

For a transformation to be minimal, it is necessary, but
not sufficient, that it be an extremum. We now derive the
sufficient conditions for a given transformation to minimize
the functional (9). We describe the formalism in some detail
because it is not typically taught to physicists—for further
reading see for example [2]. This section can be read
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independently of the others, and might be skipped on first
reading.

According to Sylvester’s criterion, a quadratic form∑
i j Ai j xi x j is positive definite if and only if all descending

principle minors of the matrix ‖Ai j‖ are positive, i.e.

A11 > 0,

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ > 0,

∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣
> 0, . . . , det‖Ai j‖ > 0,

(22)

and a function F of x ≡ (x1, x2, . . . , xn) has a minimum at x�

if the Jacobian matrix ‖∂2 F/∂xi∂x j‖ is positive definite at the
position of the extremum (where ∂ F/∂xi = 0).

For a function to be a minimum of a given functional, it
must satisfy similar sufficient conditions. Consider again the
difference in distance between two trajectories in (9).3 Taylor
expanding the Lagrangian to second order in hi ,

�D = D [ri + hi ] − D [ri ]

=
∫ T

0
dtL(ri + hi , ṙi + ḣi ) −

∫ T

0
dtL(ri , ṙi )

≈
∫ T

0
dt

[ N∑

i=1

(Lri · hi + Lṙi · ḣi
)

+ 1
2

3N∑

i, j

(Lxi x j hi h j + 2Lxi ẋ j hi ḣ j + Lẋi ẋ j ḣi ḣ j
)]

. (23)

At an extremum, the first order term in (23) is zero, and
�D ≈ δ2D, the second variation. For the extremum to
be a minimum, δ2D > 0. From equation (10), the matrix
‖Lxi ẋ j ‖ = ‖0‖. Assuming ‖Lxi ẋ j ‖ is in general a symmetric
matrix, i.e. Lxi ẋ j = Lx j ẋi , the second term in the quadratic form
of (23) may be integrated by parts to give

δ2D = 1
2

∫ T

0
dt
[〈ḣ|Pḣ〉 + 〈h|Qh

]
, (24)

where we have let |h〉 denote the vector (h1, h2, . . . , h3N ), and
used the shorthand P and Q for the matrices:

P(t) = ‖Pi j‖ = ‖Lẋi ẋ j ‖

Q(t) = ‖Qi j‖ =
(

‖Lxi x j ‖ − d

dx
‖Lxi ẋ j ‖

)
.

(25)

From (10) the explicit form for these matrices may be
calculated. P is block diagonal:

P =

⎡

⎢⎢⎢
⎣

I (1)
i j 0 · · · 0

0 I (2)

i j · · · 0
...

...
. . .

...

0 0 · · · I (N)

i j

⎤

⎥⎥⎥
⎦

(26)

with each block matrix having elements

‖I (J )
i j ‖ = 1

|ṙJ |3
(
δi j ṙ(J )2 − ẋ (J )

i ẋ (J )
j

)

= 1

|ṙJ |3
[ ẏ2 + ż2 −ẋ ẏ −ẋ ż

−ẋ ẏ ẋ2 + ż2 −ẏ ż
−ẋ ż −ẏż ẋ2 + ẏ2

]

(particle J )

. (27)

3 We ignore corner conditions for purposes of the derivation. It can be shown
that they do not modify the result.

Interestingly the numerator of (27) has the form of an inertia
tensor for a point particle in velocity-space. The matrix Q
is block tri-diagonal, because the spatial derivatives in (25)
couple each bead to its two neighbours. Using indices I, J
to enumerate beads and i, j to enumerate x, y, z components
for each bead,

‖QI J,i j‖ = δi j
[
λJ−1,J

(
δI J − δI,J−1

)+ λJ,J+1

× (
δI J − δI,J+1

)]
or

Q

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

λ121 −λ121 0
−λ121 (λ12 + λ23)1 −λ231

0 −λ231 (λ23 + λ34)1
...

. . .
. . .

0 · · ·
0 · · ·

−λ341

. . .

−λN−1,N 1 λN−1,N 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(28)

For the transformation r∗(t) to be a minimum of D[r], the
functional (24) must be positive definite for all |h〉. To derive
the conditions for this, we can temporarily ignore the fact that
(24) arose from the second variation of (9), and treat (24) as a
new functional of the function |h(t)〉 = |h1(t), . . . , h3N (t)〉.
We then ask what |h(t)〉 extremizes (24). If δ2D > 0 we
expect that the only extremal solution would be the trivial
one: |h(t)〉 = |0〉, at least for small variations of the hi (t).
That is, changing the transformation {r∗

i (t)} from that which
extremized (9) to a neighbouring transformation {r∗

i (t)+hi (t)}
would increase the distance travelled.

The system of 3N EL equations for |h〉 from (24) is

− d

dt
|Pḣ〉 + |Qh〉 = |0〉 (29)

with boundary conditions

|h(0)〉 = |h(T )〉 = |0〉. (30)

Equation (29) is referred to as the Jacobi equation in the
calculus of variations.

First note that if |h〉 satisfies the system of equations
in (29) as well as the boundary conditions (30), then integration
by parts gives

δ2D =
∫ T

0
dt
(〈ḣ|Pḣ〉 + 〈h|Qh〉)

=
∫ T

0
dt〈h| − d

dt

(
Pḣ
)+ Qh〉 = 0. (31)

This means that for δ2D to be >0, any nontrivial |h(t)〉
which satisfies the boundary conditions must not itself be an
extremal solution of the Jacobi equation, otherwise solutions
|r∗(t)〉 perturbed by any constant times |h(t)〉 are themselves

5
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extremals. One may think of this by analogy as the necessity
for the absence of any ‘Goldstone modes’, where excitations
by various C|h(t)〉 would lead to a family of curves with zero
cost in action, and thus zero effective restoring force, between
them.

Alternatively, we can ask what equation h ≡ |h〉 must
satisfy if the EL equations are satisfied for both L(r, ṙ) and
the neighbouring extremal L(r + h, ṙ + ḣ). Taylor expanding
L(r + h, ṙ + ḣ) in

Lr(r + h, ṙ + ḣ) − d

dt
Lṙ(r + h, ṙ + ḣ) = 0

gives

− d

dt

(Lṙṙ · ḣ
)+

(
Lrr − d

dt
Lrṙ

)
· h = 0

which is exactly Jacobi’s equation (29) with definitions (25).
From here on, it is much simpler to elucidate the central

concepts for sufficient conditions using the case of a single
scalar function h(t). The analysis can be generalized to
the multi-dimensional case with a bit more effort, but the
conclusions are essentially the same and so they will simply
be stated along with the conclusions for the ‘1D’ case. For
further details see [2].

We write equation (24) in 1D as

1

2

∫ T

0
dt
(
Pḣ2 + Qh2

)
. (32)

It was realized originally by Legendre that the integral could
be brought to a simpler form by adding zero to it in the form of
a total derivative. Since

∫ T

0
dt

d

dt

(
w(t)h2

) = 0

for any w(t) so long as h(t) satisfies the boundary
conditions (30), we can add it to the integral in (32) and seek a
function w(t) such that the expression

δ2D = 1

2

∫ T

0
dt
(
Pḣ2 + 2whḣ + (Q + ẇ) h2

)

may be written as a perfect square. This yields the differential
equation

P (Q + ẇ) = w2 (33)

for w(t), and second variation

δ2D[h] = 1

2

∫ T

0
dt P

(
ḣ + w

P
h
)2

. (34)

Therefore, a necessary condition for a minimum is for
P > 0. The analogous condition in the multi-dimensional case
is for the matrix ‖P‖ to be positive definite.

If the differential term ḣ + w
P h in (34) were equal to zero

for some h(t), the boundary condition h(0) = 0 would then
imply ḣ(0) = 0 and thus h(t) = 0 for all t by the uniqueness
theorem, as applied to this first order differential equation.

Therefore the functional (34) is positive definite if, and
only if,

(1) P > 0,
(2) a solution for equation (33) exists for the whole interval

[0, T ].
In general, there is no guarantee of condition (2) even if
condition (1) is valid. For example if P = 1, Q = −1, (33) has
solution w(t) = tan(t + c), which has no finite solution if
|T | > π .4

If (33) has a pole at say t̃ , then for the integral (34) to
remain finite h(t̃) → 0. This point is said to be conjugate to
the point to = 0, i.e. it is a conjugate point.

Moreover, equation (33) is a Riccati equation, which
may be brought to linear form by the transformation w(t) =
−P Ḣ/H , with H (t) an unknown function. Substitution
in (33) gives

− d

dt

(
P Ḣ

)+ QH = 0 (35)

which is precisely equation (29)—the Jacobi equation for h(t).
This means that, for equation (33) to have a solution on

[0, T ], H (t), as given by the solution to (35), must have no
roots on [0, T ]. But because equation (35) holds for h(t) as
well, h(t) must have no roots (conjugate points) on [0, T ].
Because h(0) = h(T ) = 0, the only way to extremize (32)
is to satisfy equation (35) with the trivial solution h(t) = 0. If
h(t) 	= 0 for 0 < t < T then it would mean that there was a
conjugate point at t̃ = T .

In the multi-dimensional case an extremal |h〉 is one of 3N
vectors satisfying equation (29), i.e. |h(α)〉 = |h(α)

1 . . . h(α)

3N 〉,
1 � α � 3N . A conjugate point is defined as a point where the
determinant vanishes:

det

∣∣∣∣∣∣∣

h(1)

1 (t) · · · h(3N)

1 (t)
...

...

h(3N)
1 (t) · · · h(3N)

3N (t)

∣∣∣∣∣∣∣
= 0.

The conditions for a transformation to be minimal are then the
following:

(1) the transformation |r∗(t)〉 = {r∗
i (t)} is extremal,

(2) along |r∗(t)〉, the matrix P(t) = Lẋi ẋ j is positive definite,
and

(3) the interval [0, T ] contains no conjugate points to t = 0.

The above ideas can be made clear with a few examples
below.

2.4.1. Distance between points. From the effective
Lagrangian L = √

ṙ2, P = ‖Lẋi ẋ j ‖ is given in equation (27),
which has determinant det P = 0, and so is not positive
definite. This is due to our choice of parametrization. If
we break symmetry by choosing one spatial direction as the
independent variable, L(x, y ′, z′) = √

1 + y ′2 + z′2 (with
e.g. y ′ ≡ dy/dx and x0 � x � x1). Then

P = 1
(
1 + y ′2 + z′2)3/2

(
1 + z′2 −y ′z′
−y ′z′ 1 + y ′2

)

4 Because of reparametrization invariance in our problem, the value of T is
adjustable; however, precisely because of this invariance, det ‖P‖ = 0 and so
is no longer positive definite. We discuss this problem and its resolution below.
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with positive definite determinant det ‖P‖ = (1 + y ′2 +
z′2)−1/2 > 0 for any trajectory. From equation (25), ‖Q(t)‖ =
‖0‖. Along the extremal, where y(x) = ax + y0, z(x) =
bx + z0, equation (29) gives P · h′ = c, with c a constant
vector and P a positive definite matrix of constant values with
respect to x . Solving this first order equation gives straight
line solutions for h(x). Because h(x0) = 0, there can be no
conjugate points, and because h(x1) = 0, the only solution
to (29) is the trivial one, and the extremum is a minimum.

2.4.2. Geodesics on the surface of a sphere. Taking the
azimuthal angle φ as the independent variable, and polar angle
θ(φ) as the dependent variable, the arc-length on the surface of
a unit sphere may be written as

D[θ ] =
∫ φ1

φ0

dφ
√

θ ′2 + sin2 θ. (36)

The EL equations give the extremal trajectory as cos θ =
A sin θ cos φ + B sin θ sin φ with A, B constants. This is the
equation of a plane z = Ax + By, which intersects the surface
of the sphere to make a great circle. The scalar P = Lθ ′θ ′ =
sin2 θ/(θ ′2 + sin2 θ)3/2 which is always positive. To simplify
the problem, let φ0 = 0, and θ(φ0) = θ(φ1) = π/2, so
the great circle lies in the z = 0 plane. Along this extremal
P is constant and equal to 1, while Q = −1. The second
variation, equation (32), is then (1/2)

∫ φ1

0 dφ (h′2 − h2). The
corresponding Jacobi equation, h′′ + h = 0, must not have
a root between [0, φ1]. The nontrivial solution to the Jacobi
equation satisfying the initial condition h(0) = 0 is h(φ) =
C sin φ, which has a conjugate point at φ = π . Thus for the
extremal curve to be minimal, φ1 must be < π , the location of
the opposite pole on the sphere. If φ1 < π , there is no extremal
solution for h(φ) other than the trivial one which satisfies the
boundary conditions. It is instructive to look at the arc-length
under sinusoidal variations around the extremal path which
satisfy the boundary conditions h(0) = h(φ1) = 0, so that
θ(φ) = π/2+h(φ) = π/2+ ε sin(πφ/φ1). Inserting this into
equation (36) above and expanding to second order in ε, we see
that first order terms in ε vanish, and the difference in distance
from the extremal path is �D = (ε2/4φ1)(π

2 − φ2
1). For

φ1 < π this is always greater than zero, indicating the extremal
is a minimum. For φ1 > π this is always less than zero,
indicating the extremal is a maximum with respect to these
perturbations: the length may be shortened. When φ1 = π ,
�D = 0 to second order. When h(φ) represents the difference
between great circles �D is precisely zero.

2.4.3. Harmonic oscillator. It is not widely appreciated
that the classical action for a simple harmonic oscillator is
not always a minimum, and indeed in many cases can be a
maximum with respect to some perturbations. The action for a
harmonic oscillator with given spring constant is proportional
to S[x] = ∫ T

0 dt 1
2 (ẋ2 − x2), which has EL equation ẍ + x = 0.

Taking the specific initial conditions x(0) = 1, ẋ(0) = 0, the
extremal solution is x(t) = cos t . The scalar P(t) = Lẋ ẋ = 1,
which is always positive and satisfies the necessary conditions
for a minimum. The scalar Q = Lxx − d

dt Lxẋ = −1. The

second variation δ2S[h] = 1
2

∫ T
0 dt (ḣ2 − h2), which has Jacobi

equation ḧ + h = 0. This is the same Jacobi equation as
that for geodesics on a sphere, so the sufficient conditions
will parallel those above. The boundary condition h(0) = 0
gives h(t) = A sin t , with conjugate points at t = nπ ,
n = 1, 2, . . .. This means that the action is a minimum
only so long as T < π , i.e. a half-period. If we let x(t)
be the extremal solution plus a sin perturbation satisfying the
Jacobi equation at the conjugate points, x(t) = cos t + ε sin t ,
then the difference in action from the extremal path becomes
�S = (ε2/4T )(π2 − T 2). This result is exact because the
action for the oscillator is quadratic (as opposed to the action
for geodesics). When T < π , �S > 0, indicating the extremal
is a minimum. When T is larger than a half-period �S < 0
and the extremal trajectory is a maximum (with respect to half-
wavelength sinusoidal perturbations), and when T = π the end
point is the conjugate point and �S = 0.

We discuss sufficient conditions further below in the
context of minimal transformations for links.

3. Single links

In the limit of one link, equations (15a)–(15c) reduce to

˙̂vA + λ rB/A = 0

˙̂vB − λ rB/A = 0
(37)

where we have let A represent point 1, B point 2, and λ ≡ λ12.
The link has length 1 in our dimensionless formulation, so the
vector rB/A could also have been written as a unit vector r̂B/A.

Both points A and B are end points and satisfy the
boundary conditions of section 2.3.1. This means that points A
and B move by either pure rotation or straight line translation,
or remain at rest. The initial and final conditions may be
written rA(0) = A, rB(0) = B, rA(T ) = A′, rB(T ) = B′.

The link in our problem has direction, so A must transform
to A′ and B to B′. We will often use arrowheads in figures to
denote this direction.

3.1. Straight line transformations

As a first example, consider the two links shown in figure 3(a).
The four points A, B, A′, B′ need not lie in a plane (see for
example figure 3(b)). Let angle 	 BAA′ ≡ a be obtuse. We
draw straight lines from A to A′ and B to B′, and ask whether
such a transformation is possible. We can thus derive the
following rule:

• For a straight line transformation to exist between two
links, opposite angles of the quadrilateral made by AB,
A′B′, AA′, BB′ must be obtuse.

Let the length that point A travels be xA, i.e. we imagine
the point A′ and the distance xA = |AA′| to be variable. The
length rB that point B travels is then a function of xA and the
original angle a, rB(xA, a). We can now find conditions on the
angle b ≡ 	 BB′A′ such that the transformation is possible.
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Z

X Y

Figure 3. Possible ((a), (b)) and impossible (c) straight line transformations between links AB and A′B′. (b) A straight line transformation
where the initial and final states do not lie in the same plane. In the text we derive the conditions for the possibility of a straight line
transformation between links.

Figure 4. (a) An example of a set of link configurations connected by a straight line transformation. The link rotates clockwise as it translates
to allow the end points to move in straight lines. The translation can proceed no farther than the end points AB and A′B′, which have link

vectors −→AB or
−−→
A′B′ that are perpendicular to one or other of the vectors v̂A or v̂B. The totality of states thus connected forms a ‘bow-tie’. (b) A

bow-tie where the terminal states AB and A′B′ happen to cross each other.

After some distance xA travelled by point A, the length of
the line from B to A′ is

BA′ = x2
A + 1 − 2xA cos a

= r 2
B + 1 − 2rB cos b

so that

rB(xA, a) = cos b ±
√

cos2 b + f (xA, a)

with f (xA, a) = x2
A − 2xA cos a. Since a is obtuse, f > 0

when xA > 0, and so the positive root must be taken for rB to
positive. When xA = 0, f (0, a) = 0, and

rB(0, a) = cos b + |cos b| = 0.

Therefore b must also be an obtuse angle. If two opposite
angles are obtuse, then the other two angles must be acute. This
concludes the proof that the above conditions are sufficient. An
additional proof that they are necessary is given in appendix A.

We readily see that figure 3(a) is one pair of a larger set
of straight line transformations that can continue until one
or both of the obtuse angles reaches 90◦. This collection
forms a ‘bow-tie’ of admissible configurations, as in figure 4.
Note that straight lines in the quadrilateral may cross as in
the transformation from A, B to A′, B′ in figure 4. Trivial
translations of the link without any concurrent rotation are a
special case of general straight line transformations.

3.2. Piecewise extremal transformations: transformations
with rotations

An immediate question is the nature of the transformation
between AB and A′B′ in figure 3(c), where opposite angles of
the quadrilateral are not obtuse. Recall our link has direction
so A cannot transform to B′. Then a direct straight line solution
is not possible due to the constraint of constant link length.

The only remaining solution is for the link to rotate as part
of the transformation. Consider first the rotation of link AB.
The EL equation (37) allow for pure rotations about A, B, or a
common centre along the link. Likewise for link A′B′.

The rotation can occur from either link AB (figure 5(a)) or
link A′B′ (figure 5(b)). After the link rotates to a critical angle,
it can then travel in a straight line. The extremals are broken
in that they involve matching up a piece consisting of pure
rotation with a piece consisting of pure translation of the end
points of the link. Where the pieces match they must satisfy
the corner conditions (18a) and (18b). This means that the end
points cannot suddenly change direction, a situation which is
only satisfied by a straight line trajectory that lies tangent to the
circle of rotation.

From figure 4, we see that a straight line transformation
exists only when an angle between a link and one of the straight
line trajectories reaches π/2.

The critical angle that link AB must rotate is then
determined by the point where a line drawn from B′ is just

8
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Figure 5. Transformations between two links involving broken extremals consisting of rotation and translation. (b) The global minimum, with
shortest distance travelled during the transformation. (a), (c), (d) Local minima. (e) is extremal, but not minimal as the trajectory of arc B′B1



passes through a conjugate point.

tangent to the unit sphere centred at point A, point B1 in
figure 5(a). There is generally a different critical angle if the
rotation occurs at link A′B′ as in figure 5(b). It is shown in
appendix B that in general the critical angle is determined by
drawing the tangent to a circle or sphere about one of the link
ends.

If the rotation was about a common centre, we see that one
or another of the link ends would violate a corner condition, so
the rotation must be about one of the link ends.

According to equations (26) and (27), the matrix P has
a determinant of zero due to the parametric formulation in
the problem and so is not positive definite. To show that the
transformations in figures 5(a) and (b) are indeed minimal, we
need to then express the problem in non-parametric form. To
do this, let the independent variable be the angle θ of the link
with the vertical. Then the displacement x along the line AA′
is the unknown function of θ to be determined by minimizing
the total arc-length travelled. This distance can be written as

D[x] =
∫ θ1

θ0

dθ
(√

x ′2 + 2x ′ cos θ + 1 +
√

x ′2
)

.

In this formulation, the scalar quantity P(θ) = Lx′ x′ becomes

P(θ) = sin2 θ
(
x ′2 + 2x ′ cos θ + 1

)3/2

which is always >0 except for the isolated point θ = 0; in
particular, it is positive along the extremal trajectory, which
is necessary for a minimum. So we conclude that the
transformation with the smaller angle of rotation in figure 5(b)
is here the global minimum, and the other transformation
(figure 5(a)) is a local minimum.

Figure 5(e) is also an extremal trajectory, satisfying corner
conditions, and with positive definite P . However, it is
not a local minimum because the trajectory passes through
a conjugate point (denoted by point CP, where the dotted
line along A′B′ meets the great circle about A′). According
to the results in section 2.4.2, if the extremal trajectory (a
great circle) traverses an angle larger than π radians, it passes
through a conjugate point and thus becomes unstable to long-
wavelength perturbations. Transformations involving rotations
about points B or B′ in figure 5 both have conjugate points and
so are not minimal.

The transformation in figure 5(c) does not pass through
a conjugate point and so is in fact another local minimum.
The part of the extremum along the straight line section of the
trajectory has no conjugate points as discussed above.

3.3. Systematically exploring transformations by varying link
positions

We can investigate what happens to the minimal transformation
when one of the link positions or angles is varied with respect

9
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Figure 6. Successive transformations between two links made by rotating a link so that there is a progressively larger angle between the links
as vectors (or smaller angle made between them as lines). The two boundary conditions (the initial and final conditions) are shown as black
links, and an intermediate state is shown as a red link or links. The arcs traced out by the end points are shown in blue or green, while straight
line motions when they are not along the links themselves are shown in grey. The distance travelled over the course of the transformation is
given below each figure.

to the other. Let us start by putting the two links head to tail as
shown in figure 6(a). The distance between them is 2 by simple
translation of link end points.

We can now increase the angle between the two vectors
by rotating the right link for example, as in figures 6(b)–(h).
So long as the angle between the two vectors is less than 90◦,
one link may slide along another and the distance is unchanged
(figures 6(a)–(c)). This is a special case of the transformations
shown in figure 4 (compare for example figure 6(b) with the
middle three unlabelled links in this figure).

Beyond 90◦, however, the transformation must include
rotation. Figure 6(d) has an angle of 150◦. The minimal
transformation first rotates, for example with the tail of the
horizontal black arrow fixed, and the head tracing out the blue
arc, until the critical angle is reached, where a straight line
made from the final arrowhead (at the top of the figure) is
just tangent to the circle made by the blue arc. This state is

indicated by a red link in figure 6(d). The link then translates
to its reciprocal position at the opposite end of the bow-tie,
denoted by a second red link (cf. also figure 4(b)). At this point
the arrowhead has completed the transformation. Finally, the
tail rotates into its final position. The total distance travelled is
slightly larger than 2.

When the angle between the vectors is 120◦ as shown
in figure 6(e), the transformation consists of pure rotations.
Taking the initial state to be the horizontal black vector, the
link first rotates about its fixed tail, the head tracing out the
blue arc, until the link reaches the state shown in red, where
the position of the arrowhead has reached its final end point.
Then the link rotates about its head until the position of the tail
reaches the final state.

When the angle between the links is larger than 120◦, as
shown in figures 6(f) and (g), the transformation must involve
rotation about an internal point along the link. Let points A

10
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and B denote the tail and head of the link respectively. If an
infinitesimal rotation �θ occurs about an internal point P, the
increment in distance travelled is

�D = |rB/P|�θ + |rB/A|�θ = �θ

which is independent of the position of the instantaneous
centre of rotation (ICR). This means that there is an infinity
of transformations all giving the same distance, depending on
the time-dependence of the ICR. Two simple alternatives with
only two discrete positions of ICR are shown in figures 6(f)
and (g). Specifically, in figure 6(f), the horizontal black vector
first rotates about its tail to the red configuration, which is a
mirror image of the final black vector. Then rotation is about
an internal point determined by the intercept of the red vector
with the final black vector, with end points tracing out the
green arcs. In figure 6(g) the two ICRs are both internal and
determined by the intercepts of the initial and final states with
the red vector shown.

Figure 6(h) depicts the transformation for overlapping,
opposite pointing vectors. Rotation can now only occur about
one point in the centre of the vectors.

Figure 7 illustrates what happens when one of the links is
translated with respect to another, starting from two different
scenarios shown in figures 7(a) and (e). In 7(a), the tail of the
vertical link is displaced (1/3,−1/3) with respect to the tail
of the horizontal link. The minimal transformation is a pure
rotation by π/2.

In figure 7(b), the tail of the vertical link is now displaced
to (2/3,−1/3). Pure rotations again give a distance of π/2.
Rotation about a point on the horizontal link that is equidistant
from both arrowheads transforms the initial arrowhead to the
final (red intermediate state). Then rotation of the tail about
the arrowhead transforms to the final state.

In figure 7(c), the minimal transformation first involves a
translation by sliding the arrowhead along the vertical, until the
arrowheads overlap (red intermediate state). The tail end of the
link then rotates into place.

In figure 7(d), straight lines from the end points will
not satisfy the obtuse condition in section 3.2, so the
transformation must involve rotations. Here a straight line
transformation takes the link almost to the final state. It then
must undergo a small rotation to complete the transformation.
Seen in reverse, the vertical arrow must rotate to a critical angle
determined by the criterion in section 3.2, before the link can
finish the transformation by pure translation.

Figure 7(e) is figure 6(f) once again. The final condition
(the tilted link) will be systematically changed by translating
it vertically away from the horizontal link (which we choose
arbitrarily as the initial configuration).

In figure 7(f) the tilted link is translated a distance 1/3
vertically. The transformation can be achieved by rotating the
horizontal link about a point equidistant from both arrowheads
to the red intermediate configuration. The link then rotates
about the arrowhead into the final configuration. The distance
is still the angle rotated for the reasons mentioned above in
the context of figures 6(f) and (g), θ = (150/180)π , which is
unchanged from 7(e). In fact, so long as the arrowhead can be

reached by rotation (the translated distance is less than d where
d is the solution to d2+d +1−√

3 = 0 for this angle), then the
distance will be unchanged. The transformation at the critical
distance is shown in figure 7(g). The rotations now occur about
the end points: the tail and head of the link.

In figure 7(h) the translated distance is now equal to 1.
The transformation first consists of a rotation about the tail
to a critical angle (blue arc and red intermediate state), then
a translation much like that in figure 4 (grey straight lines
between red intermediate states), and finally a rotation about
the head (green arc) to the final configuration.

4. Two-link chains

We now consider the next simplest case of two links (three
beads). The Lagrangian now reads

L(r1, r2, r3, ṙ1, ṙ2, ṙ3) =
√

ṙ2
1 +

√
ṙ2

2 +
√

ṙ2
3 − 1

2λ12

× (
(r2 − r1)

2 − 1
)− 1

2λ23
(
(r3 − r2)

2 − 1
)

(38)

which has EL equations (cf equations (15a)–(15c))5:

˙̂vA + λABrB/A = 0 (39a)

˙̂vB − λABrB/A + λBCrC/B = 0 (39b)

˙̂vC − λBCrC/B = 0. (39c)

The corner conditions (18a), (19) imply

v̂i
(
t−) = v̂i

(
t+)

so the direction of motion cannot suddenly change, unless
along one part of the extremal the velocity of point i is zero
(the point is at rest), where its direction v̂ is then undefined.

The boundary conditions described in section 2.3.1 hold
as well, so the end points can either be at rest, move in straight
lines, or purely rotate. This gives 3 × 3 = 9 possible scenarios
to investigate here, many of which can readily be ruled out. For
example consider the states in figure 8(a). Because A and A′
are in the same position, rotation and translation of A are ruled
out and point A remains at rest, leaving three scenarios for
the other end point C. However since C and C′ are at different
positions and ABC are along a straight line, C cannot remain
at rest initially, leaving either translation or rotation for point
C.

Suppose C translates towards C′ as in figure 8(b). Then˙̂vC = 0 and from (39c), (39b) λBC = 0 and ˙̂vB = λABrB/A.
B cannot move in a straight line without moving point A,
so λAB 	= 0 and thus B must rotate about point A. The
transformation then proceeds as in figure 8(b) until B reaches
B′ and C reaches C′′. Then however if C′′ were to rotate to
C′, the trajectory would violate corner conditions at point C′′.
Therefore, the direction of translation of C must not be directly
to C′ but must be tangential to the arc C′C

 ′′ as in figure 8(c).
The reverse of this transformation is allowable as well, as

can be seen by swapping the labels ABC → A′B′C′. Here C

5 The links have length 1 in our dimensionless formulation, so the vectors
rB/A and rC/B could also have been written as unit vectors r̂B/A and r̂C/B.
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Figure 7. Successive transformations between two links made by translating one link with respect to the other. In (a)–(d) the initial and final
configurations are perpendicular, while in (e)–(h) they are at an angle of 150◦ to each other. Note that the distances in (e)–(g) are all the same,
even though the end points of the links are at varying distances from each other.

first rotates to the critical angle θ shown in figure 8(d) and then
translates to C′.

In fact one can see that links BC and B′C′ along with lines
BB′ and CC′ form a quadrilateral as in figure 5, with the same

consequences for rotation to a critical angle. For the links
in figure 8 the situation is symmetric, so rotation can occur
at the beginning or end of the transformation. Figure 9(a)
shows an example with this symmetry broken, so that the
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Figure 8. (a) Initial and final states for a chain of two links. The transformation in (b) is non-extremal because it violates a corner condition at
C′′. (c) and (d) are degenerate minima—rotations occurring about B′ or B both have the same length. Intermediate states shown in red have
opposite convexities in (c) and (d).

Figure 9. (a) Initial and final states for a polymer of two links. The angle between AB and A′B′ is π/4. The minimal transformations in (b)
and (c) are now no longer degenerate. (c) The global minimum.

Figure 10. A transformation between two states of opposite
convexity: ABC has convexity down and right, while A′B′C′ has
convexity up and left. There is no extremal transformation in the
plane that can connect them, without some apparent violation of
corner conditions.

distance is different depending on where the rotation occurs,
as in figures 5(a) and (b). In this case, the transformation in
figure 9(c) has the minimal distance, and that in figure 9(b) is

subminimal. Extensions of the transformation in figure 9 to
large numbers of links were explored in [1].

4.1. Transformations involving a change in convexity

Transformations between configurations with opposite convex-
ity involve motion out of the plane, even if the initial and fi-
nal states lie in the plane. If the transformation is constrained
to lie in plane, the trajectories of some points will be non-
monotonic—these points must move farther away from their
final positions before approaching them. We illustrate these
ideas with some examples below.

Consider the initial and final states in figure 10. We again
imagine B rotating to B′. If C were to translate to C′ one would
have the intermediate configuration A′B′′C′. Now C′ and A′
must remain at rest to satisfy corner conditions. Then the only
way to finish the transformation is for B′′ to rotate about the
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a b

Figure 11. Subminimal (a) and minimal (b) transformations for the boundary conditions in figure 10. The distances for each transformation
are approximately 3.007L2 and 2.576L2 respectively. Transformation (a) proceeds from ABC by first rotating B to B′ about axis AC, then
rotating C about point B′. Transformation (b) proceeds from ABC by simultaneously translating C to C′ while rotating B about A on a great
circle to point B′′. Finally point B rotates from B′′ to B′ about axis A′C′.

Figure 12. (a) Subminimal transformation and (b) minimal transformations between ABC and A′B′C′ (see text).

axis A′C′; however, then the trajectory of B violates corner
conditions and so is not extremal. In appendix C we take up
the issue of minimal transformations for this case when the
links are constrained to lie in a plane.

We thus seek a point B′′ and resulting trajectory
−−−→
BB′′B′

such that arc BB
 ′′ satisfies corner conditions with arc B′′B

 ′.
One solution is to effectively place B′′ at position B′ by

considering the boundary condition with C at rest (and A at
rest). Then B rotates to B′ about axis AC, and the trajectory of
B lies on a circle defined by the intercept of two unit spheres
centred at A and C. The sphere about A is drawn in figure 11 as
a visual aid. Along arc BB

 ′ both λAB 	= 0 and λBC 	= 0. Once
in configuration A′B′C, C can then undergo rotation about B′
to C′, with A′ and B′ stationary.

The transformation in 11(a) is a local minimum in
distance; however, it is not the global minimum. A shorter
distance transformation can be seen by considering the reverse
transformation. Imagine A′ and C′ stationary while B′ rotates
about axis A′C′ in figure 11(b). This rotation of B′ follows a
circular trajectory defined by the intercept of two unit spheres
centred at A′ and C′. The rotation occurs until point B′′, which
is the point where the above circle is tangent to a great circle
on the unit sphere about A and passing through B. The arc
BB
 ′′ is a great circle because this is a geodesic for point B

given A is fixed, which follows from the Euler equations (39b)
and (39c) when λBC = 0. The great circle is defined by the
plane containing the points A, B, and B′′.

The angle between the (variable) vector
−→
BC of link BC and

the tangent to the arc B′B
 ′′ is always π/2, so once the corner
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condition is met, point C on link BC can move in straight line
motion from C′ to C while B moves on the great circle from
B′′ to B. That is, the quadrilateral criterion of section 3.1 is met
for �BB′′C′C.

To find point B′′, let its position be rB′′ = (xo, y(xo), z(xo)).
The great circle is defined by the plane passing through the

points A, B, and B′′. This plane has normal n ≡ −→
AB × −−→

AB′′ =
(1, 0, 0) × (xo, y(xo), z(xo)) = (0,−z(xo), y(xo)). At the
point B′′ the normal is orthogonal to the tangent vector of the
circle defined by rotation about the AC′ axis. This tangent vec-
tor is t̂ = ∂r/∂s = xs(1, yx, zx) by the chain rule. At B′′,
t̂ · n = 0, or

−z(xo)yx(xo) + y(xo)zx(xo) = 0. (40)

The functions y(x) and z(x) are defined by the intercept of
two unit spheres centred at (0, 0, 0) and (1/

√
2, 1 + 1/

√
2, 0),

giving

y(x) = 1 −
√

2

2 + √
2

x

z(x) =
√

1 − x2 − y(x)2 .

(41)

Together (40) and (41) give

rB′′ =
⎛

⎝

√
2 − 1

2(
√

2 − 1)√
2(5

√
2 − 7)

⎞

⎠ .

The distance travelled along arc BB
 ′′ is θBB′′ , where cos θBB′′ =

xo = √
2 − 1. The distance travelled along arc B′′B

 ′ can
similarly be shown to be rθB′′B′ = sin(π/8) cos−1(2

√
2 − 3).

Adding the distance CC′, the total (minimal) distance is thus
D = 2.576. There is of course a degenerate solution to the
above with z → −z.

4.2. Transformations with initial and final states in 3D

We now give a representative example where the initial and
final configurations do not lie in the same plane, as shown in
figure 12. Because AB ⊥ AA′ and BC ⊥ CC′, neither A
nor C will rotate about B as part of the transformation. Nor
can ABC simultaneously translate directly to A′B′C′, because
for example quadrilateral �AA′B′B does not satisfy the rule of
opposite angles � π/2, so link AB cannot slide (translate) to
A′B′.

This leaves three options for the initial stages of the
transformation.

(1) A translates, B rotates, C remains fixed. B then rotates
about C in the CBB′ plane. The initial direction of motion
of B is then v̂B = (−î + k̂)/

√
2; however, then v̂A can

only move backward to preserve link length (v̂A = −k̂),
similar to figure A.1. This rules out case (1).

(2) A remains fixed, B rotates, C remains fixed. B then rotates
towards B′ about axis AC until it reaches a critical angle
where line B′′B′ is tangent to its circular trajectory (see
figure 12(a)). At this point the quadrilateral �B′′CC′B′
does not have opposite obtuse angles, so a straight line
transformation to A′B′C′ is not possible. It is possible
to transform to a configuration A′B′C′′, where C′′ is at

position (1, 1, 1) and angle 	 B′C′′C = π/2, so that v̂C =
k̂. Then the transformation is completed by a π/2 rotation
of C′′ about B′. This transformation is subminimal.

(3) A remains fixed, B rotates, C translates. In this case, B
rotates toward B′ in the BAB′ plane, while C translates
to C′, until the state AB′′C′′ is reached (see figure 12(b)).
State AB′′C′′ can be found as follows. Because the
rotation of B is about the axis (0,−1/

√
2, 1/

√
2), the

position
−−→
AB′′ of B′′ after rotation of the (critical) angle

θ is (cos θ, sin θ/
√

2, sin θ/
√

2). This angle is then

determined by the condition
−−→
AB′′ · −−→

B′′B′ = 0, where−−→
B′′B′ = −→

AB′ − −−→
AB′′. The solution to this condition is

simply θ = π/4. The location of C′′ is then determined
from the condition that the link length from B′′ to C′′

is one: |−−→
B′′C′′| = 1, where

−−→
B′′C′′ = −−→

AB′′ + t
−→
CC′.

Solving this condition for t gives the position of C′′

as ( 3+√
2

5 , 1, 2(2−√
2)

5 ). At this point the quadrilateral
�B′B′′C′′C′ has opposite obtuse angles, and quadrilateral
�AB′′B′A′ has opposite angles = π/2, so it is in a bow-
tie configuration as in the end point configurations in
figure 4. Therefore all points AB′′C′′ can translate from
this intermediate state to their final positions A′B′C′. The
total distance travelled is θ + |AA′| + |CC′| + |B′′B′|
or D = 2 + π/4 + √

5 ≈ 5.022. The reverse of this
transformation is also possible, where point B′ rotates

about A′ in the plane B′AB, while C′ translates along
−→
C′C.

Inspection reveals that the distance covered is the same as
the forward transformation.

5. Limit of large link number

From the transformation discussed in section 4.1, we see that
if both 	 ABC and 	 A′B′C′ were π/2 as in figure 13(a) then
the transformations in figures 11(a) and (b) would become
degenerate, having distance D = π/

√
2. The transformation is

completed by a single rotation about axis 13.
We can now examine the effect of increasing the link

number. Let the number of links increase to four, and let us
preserve the symmetry that is present about the horizontal axis
in figure 13(a), so the initial and final states become an octagon
(figure 13(b)). In the limit N → ∞, the figure becomes a
circle.

If we separated the links in figure 13(a) by some distance
in the y direction (perpendicular to axis 13), then the minimal
transformation involves the same rotation of 2 about axis 13
until a critical angle θc, after which all three points 123 can
translate in straight lines to 1′2′3′. In the same fashion, the
minimal transformation for the octagonal transformation in
figure 13(b) involves a rotation of point 3 out of the plane
about axis 24 to a critical angle θc at which the point is located
at position 3′′. Once this critical angle is reached, point 3
translates in a straight line from 3′′ to 3′.

Because points 1 and 5 are stationary to satisfy corner
conditions, points 2 and 4 must move in great circles about
points 1 and 5. However, points 2 and 4 cannot finish
the transformation by moving on great circles. At the
configuration 1′2′′3′4′′5′ in figure 13(b), point 3 has finished
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Figure 13. Examples of transformations between initial and final states of opposite convexity, for increasing numbers of links. (a) The
transformation for N = 2 links. (b) N = 4 and initial and final state form an octagon. (c), (d) N = 6 and initial and final states form a
dodecagon. (c) Top view. (d) View in perspective. Rotations are shown as solid colour lines (either green or blue). Translations are shown as
dashed lines. The grey dashed lines underneath 3′′3′ in (b) and 4′′4′ in (d) are shown only to illustrate that these lines are above the plane.

the transformation, but points 2 and 4 have not. To satisfy
corner conditions at the points 2′′ and 4′′, the great circles
must be out of the plane as well. At points 2′′ and 4′′, the
transformation finishes with rotations about axes 1′3′ and 3′5′.
The total distance D ≈ 7.93.

Of course the time reverse of this transformation
(equivalent to swapping primed and unprimed labels) is also
a minimal transformation, as is the transformation obtained by
reflection about the z = 0 plane.

Now consider increasing the chain to six links, so the
combination of ri (0) and ri (T ) becomes a dodecagon (12-
sided polygon, see figures 13(c) and (d)). As before the
midpoint vertex (here r4) must rotate out of the plane about axis
35 to a critical angle θc before translating in a straight line to

r4′ . This critical angle is where
−→
34′′ ·−→

4′′4′ = −→
54′′ ·−→

4′′4′ = 0. The
quadrilaterals �22′3′3 and �655′6′ are of the type in figure 5,
so point 3 must rotate about r2(0) to a critical angle where−→
23′′ · −→

3′′3′ = 0, and likewise for point 5.
While point 3 rotates to its critical angle, point 4 translates

along line 4′′4′. Points r1(0) and r7(0) overlap with r1(T )

and r7(T ) and so remain fixed to satisfy corner conditions.
After point 3 has reached its critical angle, it can translate
along 3′′3′ as point 2 rotates about r1. However, to satisfy

corner conditions at point 2′′, the rotation cannot remain in
the x–y plane. Point r2′′ is determined as the point where
t̂ · nplane = 0, where t̂ is the tangent to the arc 22

 ′′ defined
by rotation about axis 13′, and nplane is the normal to the
plane 122′′, i.e. r2/1 × r2′′/1. The same process holds for
point 6. These critical points and some intermediate states for
the transformation are shown in figure 13(d). The total distance
covered by the transformation is D ≈ 16.3.

It is sensible to consider the total length of chain as fixed
to say L = 1, and to let the link length dsN for the chain of
N links be determined by NdsN = L. Because distances
scale as ds2

N , the N = 2, 4, 6 cases have D2 ≈ 0.555L2,
D4 ≈ 0.496L2, D6 ≈ 0.445L2. Note that this distance
decreases with increasing number of links: the constraints on
the motion of the various beads during the transformation are
relaxed as the number of links is increased.

We can then imagine resting a piece of string on a table in
the shape of a semicircular arc, and then asking how one can
move this string to a facing semicircle of opposite convexity.
So long as the string has some nonzero persistence length �P,
the transformation of minimal distance must involve lifting the
string off of the table to change its local convexity. The vertical
height the string must be lifted (see figure 13(d)) is of order
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∼ sin(π�P/L) ∼ �P/L, which goes to zero for an infinitely
long chain.

As the number of links N → ∞, some simplifications
emerge. In particular the contribution to the total distance
due to rotations becomes negligible, and the translational
component dominates. To see this note that the distance due
to straight line motion scales as

D(st. line) ∼ ds N L ∼ L2

while the distance travelled during rotations scales as

D(rot.) ∼ ds N(θcds) ∼ L2/N

where we assume the worst case scenario where an extensive
number of links must rotate before translating. Because
translation dominates the distance as N → ∞, the distance
travelled converges to L times the mean root square distance
(MRSD), i.e.

D∞ → ds
N+1∑

i=1

|ri (T ) − ri (0)|

= L
1

N

∑

i

√
(rBi − rAi )

2

= L (MRSD) . (42)

The MRSDs for the examples in figures 13(b) and (d) are
0.394L and 0.400L respectively, which are both less than the
actual distances travelled (in units of L). In the limit N → ∞,
where the polygon becomes a circle, the distance converges to
D∞ = 4L2/π2 ≈ 0.4053L2. For large N systems then, it is a
good first approximation to use the MRSD for the distance.

The MRSD is always less than the root mean square
distance (RMSD), except in special cases when they are equal.
To see this, we can apply Hölder’s inequality

N∑

k=1

(gk)
α (hk)

β �
(

N∑

k=1

gk

)α ( N∑

k=1

hk

)β

where gk, hk � 0, α, β � 0, and α + β = 1. With the
specific identifications gk = (rBk − rAk)2 ≡ �r2

k , hk = 1,
and α = β = 1/2, we have directly

1

N

∑

k

√
�r2

k �
√

1

N

∑

k

�r2
k .

For example, the RMSD for the circle configuration discussed
above is

√
2L/π ≈ 0.4502L, which is greater than the MRSD.

The fact that the distance converges for large N to
MRSD rather than RMSD suggests that RMSD may not be
the best metric for determining similarity between molecular
structures, although it is ubiquitously used. This fact warrants
future investigation—it has implications in research areas from
structural alignment based pharmacophore identification [3–5]
to protein structure and function prediction [6, 7].

It was shown in [1] that chains with persistence length
characterized by some radius of curvature R have extensive
corrections to the MRSD-derived minimal distance, which
do not vanish as N → ∞, but remain so long as R/L

is nonzero. Likewise, chains that cannot cross themselves
have non-local EL equations and extensive corrections to the
minimal distance. Nevertheless, it is worthwhile to investigate
some more complex polymers with MRSD as an approximate
distance metric. We pursue this in the next section.

5.1. MRSD as a metric for protein folding

Here we examine the use of MRSD as a metric or
order parameter for protein folding. To this end we
adopt an unfrustrated Cα model of segment 84–140 of
src tyrosine-protein kinease (src-SH3), by applying a Gō-
like Hamiltonian [8–10] to an off-lattice coarse-grained
representation of the src-SH3 native structure (pdb 1fmk).
Amino acids are represented as single beads centred at their
Cα positions. The Gō-like energy of a protein configuration α

is given by the following Hamiltonian, which we will explain
term by term:

H(α|N) = kr

∑

bonds

(rα − rN )2 + kθ

∑

triples

(θα − θN )2

+
∑

n=1,3

k(n)
φ

∑

quads

[1 − cos (n × (φα − φN ))]

+ εN

∑

j�i+3

[

6

(
σi j

ri j

)10

−5

(
σi j

ri j

)12
]

+εN N

∑

j�i+3

(
σi j

ri j

)12

.

(43)

Adjacent beads are strung together into a polymer through
harmonic bond interactions that preserve native bond distances
between consecutive Cα residues. Here rα and rN represent the
distances between two subsequent residues in configurations
α and the native state N . As with other parameters in the
Hamiltonian, the distances rN are based on the pdb structure
and may vary pair to pair. The angles θN represent the angles
formed by three subsequent Cα residues in the pdb structure,
and the angles φN represent the dihedral angles defined by four
subsequent residues. The dihedral potential consists of a sum
of two terms, one with period 2π and another with 2π/3, which
give cis and trans conformations for angles between successive
planes of three amino acids, with a global dihedral potential
minimum at φN ∈ [−π, π].

The parameters kr , kθ , and kφ , are taken to accurately
describe the energetics of the protein backbone: we used
the values kr = 50 kcal mol−1, kθ = 20 kcal mol−1,
k(1)

φ = 1 kcal mol−1 and k(3)
φ = 0.5 kcal mol−1 for

molecular dynamics (MD) simulations using the AMBER
software package. For MD simulations using LAMMPS,
we had used slightly different values: kr = 80 kcal mol−1,
kθ = 16 kcal mol−1, k(1)

φ = 0.8 kcal mol−1 and k(3)
φ =

0.4 kcal mol−1.
The last line in equation (43) deals with non-local

interactions, both native and non-native. If two amino acids
are separated by three more along the chain (|i − j | � 3), and
have one or more pairs of heavy atoms within a cut-off distance
of rc = 4.8 Å in the pdb structure, the amino acids are said
to have a native contact. Then the respective coarse-grained
Cα residues are given a Lennard-Jones-like 10–12 potential of
depth εN = −0.6 kcal mol−1 (−0.8 kcal mol−1 for LAMMPS
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simulations) and a position of the potential minimum equal to
the distance of the Cα atoms in the pdb structure. That is, σi j

is taken equal to the native distance between Cα residues i and
j if i– j have a native contact.

If two amino acids are not in contact, their respective Cα

residues sterically repel each other (εN N = +0.6 kcal mol−1).
Thus εN N = 0 if i– j is a native residue pair, while εN = 0 if i–
j is a non-native pair. For non-native residue pairs, σi j = 4 Å.

In an arbitrary configuration α, two Cα residues i and j
are considered to have formed a native contact if they have a
distance ri j � 1.2σi j . The results do not strongly depend on
the specific value of this cut-off. The fraction of native contacts
present in the particular configuration α is then defined as Q (or
Qα).

The MRSD of configuration α is found by aligning this
configuration to the native structure, by minimizing MRSD
over three translational and three rotational degrees of freedom.

Constant temperature molecular dynamics simulations
were run for this system using both AMBER and LAMMPS
simulation packages. The probability for the system to
have given values of Q and MRSD within (Q, Q +
�Q) and (MRSD, MRSD + �MRSD) is proportional to the
exponential of the free energy F(Q, MRSD). Thus the free
energy can be directly obtained by sampling, binning, and
taking the logarithm:

F(Q1, MRSD1) − F(Q2, MRSD2)

= −kBT log

(
p(Q1, MRSD1)

p(Q2, MRSD2)

)
(44)

with F(1, 0) = EN , the energy of the native structure.
Figure 14 shows the free energy surfaces obtained using

the above recipe, for the AMBER (figure 14(a)) and LAMMPS
(figure 14(b)) molecular dynamics routines. The temperature is
taken to be the transition or folding temperature TF, where the
unfolded and folded free energies are equal.

Notice that F(Q) is comparable for both as it should be;
moreover, F(MRSD) is as well. However, the free energy
surface plotted as a function of both Q and MRSD shows
a marked difference. In addition to a native minimum, the
LAMMPS routine has an additional minimum at Q ≈ 0.95 and
MRSD ≈ 8.4. The conformational states in this bin are closely
related, with an average MRSD between them of 1.8 Å. We
can take the most representative state in this bin as that which
has a minimum MRSD from all the others in the bin (at Q ≈
.95, MRSD ≈ 8.4): mini (

∑′
j 	=i MRSDi j/

∑′
j 	=i ) ≈ 1.6 Å.

Inspection reveals that this state is a mirror image of the pdb
structure (see figure 14(b)): if we reflect this structure about
one plane, and subsequently align this reflected structure to the
pdb one, the MRSD is only 1.1 Å.

The discrepancy in free energy surfaces corresponding to
the presence of a low energy mirror-image structure arises
because the COMPASS class 2 dihedral potentials in the
LAMMPS algorithm do not ascribe a sign to the angle φ, so
the full range [−π, π] is projected onto [0, π]. This gives the
set of actual dihedral angles {φi + π} the same energy as the
set {φi}, so that the dihedral potentials have two minima rather
than one, and thus a protein chain of the opposite chirality
(a mirror image) is allowed and has the same energy as the

pdb structure. We found that the CHARMM and harmonic
dihedral styles do not have this problem; however, they have
less versatile function forms, so that we favoured modifying
the COMPASS dihedrals to define φ over its full range.

6. Conclusions

Analogously to the distance between two points, the distance
between two finite length space curves is a variational problem,
and may be calculated by minimizing a functional of two
independent variables s and t , where s is the arc-length along
the chain, and t is the ‘elapsed time’ during the transformation.

We derived the Euler–Lagrange (EL) equation giving the
solution to this problem, which is a vector partial differential
equation, with extremal solution r∗(s, t). We also derived
the sufficient conditions for the extremal solution to be a
minimum, through the Jacobi equation. Once the minimal
transformation r∗(s, t) is known, the distance D∗ ≡ D[r∗]
follows.

We provided a general recipe for the solution to the EL
equation using the method of lines. The resulting N + 1
EL equations for the discretized chain are ODEs that can be
interpreted geometrically and solved for minimal solutions.
Solutions consist generally of rotations and translations pieced
together so the direction of velocity of any link end point
does not suddenly change (the Weierstrass–Erdmann corner
conditions).

We explored the minimal transformations for the simplest
polymers, consisting of one or two links, in depth. For
transformations between two links, convexity becomes an issue
(the analogue to the direction of the radius of curvature for
a continuous string). For example, even if the initial and
final states lie in the same plane, if the convexities of these
states are of opposite sign the transformation must pass through
intermediate states that are out of the plane. Similarly, given a
semicircular piece of string lying on a table, to move it to a
semicircle of opposite convexity using the minimal amount of
motion, the string must be lifted off the table.

The study of minimal transformations between small
numbers of links has applications to the inverse kinematic
problem in robotics and movement control. In the inverse
kinematic problem, one is given the initial and final positions
of the end-effector (the hand of the robot), and asked for the
functional form of the joint variables for all intermediate states.
Generally there is no unique solution until some optimization
functional is introduced, such as minimizing the time rate of
change of acceleration (the jerk), torque, or muscle tension
(see the review [11] and references therein). The minimal
distance transformation would be relevant if one sought the
fastest transformation between initial and final states, without
explicit regard to mechanical limitations. The intermediate
points can be handled variationally as a free boundary value
problem.

In the limit of a large number of links, some
simplifications emerge. For chains without curvature or non-
crossing constraints, the distance converges to L times the
mean root square distance (MRSD) of the initial and final
conformations. So for example the distance between two
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Figure 14. Free energy surfaces for the folding of Gō-model src-SH3 using two molecular dynamics simulation packages, AMBER (a) and
LAMMPS (b). The contour plots give F(Q, MRSD). The projections F(Q) and F(MRSD) are also shown on each side. The COMPASS
class 2 dihedral potential in LAMMPS allows for a mirror image of the folded structure (red colour structure in inset) that is not immediately
evident from the F(Q) or F(MRSD) surfaces. Future implementations of LAMMPS using COMPASS dihedrals for biomolecular
simulations must then correct for dihedral angles defined on the interval [−π, π].
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strings of length L forming the top and bottom halves of a
circle respectively is 4L2/π2, the distance between horizontal
and vertical straight lines of length L which touch at one end
is L2/

√
2, and the distance to fold a straight line upon itself (to

form a hairpin) is L2/4.
The fact that for large N the distance (over L) converges

to MRSD rather than RMSD suggests that RMSD may not be
the best metric for determining similarity between molecular
structures, although it is ubiquitously used. Adopting MRSD
may lead to improvements in structural alignment algorithms.

The MRSD was investigated as an approximate metric
for protein folding. Free energy surfaces for folding
were constructed for two simulation packages, AMBER and
LAMMPS. It was found that including MRSD as an order
parameter uncovered discrepancies between the two molecular
dynamics algorithms. Because dihedral angles in LAMMPS
(at least in COMPASS class 2 style) are only defined on [0, π],
the potential admits a mirror-image structure degenerate in
energy with the native structure. This is easily remedied and
should not be interpreted as a deficiency in the LAMMPS
simulation package so long as one is aware of it. It should
be mentioned that the mirror-image structure would also
have been seen had RMSD been used as an additional order
parameter.

It will be important for future studies to address the
effects of persistence length and non-crossing on the distance
between biopolymer conformations [1]. Also important is the
role of entropy of paths or transformations in describing the
accessibility of a particular biomolecular structure. Along
these lines it will be interesting to investigate whether the
distance can be a predictor of folding kinetics, or proximity
to the native structure.

It is also an interesting question to ask whether the
actual dynamics between polymer configurations resembles
the minimal transformation, after a suitable averaging over
trajectories. This question is linked with the role of the
entropy of transformations described above. It is also related
to the problem of finding the dominant pathway for a chemical
reaction [12], which has recently been applied to the problem
of protein folding [13]. We have focused here on the question
of geometrical distance for complex systems, which can be
separated from the calculation of quantities such as reaction
paths that depend intrinsically on energetics, i.e. on the specific
Hamiltonian of the system. Quantifying the relationship
between geometrical distance and the dominant reaction path
is an interesting future question worthy of investigation.

The notion of distance and corresponding optimal
transformation for a system with many degrees of freedom is
fundamental to a diverse array of research subjects. Hence we
saw potential applications for this metric in areas ranging from
drug design to robotics. It is not clear at present how useful
the calculation of the true Euclidean distance between high-
dimensional objects will be for practical applications, but we
are optimistic.
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Appendix A. Necessary conditions for straight line
transformations

It was shown in section 3.1 that to have straight line
transformations between links it is sufficient to have facing
obtuse angles on opposite sides of the quadrilateral defined by
the transformation as shown in figure 3(a). We now show that
it is a necessary condition as well, i.e. we show that a slide in
the correct direction is not possible in the absence of obtuse
angles.

Without loss of generality assume that the link is initially
along the z axis. The paths travelled by the link ends are shown
in the figure. Note that the end point trajectories of A and B are
in 3D space so the paths travelled by A and B need not cross
or lie in the same plane. Let the unit vector along A’s path
be v̂A and the unit vector along B’s path be v̂B. Because the
angles that the path of A and the path of B make with the link
are acute, the z-component of v̂B (≡ zB) is negative and the
z-component of v̂A (zA) is positive. One can write v̂A and v̂B

as
v̂A = ρA + zAẑ

v̂B = ρB + zBẑ

where ρA and ρB are vectors in the xy plane and zA > 0 and
zB < 0.

Let rA(t) and rB(t) denote the positions of the A and B
ends at time t :

rA = t v̂A

rB = g(t)v̂B + ẑ

The rigid link constraint dictates that

(rA − rB) · (rA − rB) = 1

which translates to

g2 + 2g (zB − t (c + zA zB)) − 2tzA + t2 + 1 = 1

with c = ρA · ρB. Solving for g as a function of t , keeping in
mind that g(0) = 0,

g(t) = − (zB − t (c + zA zB))

+
√

(zB − t (c + zA zB))2 − t2 + 2tzA.

Now if g′(t) > 0 it means that the B-end of the link
is travelling in the assumed direction, and if g′(t) < 0 it
means that B-end is travelling in the opposite direction (which
means that the angle is not acute anymore). Writing g′(0) we
get

g′(0) = 2 zB c + 2 zA z2
B − 2 zA

2 |zB| + c + zAzB = −zA

|zB| < 0.

Thus point B can only travel in the opposite direction from
what was assumed, which in turn means an all-acute slide
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Figure A.1. Initial positions and unit velocities for the end points of
the link.

is not possible. We conclude that the condition of ‘facing
obtuse angles’ is necessary and sufficient for transformations
consisting only of pure translations.

Appendix B. Critical angles

The concept of critical angle was first introduced in section 3.2.
In order for a straight line slide of both ends to be possible, at
some stage during the transformation the link needs to rotate
about one of the ends, with the other end being stationary. In
principle the rotation can be about either of the two ends and it
can happen at the beginning or the end of the transformation.
The conditions on the critical angle or orientation can be
readily derived from the broken extremal conditions. It was
seen from (18a) and (19), the nontrivial corner conditions read

v̂i |+ = v̂i |− . (B.1)

We know that the path travelled by the moving bead during
the rotation is circular and the path that is travelled during the
slide part is a straight line. The broken extremal condition
forces these two paths to be patched smoothly, which means
that the straight line path should be tangent to the circle. In the
3D case, for the broken extremal condition to be satisfied, the
straight line slide path and the circular rotation path should lie
in the same plane. For example, in figure 5 where B is rotating
about A initially to B1 and then slides to B′, the rotation has to
be in the plane formed by the three points ABB′.

Matching the directions of velocity as in (B.1) does not
itself mean that a link can subsequently slide in a straight
line; however, at the tangent point, the tangent line to the
circle is perpendicular to the radius, hence one satisfies this
second condition as well. Below we derive an analytical
expression for the critical angle for a particular case of a single
link problem, as an example and illustration of the discussed
concepts. Furthermore, the particular example will be used
later in appendix C to introduce minimal transformations in
two dimensions.

Consider the single link action with the particular
parametrization s = s(θ), as discussed in section 3.2:

∫
(
√

ṡ2 + 1 + 2ṡ cos θ +
√

ṡ2) dθ (B.2)

where s ≡ −−−→
A(θ)A is the (signed) distance of the A-end from

its initial position, and θ is the angle between the link and the
horizontal line (see figure B.1).

Figure B.1. Transformation in which both ends stay on a linear
track.

The Euler–Lagrange equation of motion reads

d

dθ

(
ṡ√
ṡ2

+ ṡ + cos θ√
ṡ2 + 1 + 2ṡ cos θ

)
= 0 (B.3)

We consider a transformation which is not (necessarily) a
minimum:

s = a cos θ − sin θ + b (B.4)

with a and b parameters to be determined.
Such a transformation in fact forces the two ends to travel

on a straight line (right from the beginning), but the A side
may in fact retreat and then move forward. We call such a
transformation a ‘hyperextended transformation’. A sample
transformation of this kind is shown in figure B.1. The
parameters a and b in (B.4) can be tuned to meet the boundary
conditions (see below).

In fact, it is seen that point A on the link retreats backwards
until it reaches some critical angle, which is when link AB
makes an angle π

2 with the straight line BB′ that point B travels
on. Subsequently A then moves forward towards A′.

Assume that θ runs from θ1 to θ2, where 0 < θ2 < π/2.
For simplicity assume that both these angles are between 0 and
π
2 .

The boundary conditions dictate that

s(θ1) = 0 (B.5)

s(θ2) = l (B.6)

where l is the distance between A and A′.
a and b can be explicitly solved to give

a = − sin θ2 + sin θ1 − l

cos θ1 − cos θ2
(B.7)

b = −cos θ1 (− sin θ2 − l) + sin θ1 cos θ2

cos θ1 − cos θ2
. (B.8)

For our purposes we only need to note that the critical
angle occurs when ṡ ≡ ds

dθ
becomes zero, that is when A stops

going backward and starts moving forward:

ṡ = −a sin θ − cos θ = 0 (B.9)

where a is given in equation (B.7).
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Figure B.2. Geometric proof for critical angle condition.

We can now ask what θ1 should be so that there is
no need for the link to go backward, i.e. it moves forward
from the beginning and the transformation is monotonic.
Equations (B.9) and (B.7) give

cos θ + − sin θ2 + sin θ − l

cos θ − cos θ2
sin θ = 0. (B.10)

For pedagogical reasons we prove condition (B.10) using
analytic geometry as well. Looking at figure B.2 we have the
following:

g2 + l2
1 = 1 (B.11)

g2 + l2
2 = a2 (B.12)

g

a
= 1

l + l1 + l2
. (B.13)

We can solve g =
√

1 − l2
1 and a =

√
1 − l2

1 + l2
2 from the

first two equations and substitute in the third equation to give

l =
√

1 − l2
1 + l2

2
√

1 − l2
1

− l1 − l2. (B.14)

On the other hand based on our results for g and a we have

sin θ1 =
√

1 − l2
1

√
1 − l2

1 + l2
2

(B.15)

cos θ1 = l2√
1 − l2

1 + l2
2

(B.16)

sin θ2 = l1 (B.17)

cos θ2 =
√

1 − l2
1 . (B.18)

Figure B.3. A minimal transformation in s(θ) parametrization. The
horizontal segment corresponds to pure rotation and the curved
section corresponds to slide on straight paths. Here the corner
conditions demand that the derivative ṡ be continuous at the critical
angle.

Substitution of equations (B.15)–(B.18) in equation (B.10)
gives equation (B.14) after some simplification.

For the particular case that we have discussed, the
proposed transformation is in fact a minimal solution if θ1 is
greater than the critical angle, because in this case a simple
slide would be possible. If θ1 is less than the critical angle
a locally minimum solution as we know is pure rotation to
the critical angle and then straight line slide. Pure rotation
has a nice geometric interpretation in our parametrization. It
corresponds to the null solution s = 0. Since at the critical
angle ṡ = 0 we see that s = 0 will be smoothly patched with
s = a cos θ − sin θ + b, as mandated by the corner conditions
in equation (18a). A plot of s as a function of q for such a
transformation is given in figure B.3.

Appendix C. Minimal transformations in two
dimensions

It was seen in section 4.1 that for the case of two links, when
one is confined to moving in a plane, satisfying the constant
link length constraints and corner conditions does not seem
to lead to solutions which are extremal. However, given the
additional constraint that the links must lie in a plane, there
must be one or a set of minimal transformations. We need
to look at other forms of transformations, namely compound
straight line transformations. We will elaborate on the idea
starting with single links.

The hyper-extended solution that was discussed previ-
ously in appendix B can be considered as a very special exam-
ple of compound straight line transformation. These are trans-
formations that are made strictly from straight line paths with
no pure rotation. A more general transformation is shown in
figure C.1 beside the old transformation.

Note that the corners do not technically violate the corner
conditions because the speed of the ‘A’ bead is zero at the
corner point in any parametrization that can simultaneously
describe A motion and B motion: since at the corner point
the link makes an angle of 90◦ with the path that B travels,
the speed of B at the critical angle is infinitely larger than the
speed of A. In fact, one sees that we have an instantaneous pure
rotation about the A bead, when it is at the corner point. v̂a is
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Figure C.1. The previous hyper-extended solution is shown along
with a more general compound straight line transformation, where−−→
AA′′ travels in some general direction. The length of each line
segment is written beside it. For the hyper-extended solution the
value of AA′′ is multiplied by two because the path is travelled twice.

Figure C.2. Optimal compound straight line transformation.

not clearly defined at the corners, and everywhere else (when
the speed of the bead(s) is not zero) the two beads are travelling
on a straight line. The two solutions depicted in the figure come
from two different parametrizations of the most general form
of the action and result in different distances. But each of them
is a local minimum once the direction of

−−→
AA′′ is picked, and

these local minima have different values for the distance.
We can then ask about the best position to put the corner

point, to minimize the distance travelled in the compound
straight line transformation, with respect to other compound
straight line transformations. We assume the corner occurs on
one side and we take it to be the ‘A’ side.

Note that at the corner the link makes a 90◦ angle with the
B-bead path BB′, meaning that the distance from the corner
point to the B path is always the length of the link, i.e. unity
here. Also note that the total distance that the ‘A’ bead travels
is the distance from the initial point A to the corner point A′′,
plus the distance from A′′ to the final position A′.

The locus of points with equal sum of distances from two
points A and A′ defines an ellipse with foci at A and A′.
Moreover, the length of the major axis of the ellipse equals
the sum of the distances from the foci. Thus the smaller the
major axis of the ellipse with foci A and A′, the smaller the
total distance travelled by the ‘A’ bead. Moreover A′′ should
sit on a line parallel to the B path at a distance of 1 from the
B-path line BB′. So in seeking the shortest distance travelled
by the A end of the link, we seek the point A′′ such that it lies

Figure C.3. An optimal compound straight line solution for two
links. For this particular class of solutions, the problem is divided
into two disjoint problems (one for each link) and solved separately.

Figure C.4. Minimal transformation restricted to two dimensions,
for two links of opposite convexity which form opposite sides of a
square.

on an ellipse with foci A and A′, the ellipse shares at least one
point with a line parallel to BB′ and distance 1 away from it,
and lastly that the ellipse has the smallest possible major axis
(see figure C.2). So the ellipse giving the minimal distance is
tangent to the parallel line, and A′′ is the tangent point. This is
illustrated in figure C.2.

This solution can be straightforwardly extended to two
links, as depicted in figure C.3. Consider then the example
in figure 13(a), where the links are no longer allowed to move
out of the plane (see figure C.4). Here rA = rA′ and rC = rC′

and the above ellipses turn into circles centred at A and C. The
circles have radii 1 − 1/

√
2, so that the perpendicular distance

from line BB′ to the farthest point on the circle is 1 and a fully
extended intermediate state is allowed.
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