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ABSTRACT: We cast the problem of protein transfer free energy within
the formalism of density functional theory (DFT), treating the protein as a
source of external potential that acts upon the solvent. Solvent excluded
volume, solvent-accessible surface area, and temperature dependence of
the transfer free energy all emerge naturally within this formalism, and may
be compared with simplified “back of the envelope” models, which are also
developed here. Depletion contributions to osmolyte induced stability
range from 5 to 10kBT for typical protein lengths. The general DFT
transfer theory developed here may be simplified to reproduce a Langmuir
isotherm condensation mechanism on the protein surface in the limits of
short-ranged interactions, and dilute solute. Extending the equation of
state to higher solute densities results in non-monotonic behavior of the
free energy driving protein or polymer collapse. Effective interaction
potentials between protein backbone or side chains and TMAO are obtained, assuming a simple backbone/side chain two-bead
model for the protein with an effective 6−12 potential with the osmolyte. The transfer free energy δg shows significant entropy:
d(δg)/dT ≈ 20kB for a 100-residue protein. The application of DFT to effective solvent forces for use in implicit-solvent
molecular dynamics is also developed. The simplest DFT expressions for implicit-solvent forces contain both depletion
interactions and an “impeded-solvation” repulsive force at larger distances.

1. INTRODUCTION

Proteins fold and function in the crowded environment of the
cell. Cytosolic proteins must negotiate a complex milieu which
in many ways is significantly different than the environment in
the test tube: roughly 15% of water molecules are motionally
restricted by protein and membrane surfaces;1 the surrounding
solvent is enriched in ions such as potassium but depleted in
sodium and chlorine; osmoprotectants such as trehalose and
various amino acids are present in significant concentration;
numerous membrane surfaces such as the nucleus, ER, and
Golgi impose charged substrates for protein interaction;
macromolecular agents such as the microtubules, actin,
ribosomes, soluble proteins, and RNA occupy roughly 30%
(≈300 g/L) of the cellular volume, and modulate stability,2

aggregation propensity,3 and dissociation constants.4,5

Non-cytosolic proteins also fold in environments distinct
from the test tube as well as the cytosol, particularly with
respect to ionic and redox conditions as well as the chaperone
complement. Proteins destined for the plasma membrane or
extracellular matrix are trafficked by the secratory pathway
through the ER and Golgi.6 The environments in the ER and
cytosol are sufficiently different that the conditions for protein
folding are generally mutually exclusive between the two milieu.
Folding generally occurs in the lumen of the ER, while function
occurs either on the plasma membrane or in the extracellular
matrix, which is itself densely occupied by highly charged
glycosaminoglycans such as hyaluronan and heparin sulfate
large molecules that may facilitate cellular migration and
regulate secreted protein activity. Fibrous proteins such as
collagen and fibronectin also occupy the extracellular space, and

provide structural rigidity while allowing rapid diffusion of
nutrients and signaling metabolites between constituent cells.
The above examples demonstrate the need to correctly

account for the effect of the cell environment on protein
folding, stability, and function. Accurately accounting for the
effects of the cell environment presents a challenge however to
both experimental and computational studies. Experimentally,
most of what is known about protein folding and stability has
resulted from in vitro studies at dilute concentrations, and many
questions remain as to how well such results apply to a realistic
cell environment. Computationally, including explicit solvent
along with a realistic concentration of osmolytes in a box of
sufficient size to implement periodic boundary conditions
outside the range of an electrostatic cutoff typically increases
the number of particles in the simulation by a factor on the
order of 10 or more.7 While this can be done for small proteins
such as Trp-cage,7 investigating larger proteins generally
requires coarse-grained models to keep the computational
resources required reasonable.8

Computational studies of crowding on isolated monomeric
minimal β-barrel proteins find that the folding temperature is
increased and the folding time decreased.9,10 However,
molecular crowding has been shown in secretory cells to
impair protein folding and lead to aggregate formation in the
ER.11 It has been estimated that increasing the total
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intracellular protein concentration by 10% can potentially
increase the rate of protein misfolding reactions following a
nucleation−polymerization mechanism by a factor or 10.12

Consistent with these observations and estimates, another MD
folding study of a coarse-grained model of crambin found that
the presence of multiple protein copies with a weak
interprotein attractive potential (a more realistic scenario)
hindered correct monomeric folding and predisposed the
system to aggregation and misfolding.13

The above considerations motivate the creation of computa-
tional models, with which we can account for the cellular
environment around a protein in an accurate but less
computationally expensive way. We begin this paper by
reviewing some common methods for calculating the free
energy to transfer a molecule from one solvent environment to
another. Two of the most common of these are phenomeno-
logical continuum approaches and liquid state theory
approaches.
The observed linear dependence of the log solubility on the

number of CH2 groups and hence chain length, particularly for
long chain saturated fatty acids (decanoic acid and longer), and
long-chain aliphatic alcohols (1-butanol and longer), can be
taken to indicate a free energy change upon transfer to solvent
that scales linearly with either volume or surface area.
Historically, surface area has been taken, under the assumption
that interactions with the solvent take place at the surface of the
molecule in question.14,15 Then, the free energy difference
between an amino acid in water and in a solvent with some
osmolyte concentration is, for a given configuration, given in
terms of the accessible surface area (ASA) of that configuration
by the phenomenological expression: ΔF = γ·ASA + c, where γ
is obtained from, e.g., a tripeptide experiment.16

The coefficient γ depends on the atomic species being
transferred. A more refined approach is thus necessary for a
protein, wherein the accessible area of the various types of
amino acids along with the backbone are treated differently, so
that

∑ γΔ = +F cASA
i

i i
(1)

The γi values are taken to be distinct for polar and nonpolar
residues, and may even depend on the specific amino acid
identity.17,18

Recent simulation studies have found significant volume
contributions to transfer free energies, however.8 In these
studies, model solvents with no enthalpic interaction (hard
sphere solvents) still showed significant transfer free energies,
due solely to excluded volume. Volume corrections to the
surface area model, computed by scaled particle theory or
RISM approaches, have been investigated by several
authors.19−22 Also, Baker and colleagues have found that the
inclusion of volume terms (computed by scaled particle particle
theory) and dispersion integral terms (computed by Weeks−
Chandler−Andersen theory) were essential for an accurate
implicit solvent description of atomic-scale nonpolar forces.23

Obviously, the phenomenological approach can only
approximately capture the effects of the environment, which
will include both interaction energies between the osmolytes
and the protein, and terms arising from the change in entropy
of the osmolyte bath. These techniques, though, are
popular,16,24−30 computationally cheap to implement, and
generalizable to include continuum electrostatic and van der

Waals terms to accurately parametrize a given solvent, typically
water.30,31

Approaches based on liquid state theory generally seek to
calculate the correlation function between sites within the
protein and some model for a continuous medium surrounding
it. One approach to doing this is the reference site interaction
model (RISM),32 which defines sites in the protein and the
surrounding molecules. Once these sites are defined, the
correlation function between them can be determined using the
Ornstein−Zernike equation:33

∫ ρ= + ′ ′ ′ −h r c r r c r h r r( ) ( ) d ( ) ( )
(2)

where h(r) is the total correlation function, c(r) the direct
correlation function, and ρ the solvent density. To solve eq 2, a
closure relation is needed, such as the hypernetted chain
(HNC) closure:33−36

= −β− + −h r( ) e 1u r h r c r( ) ( ) ( )

or the Kovalenko−Hirata closure.37 Here, u(r) is the direct
interaction potential between particles. Once correlation
functions have been calculated, transfer free energies can be
determined through standard methods.
Another liquid state theory approach uses the density

functional theory (DFT) developed originally for electronic
structure calculations, and applies it to condensed classical
systems.38−43 It is noteworthy that Peter Wolynes has made
significant contributions to the application of density functional
methods in condensed matter systems, primarily through his
fundamental studies of glass physics and the glass transi-
tion44−50 but also in protein folding.51−53 Density functional
theory has also been applied to a variety of non-homogenous
systems such as associating liquids and polymer nano-
composites.54,55 Takada and colleagues have used DFT to
address crowding effects on the aggregation of proteins,
wherein protein concentration is treated as a density field
with the whole protein simplified to a sphere.56,57

Wolynes’ previous applications of DFT to address problems
in disordered condensed matter systems have, along with the
other studies mentioned above, inspired us to continue this
tradition in chemical physics and his legacy in that context, and
consider the application of DFT to protein stability. Here, we
treat the protein as the source of an external potential, which
allows a much more realistic protein model. This approach has
certain advantages, which we will return to later.
Liquid state theory approaches have been shown to give

solvation densities consistent with values from explicit solvent
calculations,58 and can be refined to arbitrary accuracy by
including additional interaction sites, three-body correlations,
and quantum corrections.59−63 Liquid state theory can be used
to determine correlation functions for the constituent atoms
within osmolytes as well as osmolytes as a whole, so that effects
such as the orientation of polar solvents can be captured. Liquid
state theories are generally much more accurate than
phenomenological approaches such as eq 1,16 particularly
when discrete molecular aspects of solvation are important. The
principle disadvantage is the large computational cost of solving
the equations for each configuration. Also, implicit solvation
models using continuum electrostatics with optimized param-
eters (GB/SA) are now capable of obtaining solvation energies
typically within ∼1 kCal/mol of experimental values for small
neutral solutes, while charged solutes tend to show larger
errors.64 Nevertheless, GB/SA continuum methods have shown
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increased utility and widespread use for molecular dynamics
simulations.30,31

A large body of literature is concerned with calculating the
electrostatic response of a continuous media to the insertion of
a molecule.65 This is vitally important in the context of water
solvation. In this context, DFT has been applied to the problem
of solvation by Borgis and colleagues.66,67 We became aware of
their work only in the late stages of preparing this manuscript;
our approach is similar at least in spirit to theirs; however, we
take a more conceptual approach to address much larger
protein systems and the effects of osmolyte solutions, and how
the DFT framework subsumes many of the notions contained
in simplified heuristic models.
The problem we consider in this paper is that of calculating

the free energy change upon moving a solute such as a protein
from a pure water environment and inserting it into a water and
osmolyte environment. Figure 1 illustrates the problem we are
considering in the context of the Tanford transfer model for
protein folding;68 we will return to this diagram several times
throughout the paper.

The organization of this paper is as follows. We begin in
section 2 by investigating the expected behavior of the surface
and volume contributions to the transfer free energy in a
heuristic model. In section 3, we derive the principle equations
for the DFT model of the transfer free energy. In section 3.2−
section 5, we consider several examples of how the DFT model
can be applied, making connections with the model developed
in section 2. We finally conclude and give our outlook on future
directions for this approach.

2. VOLUME AND AREA TERMS IN THE TRANSFER
FREE ENERGY
2.1. Volume Considerations. To appreciate the terms that

we expect in an expression for the transfer free energy, we
initially consider both volume and surface area effects in a more
qualitative way. We consider the difference in volume occupied
by the folded and unfolded states, or more precisely the
expanded and collapsed states of a polymer, to obtain the
corresponding free energy difference in the presence of a bath
of “hard-sphere” osmolytes. There are thus no surface
interactions to consider, and we seek to estimate the magnitude
of the volume effect; we also ignore for the time being the
change in internal free energy as the polymer collapses. The
free energy change upon collapse of a protein or polymer then

arises from the change in entropy of the osmolytes, due to the
change in available phase space. For hard-sphere osmolytes, the
volume occupied by the expanded polymer will be larger than
that of the collapsed polymer. The same considerations apply
to a collapsed vs expanded protein; unfolded states of proteins
are generally found to be expanded relative to the folded
state.69 In what follows, let ra be the mean amino acid radius, ro
the osmolyte radius, and Np the number of amino acids in the
polymer or protein. Treating the unfolded protein crudely as a
meandering cylindrical tube (see Figure 2a, inset), the volume

is approximately π(ra + ro)
2(2raNp + 2ro), which is that of a

cylinder of radius ra + ro and length 2Npra + 2ro. The volume of
the collapsed globule, or folded protein, can be modeled as a
sphere of radius Rp + ro, where Rp is the protein radius as
probed by a zero-radius osmolyte particle; i.e., the collapsed
volume is (4/3)π(Rp + ro)

3. When ro = 0, the unfolded and
folded volumes must be equal, giving Rp

3 = (3/2)Npra
3. The

change in available volume for osmolytes ΔV(ro) upon polymer
collapse is thus positive, and is plotted in Figure 2 as a function
of osmolyte radius ro, for a chain of length Np = 70.
We can compare the results of the above simple model to

data taken from simulations of a Cα Go̅ model of cold-shock

Figure 1. A diagram of the Tanford transfer model, for a transfer
process going from a pure water environment to one of water and
osmolytes. Knowledge of the free energy of unfolding ΔGwat

u→f in the
absence of osmolytes can be combined with the transfer free energies
of the folded (ΔGw→o

fold ) and unfolded (ΔGv→s
un ) states to obtain the free

energy of unfolding in the presence of osmolytes ΔGosm
u→f. Figure 2. (a) Plot of minus the change in volume upon collapse

ΔV(ro) = Vu − Vf, as a function of osmolyte radius ro, for a polymer
chain of length Np = 70 residues and with ra = 6 Å. The magnitude of
the change in volume monotonically increases as ro increases. Also
plotted are the average ΔV = ⟨Vu⟩ − ⟨Vf⟩ values of simulation
trajectories of cold-shock protein (N = 70, PDB 2L15) against probe
radius. (Inset) Schematic of collapsed/folded and unfolded polymer.
Folded polymer has radius Rp; unfolded polymer has tube radius ra and
length Npra. (b) Minus the change in free energy upon collapse as a
function of osmolyte radius ro, for both constant packing fraction η
and constant concentration ρ. The value of ρ was set to 1 M, and the
value of η was set so that the free energy change would be equal to that
at constant ρ at a typical osmolyte radius of 3.1 Å. This gave a packing
fraction of η ≈ 0.075.
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protein (PDB 2L15), with 70 amino acids, generated with the
GROMACS molecular dynamics package. The Go̅ potential
was generated using a shadow map for the native contacts70 by
the SMOG@ctbp server.71 The simulated free energy surface
has a double-well structure with well-defined folded (f) and
unfolded (u) ensemble, as observed in Cα Go̅ models for other
single domain proteins.72 We take conformational snapshots in
each ensemble and measure the volume using a variable probe
radius with the program VOIDOO.73 The average volume
change ΔV = ⟨Vu⟩ − ⟨Vf⟩ for a given probe radius is plotted in
Figure 2a. The theory and simulation data compare quite well
given the simplicity of the model.
We now consider the free energy as a function of either

uniform density ρ or packing fraction η of the osmolytes. Given
a large effective box with volume Vbox containing a given
protein, the packing fraction of osmolytes η (i.e., the volume
density) is given by

η
π π

π ρ=
−

≈ = ·
r N

V V r

r N

V
r

( )
4
3

4
3 o

3
o

box prot o

4
3 o

3
o

box
o

3

where ρ is the number density. Thus, at a fixed packing fraction,
the number of osmolytes No scales as ro

−3.
To estimate the volume contributions to the free energy

change upon collapse, ΔFV(ro), as a function of osmolyte radius
but at either fixed density or packing fraction, we may initially
use the ideal gas approximation for the osmotic pressure posm =
ρkBT to obtain

ρ
η

π
Δ = Δ = Δ =

Δ
F r p V r k T V r

k T V r

r
( ) ( ) ( )

( )
V o osm o B o

B o
4
3 o

3

(3)

where ΔV(ro) is obtained from the model above.
A plot of the magnitude of the free energy change upon

collapse as a function of osmolyte radius, here exclusively due
to the increase in entropy of osmolyte particles, is shown in
Figure 2b. On the basis of these considerations, we can estimate
the volume-like contribution for typical osmolyte sizes and
concentrations. Taking TMAO as an example, we expect the
osmolyte radius to be about 2 Å, from the water oxygen−
TMAO nitrogen radial distribution function.74 Given this
radius and a concentration of 300 g/L, for a protein of length
Np = 70, we estimate a volume contribution to the free energy
of ∼4kBT. The free energy of unfolding is linear in protein
length, so a larger protein of Np = 300 has an estimated ΔG ≈
17kBT.
2.2. Surface Considerations. The presence of osmolytes

in solution can make the effective solvent more repulsive to the
protein, resulting in stabilization, or more attractive to the
protein, resulting in denaturation. What effect is observed
depends on the energy ε of osmolyte−protein binding and also
the concentration c (or equivalently the chemical potential μ)
of the osmolyte.
The energy ε of binding of the osmolyte is actually the

difference in internal free energy of binding between osmolyte
and water, since, for example, water may have some attraction
to the polymer, and also an osmolyte may supplant more than
one water molecule in the process of binding.
Previous treatments of transfer free energy analysis as a

condensation problem onto the surface of the protein have
been undertaken primarily in the context of protein
denaturation and the prediction of m-values.75−77 The process

of condensation of an osmolyte to a surface is equivalent to the
well-known statistical mechanical problem of Langmuir’s
isotherm,78 for which the partition function in the (T, μ)
ensemble for a substrate with M absorbing sites is given by
(1 + e−β(ε−μ))M. The mean covering ratio f is then given by

μ
=

∂
∂

=
+ β ε μ−f

kT
M

log 1
1 e ( ) (4)

and the mean energy of condensation on the surface is Mfε.
Here we neglect interactions between osmolytes when bound.
The Helmholtz free energy in this model is given by

μ μ= − + = − +F pV fM k T fMlog( )B

with T, μ partition function as given above.
We can relate the Langmuir isotherm to the free energy of a

protein surface by assuming that each osmolyte occupies an
area a0 ≈ πro

2 on the protein surface, so that we can write M =
A/a0, where A is the protein’s solvent accessible surface area in
a given conformation. The change in free energy FA upon
condensation becomes

μ= − + +β ε μ− −F k T
A
a

f
A
a

log(1 e )A B
0

( )

o (5)

If the concentration of unbound osmolyte is dilute, an ideal
gas approximation suffices for the chemical potential: μ =
kT log(ρ/ρQ), where ρQ is a reference concentration (typically
taken to be 1 M). The quantity e−βε/ρQ is typically treated as an
equilibrium constant in the literature.76,77 We consider both
dilute and nondilute limits below. The protein’s exposed
surface area is obtained from the volume given in section 2.1 by
A = ∂V/∂ro, so the collapsed exposed area is 4π(Rp + ro)

2 and
the expanded (random coil) exposed area is 2π(ro + ra)[(2Np +
1)ra + 3ro].

2.3. Combined Surface/Volume Model for the Trans-
fer Free Energy. We can now write the total free energy of
collapse ΔF arising from osmolytes by combining the volume
and surface area terms in eqs 3 and 5. We can also remove the
ideal gas assumption by expressing ΔF in terms of the
Carnahan−Starling (CS) approximations to the pressure and
chemical potential:79

ρ η η η
η

μ ρ ρ η η η
η

= + + −
−

= + − +
−

p k T

k T k T

1
(1 )

log( / )
8 9 3

(1 )Q

B

2 3

3

B B

2 3

3
(6)

Then the free energy becomes

π
μ

π
Δ = Δ + − + Δ

⎛
⎝⎜

⎞
⎠⎟F p V

k T
r

f
f
r

Alog(1 )B

o
2

o
2

(7)

with f given in eq 4 and p and μ given in eq 6, and where

π π

π π

Δ = + − + +

Δ = + − + + +

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

V r
N

r r r r N r r

A r
N

r r r r N r r

( )
4
3

3

2
2 ( ) ( )

( ) 4
3

2
2 ( )[(2 1) 3 ]

o
p

1/3

a o

3

a o
2

p a o

o
p

1/3

a o

2

a o p a o

are the volume and surface area change upon folding (or
collapse).
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We plot eq 7 in Figure 3 as a function of osmolyte radius ro,
for condensation energies ε = 2kBT and ε = −kBT. To assess

the limits of the ideal gas model, we have also plotted the ideal
gas results in Figure 3. For repulsive osmolyte−protein
interactions, both surface and volume terms stabilize the folded
or collapsed state (Figure 3). The free energy change upon
collapse is monotonically decreasing (increasing in magnitude)
from zero, and more strongly favoring collapse as osmolyte
radius is increased. Nonideal excluded volume effects in the
osmolyte pressure and chemical potential enhance the
stabilizing effect. For attractive osmolyte−protein interactions,
the situation is more complex. At small values of osmolyte
radius ro, the collapsed phase is destabilized by osmolyte−
protein binding, which favors expansion. As ro increases, the
volume change upon collapse increases, which begins to
entropically favor collapse. The osmotic pressure initially
increases modestly, additionally favoring collapse. However,
the chemical potential also increases modestly, driving
condensation of osmolyte and favoring expansion. These two
effects nearly cancel each other, rendering the real and ideal gas
curves nearly coincident up to ro ≈ 4 Å. The sigmoidal
dependence of covering fraction f in eq 4 on chemical potential
μ results in a sudden condensation of osmolyte onto the
protein around ro ≈ 5 Å, which induces the system to favor
expansion at these radii. While the number of condensed
osmolytes is bounded, the osmotic pressure is not, and
eventually collapse is favored once again through volume
terms. The osmolyte radius ro can only increase until η ≈ 0.6
(near crystal packing densities), giving a cutoff of ro

(cut) ≈ (3η/
4πρ)1/3, or about 6.2 Å for 1 M concentration.
In the limit that the osmolyte is dilute, ρe−βε/ρQ ≪ 1 and we

can expand the logarithm in eq 7 to obtain an area contribution
to the free energy of −ρkBTAe−βε/a0ρQ, so that the free energy
change upon unfolding becomes

ρΔ = Δ − βε−F k T V At( e )B (8)

Here we have used the fact that (a0ρQ)
−1 has units of length

and can thus be interpreted physically as a thickness t over
which the surface interaction acts.
Having looked at these preliminary volume and surface

considerations, we now turn to a classical density functional
theory formulation, which provides a more complete under-
standing of the transfer free energy, and also reduces to eq 8 in
the appropriate limits.

3. THE DENSITY FUNCTIONAL THEORY
FORMULATION

We now consider a density functional formulation of the
problem of transfer free energy. In what follows, we will assume
that the intraprotein energy of a given configuration of a
protein is in principle known and the net interaction between
any given site on the protein and either the osmolyte or water is
in principle known. We then wish to calculate ΔF, the free
energy of transferring the protein from water to an osmolyte
solution, or, equivalently, of transferring the osmolytes from an
aqueous solution to one containing the protein (see Figure 1).
In short, we wish to consider the effect that the presence of
osmolytes has on the free energy of the protein.
The uniqueness of the Kohn−Sham density functional may

be extended to finite temperatures, so that the free energy of
the protein−solvent system is uniquely expressed as a
functional of the single particle density ϕ(r).80 We thus seek
an expression for the free energy of the osmolytes and water in
an arbitrary external potential. For our purposes in obtaining a
transfer free energy, we will treat a given protein configuration,
with atom positions {Ri}, as the source of the external potential.
We write the free energy in the standard way:54

∫ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

= − −

+ + + Φ

+ Φ + Φ

F rk T S SR r r

r r r r

({ }) d ( ( ( )) ( ( )))

( ) ( ) ( ) ( ) [ ]

[ ] [ , ]

i
3

B o o w w

o o w w o o

w w ow o w (9)

Here ϕj is the density function for the osmolytes (o) or water
(w) and j the external potential on the respective species.
The entropy density for each species can be written as

ϕ λ ϕ ϕ λ ϕ+ = − −S Sr r r r r r( ) ( ) ( ) log[ ( )] ( ) log[ ( )]o w o o
3

o w w
3

w

(10)

where λo and λw are constants with units of length, analogous to
thermal wavelengths. The terms Φo, Φw, and Φow are the
multiparticle correlation contributions to the free energy for the
respective species. For example, the two-particle correlation
part of Φo would have the form

∬ϕ ϕ ϕΦ = − |r r U gr r r r r r[ ] d d ( ) ( ) ( ) ( , )o
(2)

o
3

1
3

2 o 1 o 2 oo 1 2 1 2

(11)

where Uoo is the interaction potential between two osmolytes
and g the two-particle correlation function. The full multi-
particle function is not known exactly, and thus, as in electronic
DFT, while eq 9 is exact in principle, approximations must be
made to use it in practice.81

We now make two key assumptions. The first is that the
water and osmolyte densities are completely correlated, such
that all vacua are occupied by either water or osmolyte. Thus,
Nwvw + Novo = V, where vi is the volume of an individual water
or osmolyte molecule, and V the total volume. Dividing this by

Figure 3. Total free energy change ΔF upon collapse in units of kBT,
as a function of osmolyte radius ro. Values of packing fraction η
corresponding to the values of ro on the x-axis are shown above the
plot. Curves are taken from eq 7 which combines surface area and
volume terms. Here the polymer length is Np = 70, the osmolyte
concentration is ρ = 1 M, and ra = 6 Å. Red curves show ΔF upon
collapse for a repulsive osmolyte with interaction energy +2kBT, i.e., a
crowding particle. Blue curves show ΔF upon collapse for an attractive
osmolyte with interaction energy −kBT, i.e., a weak denaturant. Plotted
are both the model with ideal gas (IG, dashed) and Carnahan−Starling
(C−S, solid) pressure and chemical potential. A similar plot to the red
curves, for more dilute concentration, appears in ref 96.
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Vvw and allowing the local density of a given species to vary
gives

ϕ ϕ ρ+ =fr r( ) ( )w o w (12)

where f = vo/vw and ρw = 1/vw (the factor of f allows for the
osmolyte molecule to be a different size than the water
molecule). Equation 12 is not valid in the interior of the
protein, so we split our system up into two regions: a hard wall
region Vhw, in which ϕw = ϕo = 0, and the rest of the system,
which has a volume V identical to the volume of the osmolyte−
water bath prior to the insertion of the protein, and in which eq
12 is valid. We further take Vhw to be the same as the change in
volume of the aqueous system the protein was removed from in
the transfer process (see Figure 1), so that the total system of
water, protein, and osmolyte−water solution does not change
volume during the transfer process.
With the approximation of eq 12, we can write

ϕ ϕ ϕ ρ+ = Δ +r r r r r r r( ) ( ) ( ) ( ) ( ) ( ) ( )o o w w o w w
(13)

ϕ ϕ ϕ ϕ ϕΦ + Φ + Φ = Φ[ ] [ ] [ , ] [ ]o o w w ow o w t o (14)

where Δ (r) = o(r) − f w(r).
The second approximation in our treatment is that the

osmolyte number density is much less than that of water. Using
this approximation along with the one given in eq 12, the
entropy in eq 10 becomes
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In this way, we express each part of eq 9 in terms of osmolyte
density and constant terms. The free energy functional may
then be written as

∫ ϕ λ ϕ γ ϕ

ϕ ρ λ ρ ρ ϕ

= − +

+ Δ + + + Φ
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r r
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3
o o

o w w
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(16)

where ≡ ∫ d3r (r) and γ + 1 ≡ f(1 + log(λw
3ρw)). Since V

is the volume of the system, the term Vρw is equal to V/νw =
Nw′ , the total number of water molecules in a system of pure
water of volume V.
Thus, dropping the subscripts, letting ≡ Δ , and

ignoring any position-independent terms, we can write the free
energy as

∫ ϕ λ ϕ ϕ γϕ

ϕ ϕ

= − +

+ + Φ

F r k T k Tr r r r

r r

d ( ( ) log ( ) ( )) ( )

( ) ( ) [ ]

3
B

3
B

(17)

where Φ[ϕ] is the functional containing the multiparticle
correlation part of the free energy and λ ≡ λo is a constant with
units of length analogous to the thermal wavelength, whose
value will be shown to be unimportant. For now, we will
formally manipulate Φ without making assumptions about its
form. We can find the density that minimizes the free energy by
use of the Euler−Lagrange equations, with the constraint that

the osmolyte density when integrated over the total volume is
the total number of osmolytes:

∫ ϕ =r Nrd ( )
V

3
o (18)

We thus write
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where μo is the Lagrange multiplier corresponding to the
constraint in eq 18. Physically, we can interpret eq 19 as a
statement that δF/δϕ is equal to the chemical potential μo, and
thus must be a constant value at all points in space. Solving this
for the density field gives

ϕ λ= γ β μ− − +Φ′−r( ) e e r3 ( ( ) )o (20)

where Φ′ ≡ δΦ/δϕ.
To obtain μo from eq 20, we use the constraint on the total

number of particles in eq 18 which yields

∫
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From here, we can obtain the transfer free energy, which is
given by the free energy of the osmolyte bath in the presence of
the external protein potential, (r), minus the free energy of
the osmolyte bath without the protein potential ( (r) = 0).
We thus have
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where the volume V integrated over is the volume outside of
the hard-wall volume of the protein, and is the same in the
initial and final systems. The difference ΔF is independent of λ
and γ.
The bath in the initial state is homogeneous and isotropic, so

Φi′ in eq 22 is independent of position. Thus, it may be factored
out of the integral

∫ =β β− Φ′ − Φ′r Vd e e
V

3 i i

so that

∫Δ = − β− +ΔΦ′⎜ ⎟
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rlog

1
d e

V

r
B o
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(23)

where ΔΦ′ = Φf′(r) − Φi′. The expression in eq 23 consists of
the logarithm of the integral of a Boltzmann weight for the
effective potential (r) + ΔΦ′(r). Here (r) and ΔΦ′(r)
enter on equal footing. Recall that is the protein−osmolyte
potential, treating the protein as an external source. Φ′ is the
functional derivative of the multiparticle part of the free energy.
If we use the two-particle osmolyte contribution from eq 11, we
obtain
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which gives the difference of two terms in the presence and
absence of the external protein potential, where each term
corresponds to the equilibrium-averaged interaction energy
between osmolytes, up to pair correlations. Thus, the term ΔΦ′
in eq 23 can be interpreted as the change in energy due to
redistribution of the environment in response to the change in
external potential.
We can recast eq 23 into a form that will be more useful

later:

∫Δ = − + −β− +ΔΦ′⎜ ⎟
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r
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which has the advantage that, when and ΔΦ′ are both zero,
the integrand is also zero, and thus the integral can be taken
over all space.
In eq 25, we can take the limit V → ∞, with No/V = ρ fixed.

Then, assuming that the region over which the integrand in eq
25 is nonzero is finite, we can expand the logarithm to first
order to obtain

∫Δ = − −β− +ΔΦ′F k TN
V

r
1

d (e 1)r
B o

3 ( ( ) )
(26)

which has the form

Δ = ΔF p Vid eff

where pid = NokBT/V is the ideal gas osmotic pressure and
Veff = ∫ d3r[1 − e−β( (r)+ΔΦ′)] is an effective change in volume.
In the dilute limit, the osmotic pressure is p = pid; then, Veff may
be interpreted as the change in volume available to the
osmolytes.
We now need to address ΔΦ′ to progress further. The

obvious first approximation is to set ΔΦ′ = 0; we will see below
that this approximation can in fact go quite a long way,
depending on the solvent. This is consistent with the
observations in Figure 3 where the ideal gas approximation,
which neglects osmolyte−osmolyte correlations, holds for
typical molecular radii at 1 M concentration. It is worth noting
that this is not ignoring the osmolyte−osmolyte, osmolyte−
water, and water−water correlations completely; it is merely
assuming that they are the same in the initial and final baths.
Making this approximation in eq 25, we have

∫Δ = − + −β−⎜ ⎟
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d [e 1]

V

r
B o
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Equation 27 represents an approximation to the transfer free
energy that, while severe, nonetheless takes into account both
the change in energy and change in entropy of the osmolyte
bath.
3.1. Validation Tests in Model Solvents. As a test of the

density functional theory, we have used eq 27 to calculate the
transfer free energy of several small molecules into model
osmolytes. To simplify the simulations, we looked at transfer
from a vacuum to a van der Waals gas of osmolytes, which were
taken to be single atoms interacting through a VDW potential.

The density of the osmolytes was set to 1 M. The molecules we
transferred were the side chains of alanine and valine, with C-β
capped with a hydrogen to replace the backbone (i.e., the
molecules were methane and propane). The coordinates were
taken from an existing protein structure file, and the angle and
bond parameters were generated with the GROMACS utility
pdb2gmx. The charges were set to zero for all atoms, and the
interaction was purely van der Waals. We list the VDW
parameters in Table 1. Figure 4 shows the interaction potential

for the two different osmolytes we used. The transfer energies
were calculated both with eq 27 and by simulating the transfer
in GROMACS and using thermodynamic integration
(TI).82−84 The results are summarized in Table 2, and show
excellent agreement between TI and DFT. This is notable,
since the result was obtained neglecting the interparticle
correlations, and at 1 M, the pressure of the osmolytes was

Table 1. van der Waals Parameters for the Atoms Used in
the Simulation Test of the DFT, as Taken from the
CHARMM Parameter Seta

atom σ (Å) ε (kJ/mol)

Ala C-β 0.36705 0.33472
Ala H 0.23520 0.092048
Val C-β 0.40536 0.08368
Val C-γ 0.36705 0.33472
Val H 0.23520 0.092048
Osm1 0.40536 0.08368
Osm2 0.36705 0.33472

aOsm2 is a relatively attractive spherical osmolyte, while the potential
of Osm1 is dominated by steric repulsion. The interaction is
parameterized as V(r) = 4ε[(σ/r)12 − (σ/r)6].

Figure 4. Comparison of osmolyte potential functions for the test
cases parametrized in Table 1. Osm2 is significantly more attractive
than Osm1, which is reflected in the transfer free energies in Table 2.

Table 2. Comparison of Test Cases between Density
Functional Theory (DFT) and Thermodynamic Integration
(TI)

molecule/osmolyte DFT ΔG (kJ/mol) TI ΔG (kJ/mol)

Ala/Osm1 0.188 ± 0.002 0.187 ± 0.002
Val/Osm1 0.255 ± 0.004 0.261 ± 0.004
Ala/Osm2 0.055 ± 0.002 0.059 ± 0.003
Val/Osm2 −0.018 ± 0.004 −0.011 ± 0.004
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≈1.5 that of the ideal gas pressure, which indicates that the
osmolyte−osmolyte interactions were significant.
3.2. Connecting DFT to Previous Surface/Volume

Models. We now take a simplified model of a protein
potential to compare with the results obtained previously in
section 2 for the solvent contribution to the change in free
energy upon protein collapse. In this model, we will consider
the protein to have an excluded volume of Vprot; that is, within
that volume, the potential is infinite. From the discussion in
sections 2.1−2.3 concerning excluded volume, we saw that the
changes in volume treated there are volumes from which
osmolytes are excluded. We also consider the protein to have a
surface region of thickness t that exerts a potential on the
osmolytes of depth ε; this region is sufficiently thin that we can
approximate its volume as Vsurface ≈ tA. If we use this model in
the expression for the free energy in the limit of large system
size (eq 27), then we obtain a free energy upon transfer of

ρΔ = + − βε−F k T V tA( (1 e ) )B prot (28)

The DFT transfer free energy with this simplified model
provides a natural split between the volume contribution
pidVprot and the surface area contribution pid(1 − e−βε)tA. Thus,
the DFT result, in the appropriate model, naturally generates
the free energy contributions derived in section 2 from more
bespoke considerations. Specifically, if we take the total volume
of the protein upon insertion to be V = Vprot + tA, then eq 28 is
identical to eq 8. The simplified DFT model here reduces to
our earlier considerations and helps give a physical
interpretation of the quantity ρQ as it pertains to the protein
surface.
We can also see that, in order to obtain an SASA

approximation in which ΔF is independent of temperature,
one would have to assume that the osmolyte−protein binding
energy is ε≪ kBT, and that volume terms were either negligible
compared to surface terms or proportional to them. We find
below that ε ≈ kBT in order to obtain empirically derived
transfer free energies to TMAO, which does not satisfy the
above inequality. Also, we can use the tube model from section
2 for protein volume and surface area to estimate the relative
contributions of volume and area: for an osmolyte of radius ro =
2.5 Å and a protein with Np = 70, V/tA = 0.62 in the unfolded
state and V/tA = 0.77 in the folded state. The volume here is by
no means negligible.
We thus expect on general grounds that the transfer free

energy will be dependent on temperature. One way of looking
at the simplified limit for the transfer free energy in eq 28 is as a
derivation of a new phenomenological form for the transfer
energy, containing both temperature and volume dependence:

γ γΔ = + βε−F k T V k T( ) (ASA)e1 B solute 2 B (29)

where one can now fit the parameters γ1, γ2, and ε to empirical
data.

4. EMPIRICALLY DERIVING DFT TRANSFER FREE
ENERGY PARAMETERS

The potential (r) in eq 27 is an effective potential given by
o(r) − f w(r). Obtaining f and w may be nontrivial to

obtain ab initio, so we examine some model systems and
compare with empirical methods. To begin with, we will
assume that the potential takes the form of a sum of terms from
each particle in the protein, where a particle may be an atom in

an all-atom model, or a bead modeling an amino acid in a
coarse-grained approach:

∑= −
=

vr r R( ) ( )
i

N

i i
1

eff
p

Here, Np is the number of particles in the protein and Ri the
position of the ith particle.
We consider a model consisting of backbone Cα atoms and

coarse-grained side-chain beads, which then form the particles
for our potential. We make the assumption that the protein−
osmolyte potentials have a 6−12 form:

ε
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and we wish to determine the potential parameters σi, εi for
each amino acid that reproduce the transfer energies found
experimentally when DFT is applied using the above potential.
As a starting point, we examine those used by Auton and
Bolen.85

Two constraint equations are required for each amino acid.
For the first equation, we note that the beads representing the
various amino acid side chains have residue radii roi that may be
obtained from measured partial molar volumes.86 We can then
apply a constraint to the above 6−12 parameters σi, εi by
requiring that, at a distance roi from the residue center,

= · −v r( ) 0.6 kcal moli io
1

(30)

To obtain the remaining equation determining the
parameters σi, εi, we require that the DFT transfer free energy,
as computed by the dilute limit of eq 27 for the single particle
representing an amino acid side chain, should be equal to the
experimental value as given in ref 85, specifically for transfer
into a solution of 1 M TMAO. This involves computing the
integral over the osmolyte-accessible volume in the expression

∫ρ − β−k T rd (1 e )v r
B

3 ( )i

(31)

and setting the result to the empirical value of δgi for each
amino acid.
The sum of the transfer free energies of each amino acid in a

Gly-X-Gly tripeptide is often used to approximate the
conformationally averaged transfer free energy for an unfolded
protein.85 Here we consider the tripeptide transfer free
energies. The integral in expression 31 then involves integration
over a solid angle Ωi determined by the fraction of solid angle
available to the side chain in the tripeptide vs that for the
isolated residue, i.e.,

πΩ =
A
A

4i

i

i
tri

iso

The potential vi is then fully determined from eq 30 along
with

∫ρ δΩ − =β
∞

−k T r r gd (1 e )i
v r

iB
0

2 ( )i

(32)

We can now construct potentials for each amino acid transfer
free energy given in ref 18. The parameters derived from doing
so are listed in Table 3. The backbone−osmolyte interaction
was parametrized as vBB(r) = C/r12, as this better represented
the backbone’s strongly repulsive character. The value of C
obtained by fitting to δgBB was C = 7.510 × 107 kcal/mol·Å12.
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In this context, the DFT formulation provides a way of using
the information from tripeptide experiments in a way that
captures both energetic and entropic effects. The parameters
just obtained can be used to determine the change in the
transfer free energies for isolated residues as temperature
changes. The experimental transfer free energies δgi are
predicted to increase as the temperature increases, with the
new values at T = 310 K given in Table 3. Increasing the
temperature by 0.03kBT increases the transfer free energy by
∼0.6kBT for a 100-residue protein. This change is not large, but
the relative temperature change is also small. The transfer
entropy is significant: d(δg)/dT ≈ 20kB.

5. USING DFT FOR IMPLICIT SOLVENT MODELS
The DFT methodology has been applied to the problem of
solvation to calculate fluid correlation functions, solvation free
energies, and reorganization energy in charge transfer.66,67 The
use of time-dependent density functional theory has been well-
established to understand solvation dynamics in single-
component solvents87 as well as selective solvation in binary
mixtures.88,89 The methodology has also been applied to
connect the static and dynamic approaches to the glass
transition by Kirkpatrick and Wolynes.45 The DFT method-
ology as described above may also be applied to the problem of
finding the effective forces for molecular dynamics simulation in
an implicit solvent, which we briefly describe here.
We again write the external potential due to solute−solvent

interactions as

∑= | − |vr R r( ) ( )
j

j j

We can write the force on the ith particle from the transfer free
energy in eq 26 (neglecting solvent interparticle correlations) as

∫
∫

∫

ρ

ρβ

ρ

= ∇ −

= ∇ | − |

= ∇

β

β

β

− ∑ | − |

− ∑ | − |

− ∑ | − − |

k T r

k T r v

r v r

F

R r

[ d (1 e )]

d e ( )

d e ( )

i R
v

v

R i i

v
i

R r

R r

R R r

B
3 ( )

B
3

( )

3 ( ( ) )

i
j j j

j j j

i

j j j i
(33)

We immediately see that the integrand is nonzero only when
∇vi(r) is nonzero, so that, if there is an effective cutoff rc such
that vi(r) ≈ 0 for r > rc, then the integral in eq 33 only needs to
be taken in the region r < rc. This is a generalization of the
result obtained by Götzelmann et al.,90 who have shown that,
for a hard sphere potential, only the solvent density at the
surface of the spheres was relevant to the calculation of
depletion forces. Here we extend this analysis to arbitrary
potentials.
Consider a particle with a spherically symmetric vi(r), as

assumed above. The net force on this particle when isolated is
zero. When a second particle exerting potential vj(r) on the
solvent is brought near, the net force on the first due to the
solvent is a result of the now asymmetric solvent density. We
note here we are treating the indirect force rather than the
direct force between the particles, which can be calculated by
direct application of the interparticle potential. The region of
asymmetric solvent density constitutes a restricted volume to
be integrated over in eq 33, as only the region of overlap
between the two spheres defined by the cutoff in potential
around Ri and Rj contributes to the net force (see Figure 5b
below). In addition, the solvent field in this overlap region will
maintain cylindrical symmetry about the axis joining the two
particles, which means that the force will be along this axis as
well. This suggests that the force on particle i can be written as

∑= | | ̂
| |<

FF R R( )i
r

ij ij ij
R 2ij c

Here, R̂ij is the unit vector from particle j to particle i, and Fij is
a scalar function of the interparticle distance |Rij| ≡ |Ri − Rj|,
which is determined by the overlap integral in eq 33, and which
could in principle be precomputed and tabulated to speed up
execution.

5.1. Depletion and Impeded-Solvation Interactions in
an Implicit Solvent Model. We can use eq 33 to investigate
the forces due to solvent on colloidal particles. In what follows,
we imagine the “solvent” to be simplified osmolytes within an
implicit solvent bath. This subject has been well-studied (see,
e.g., refs 91−95); our goal here is simply to show that the DFT
transfer free energy provides a natural way of calculating
depletion forces as well as transfer energies, and that even the
approximated form in eq 33 yields nontrivial results for the
depletion force.
We investigate a model consisting of two spheres that

interact only by a hard wall potential of radius rs. Each sphere
also interacts with a bath of osmolytes through a 6−12 (van der
Waals) potential: V(r) = 4ε((σ/r)12 − (σ/r)6), with σ = rs + ro.
With this model, we examine the force as a function of the
sphere separation d. Any force between the spheres is entirely
due to osmolyte-mediated effects.
When the solute particles are far apart, they dress themselves

with osmolyte solvation shells because of the attractive solute−
osmolyte potential. As we imagine moving the two solute
particles closer together, eventually the repulsive region of one
solute particle overlaps with the attractive region of the other
solute particle, and vice versa. This situation is unfavorable for

Table 3. Parameter Values Yielding Transfer Free Energies
δg to 1 M TMAO for Amino Acid Side Chains and Backbone
at 300 K, and the Predicted δg at 310 K

type
r0
a

(Å)
δgb

(cal/mol) σc (Å)
εd

(kcal/mol)
δg(T = 310 K)e

(cal/mol)

Ala 2.52 −14.64 3.517 0.6286 −12.65
Arg 3.28 −109.3 4.088 1.022 −104.0
Asn 2.74 55.69 4.564 0.0483 58.06
Asp 2.79 −66.67 3.627 1.055 −63.31
Gln 3.01 41.41 4.397 0.1710 44.57
Glu 2.96 −83.25 3.799 0.9973 −78.88
His 3.04 42.07 4.428 0.1707 45.28
Ile 3.09 −25.43 4.084 0.5692 −21.59
Leu 3.09 11.6 4.246 0.3405 15.15
Lys 3.18 −110.23 3.968 1.126 −104.7
Met 3.09 −7.65 4.154 0.4538 −3.791
Phe 3.18 −9.32 4.237 0.4587 −5.397
Pro 2.78 −137.7 3.457 1.987 −133.5
Ser 2.59 −39.04 3.4905 0.8849 −36.45
Thr 2.81 3.75 3.9312 0.3889 6.41
Trp 3.39 −152.9 4.157 1.150 −146.5
Tyr 3.23 −114.3 4.020 1.103 −109.2
Val 2.93 −1.02 4.021 0.4238 1.78
BB 2.25 90.0 92.7

aDistance where the osmolyte-amino acid potential is taken to be 0.6
kcal·mol−1. bEmpirical transfer free energies to 1 M TMAO. cvan der
Waals size parameter. dvan der Waals well depth. ePredicted transfer
free energies at T = 310 K.
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the solute particles, and the energy may be lowered by moving
them further apart; hence, there is a repulsive force at these
distances (see Figure 5). As the solute particles continue to
approach each other, the above repulsive region encroaches on
the regions of space where the van der Waals potential is
deeper. A larger amount of potentially favorable binding energy
is removed per distance traveled, and the repulsive force due to
“impeded-solvation” increases. The repulsive force is maximal
when the solute separation d is roughly 2σ. For separations d <
2σ, the repulsive regions of the two solute spheres begin to
overlap. This reduces the volume excluded, or more precisely
repulsive to, osmolytes. This reduced excluded volume results
in an attractive force which is the traditional depletion force.
Eventually, the depletion force becomes stronger than the
above impeded-solvation force, and the net force becomes
attractive. We note that such effects would not be present in
standard GB/SA models of implicit solvation.
In general, direct interparticle interactions must be super-

imposed on the above scenario. Which force dominates at a
given separation will then depend on the values for rs, ro, and ε,
along with the strength of the direct interaction. The above-
described repulsive effect has been observed before in hard-
sphere solutes using the Derjaguin approximation to obtain an
effective surface tension.90 Here we see that the effect arises
naturally from the presence of an attractive potential in the
density functional theory.

6. CONCLUSIONS
In this paper, we have explored the application of the density
functional framework to protein transfer free energies. We have
focused primarily on conceptual questions, such as the role of
solvent excluded volume, the temperature dependence of
transfer free energies, and how the density functional theory
(DFT) would reduce to a volume + SASA model of transfer
free energy.
We compared the DFT results with those from a simplified

model that treated the protein as a tube with a given volume
and surface area, on which osmolytes could condense. The
DFT contains contributions from both enthalpy and entropy,
so it allows for the calculation of the temperature dependence
of the transfer free energy.
A further development of the theory presented here which

accounts for interparticle correlations while maintaining
computational efficiency is an important topic for future
research. The calculation of transfer free energies was
implemented here for a model system with simplified potentials
that were parametrized to experimental values. One could
extend this by implementing the theory using more realistic
potential models, and all-atom representations of a protein or
peptide. The various approximations involved in these
potentials and models could then be tested and the limits of
their validity determined through comparisons with experiment
and simulation. The DFT framework may also provide a
method to obtain computationally efficient but still accurate

Figure 5. (A) Solvent-induced force on a pair of “hard-wall” spheres as a function of the separation distance, as obtained from eq 33. Spheres interact
with osmolytes through a LJ potential (see text). The only parameters that determine the force are thus σ and ε, which appear in the LJ potential that
enters into the DFT expression for the force. Each curve in the figure corresponds to a given well-depth ε in the sphere-osmolyte potential. The
depletion force is dominant at small separation, but there is a region in which the spheres are mutually repulsive due to lost attraction or “impeded-
solvation” to the solvent. (B) Schematic renderings of the solute spheres in panel A at several distances. (a) The sphere−osmolyte interaction is
through a LJ potential, which is negative beyond a distance σ = rs + ro (shown as the green region) and positive and repulsive for d < σ (red region).
The direct sphere−sphere interaction is only through a hard-wall potential of radius rs. The osmolytes have radius ro. (b) Sphere configuration when
distance d = 2σ. An osmolyte can just fit between the spheres at this distancethe LJ potential is zero in this configuration if the osmolyte (dashed
sphere) is centered directly between the solute particles. Such separations have positive (repulsive) force between the solutes in Figure 5a, due to
“impeded-solvation”: the repulsive interaction between one sphere−osmolyte pair removes some of the attractive region from the other sphere−
osmolyte pair (region shown in magenta). At the separation shown in part c, the solvent-induced force between the spheres is now attractive; the
volume of the removed attractive region now varies weakly with separation, and bringing the spheres closer together gains free energy by removing
the region of the depletion zone highlighted in blue.
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implicit solvent models for molecular dynamics simulation, a
subject of immense practical importance. In general, the
framework of density functional theory can provide a powerful
tool to explore aspects of solvation in the context of protein
folding, and can do so in a systematic way.
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