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Here we study the effects of many-body interactions on rate and
mechanism in protein folding by using the results of molecular
dynamics simulations on numerous coarse-grained C�-model
single-domain proteins. After adding three-body interactions ex-
plicitly as a perturbation to a Go� -like Hamiltonian with native
pairwise interactions only, we have found (i) a significantly in-
creased correlation with experimental � values and folding rates,
(ii) a stronger correlation of folding rate with contact order,
matching the experimental range in rates when the fraction of
three-body energy in the native state is �20%, and (iii) a consid-
erably larger amount of three-body energy present in chymotripsin
inhibitor than in the other proteins studied.

Understanding the nature of the interactions that stabilize
protein structures and govern protein folding mechanisms

is a fundamental problem in molecular biology (1–6) that has
applies to structure and function prediction (7–10) as well as
rational enzyme design (11). Regarding folding mechanisms,
protein folding has long been known to be a cooperative process,
at least for smaller single-domain proteins (12). Experimental
scenarios that lack a first-order-like folding barrier are rare (13),
often in contrast to simulation results. There are other discrep-
ancies between simulation and experiment. For example, al-
though the experimental folding rates for a typical set of 18
two-state, single-domain proteins (given in Materials and Meth-
ods) span about six orders of magnitude, simulations of coarse-
grained models of the same proteins have rates that vary by about
a factor of 100, a discrepancy of four orders of magnitude.

How does one then quantify the sources of the barrier that
controls the folding rate? The folding barrier is the residual of an
incomplete cancellation of large and opposing energetic and en-
tropic contributions, with the relative smallness of the barrier
allowing folding to occur on biological time scales (14, 15). Among
the important energetic contributions that drive folding are solvent-
mediated hydrophobic forces (16), which are known to be weaker
on short-length scales, or low concentrations of apolar side-chains
(17), a scenario likely to be present when the protein is unfolded.
Hence, the solvent-averaged potential governing folding almost
certainly contains a nonadditive, many-body component, and sev-
eral models have been proposed to capture this effect (18–27). The
folding free-energy barrier increases as the nonadditivity of inter-
actions is increased (20, 21, 23, 25) because of the decreased
energetic correlation between the native conformation and con-
formations that may be geometrically similar to it.

Experimental � values give a measure of the strength of native
interactions involving a particular amino acid (residue) in the
transition state (28), thus quantifying a residue’s importance in
folding. However the � values obtained from simulations of coarse-
grained protein models generally do not correlate well with the
experimentally determined values. Model proteins are coarse-
grained based on the belief that a reduced number of degrees of
freedom can capture the essentials of the folding process (4, 29, 30);
however, the less than ideal agreement with experimentally ob-
served rates and mechanisms leads one to consider alternate forms
for the coarse-grained Hamiltonian or energy function as well as

more detailed all-atom models (31–33) that may contain explicit
solvent as well (6, 33–38).

But it is also clear that coarse-grained simulations allow a study
of microscopic dynamics that would not be possible by all-atom
models with present-day computing power. Because we cannot yet
fully analyze the statistics of folding trajectories in all-atom models,
coarse-grained simulational models, such as off-lattice C� models
(4, 30, 39–43) have been essential in elucidating protein-folding
mechanisms.

We could then take the following approach: postulate a
given feature thought to be present in the system and ask to
what extent this feature, such as many-body potentials, must be
present in the Hamiltonian of a coarse-grained model for best
agreement with existing experimental data on protein folding
rates and mechanisms.

Materials and Methods
Simulation Model. Eighteen two-state folding proteins with known
native structures [Protein Data Bank (PDB) ID codes 1AEY,
1APS, 1FKB, 1HRC, 1MJC, 1NYF, 1SRL, 1UBQ, 1YCC, 2AIT,
2CI2, 1PTL, 2U1A, 1AB7, 1CSP, 1LMB, 1NMG, 1SHG] were
selected for coarse-grained simulations. For all proteins except the
last five above, rate data were available at various denaturant
concentrations. These proteins were then used for further analysis
at the stability of the transition midpoint.

The simulated proteins consist of a chain of connected beads,
with each bead representing the position of the C� atom in the
corresponding amino acid. The off-lattice C� Go� model has been
described in detail in refs. 30, 39, 43, and 44. The Hamiltonian has
local and nonlocal parts: Bond, angle, and dihedral angle potentials
constitute local interactions. In the putative Go� model, pair con-
tacts between residues in spatial proximity in the native structure
constitute nonlocal interactions. Nonnative interactions are treated
by a sterically repulsive pair-potential only.

Heavy atoms within a cutoff distance of rc � 4.8 Å in the native
structure obtained from the PDB file are associated with a Len-
nard–Jones-like 10–12 potential of depth �2 � �kBT and a position
of the minimum equal to the distance of the C� atoms in the native
structure. Let there be N2 pair contacts of energy �2 in the native
PDB structure. Then in an arbitrary conformation there are QN2
contacts with energy E2 � �2 QN2, with Q being the fraction of
native pair contacts (we account for the continuum nature of the
Lennard–Jones potentials).

We let triples with heavy atoms within a cutoff distance of 4.8 Å
in the native structure have an energy �3. For a given protein there
will then be N3 three-body contacts present in the PDB native
structure, with total three-body energy �3N3. An arbitrary structure
then has a three-body contribution to the energy of E3' �3 Q3N3,
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where Q3 is the fraction of native triples present in that conforma-
tion. Three-body interactions are again Go�-like; the remaining
bond, angle, dihedral, and nonnative interaction energies are all
unchanged.

When both pairwise and three-body interactions are present,
the native nonlocal part of the energy becomes

ENL��� � �1 � ��E2 � �E3. [1]

The free parameter � (0 � � � 1) controls the relative contribution
of two- and three-body interactions. The energy per triple is
assigned as �3 � �2N2�N3 to preserve overall native stability.

Dense sampling is obtained from long simulations with a purely
two-body Go� Hamiltonian at the transition midpoint [e.g., for
chymotripsin inhibitor 2 (CI2) the simulation time corresponds to
�3 sec, as determined from the number of folding and unfolding
events). From histograms of the number of states at a given fraction
of native contacts Q, the free energy F(Q) can be constructed. All
simulated free energy profiles displayed a single dominant barrier.
All proteins are considered at their transition midpoints only, when
the unfolded and folded free energies are equal: FU � FF (Fig. 1A).

Three-body energies are treated as a perturbation on the Ham-
iltonian. The new free energy is given by the exact expression

F�Q,��

kBT
� �ln

� i e��Ei����kBT ��Q �i�,Q�

� i e��Ei����kBT , [2]

where the sum is on all sampled conformations i, �(Q(i),Q) is a delta
function that selects only those states where Q(i) � Q, and �E(�) �
ENL(�) � E2. Fluctuations in F(Q,�) arise from both finite sampling
and the fact that configurations with similar Q may have different
numbers of three-body interactions. We found that the latter
inherent effect dominated the fluctuations; however, the free
energy barriers were still well determined after binning over small
ranges of Q (�Q � 0.02, see the error bars in Fig. 1A).

Calculated � Values. Simulated kinetic � values (45) are given by

�i �
�ni� � � �ni�U

�ni�F � �ni�U
, [3]

where �ni� is the thermal mean value of the number of contacts for
residue i, and the 	, U, and F subscripts refer to the transition state,
unfolded state, and folded state ensembles, respectively.

We first compared simulated and experimental � values by using
the thermal transition state ensemble (TTSE) around the free
energy barrier peak, i.e., �F-F	���F	 � 0.2 was used to define a
width �Q of the barrier peak (Fig. 1A, shading). Conformations
within this range were taken to be the TTSE and were used to
calculate � values from Eq. 3. The validity of the TTSE was checked
for CI2 and src homology 3 (SH3) with a comparison of � values
by using the kinetic transition state ensemble (KTSE), selected as
having a folding probability pFOLD of roughly 1�2 (46). Conforma-
tions in the TTSE were used as initial conditions for 100 simulations
that were terminated when the protein folded or unfolded. Those
conformations that had a pFOLD within 0.5 
 1��100 were taken
as the KTSE. For CI2 (SH3) we found 315 (283) KTSE configu-
rations from a total of 2,359 (2,078) TTSE configurations.

Other reaction coordinates were helpful in determining the
KTSE by constructing multidimensional reaction surfaces. To this
end we found a contact-order-weighted variant of Q to be useful,
which for any configuration 	 is given by

Qco
	 �

� i�j � i � j � � ij
	 � ij

N

� i�j � i � j � � ij
N , [4]

Fig. 2. Comparison of simulated and experimental rates. (A) Simulated
folding barriers (effectively measuring logarithm folding rates for 18 proteins
listed in Materials and Methods) for a pairwise interacting Go� model correlate
well with absolute contact order (aCO) (43). (B) Simulated folding barriers
show an increased correlation with absolute contact order when the fraction
of native three-body energy is such that the dispersion in effective simulated
rates matches the experimental dispersion for this dataset (� � 20%). Rates
now span 5.7 decades, in contrast to 2 decades for a pure two-body Hamilto-
nian (dashed line in B is the best fit line in A). (C) For 13 of the 18 proteins (see
Materials and Methods for a list), rate data were available for various different
denaturant concentrations. These proteins were used for the analysis in C and
D. For these proteins, the simulated effective log rates do not correlate
significantly with the experimental rate data at 25oC. (D) By tuning the rate
data to the transition midpoints and introducing three-body energy in the
native state, we saw a significant increase in the correlation between exper-
imental and simulated rate data, with best correlation when � � 10%.

Fig. 1. The folding barrier height �F	 increases with increasing three-body
contribution to the energy �. (A) Free energy versus the fraction of native
contacts Q for CI2 for three values of �. (B) The barrier versus � for four proteins
selected from Table 1. Shown for CI2 are error bars obtained from the standard
deviation of F(Q) by using a bin size �Q � 4�149. (C) The average slope of �F	

versus � correlates strongly with the number of three-body interactions in the
native state (r � 0.89, P � 10�6). Therefore, the barriers in B increase at
different rates because of differing numbers of triples formed in the transition
states of the various proteins: More native triples typically means a larger
three-body contribution to the barrier. The shaded region in A corresponds to
the TTSE described in Materials and Methods. In general, this ensemble
depends on �.
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where the sum is over all C� atoms, and �ij
	 and �ij

N are unity if
residues i and j are in contact in conformations 	 and the native
structure respectively, otherwise they are zero.

We determined � values in the presence of three-body interac-
tions analogously to Eq. 3. Under some simplifying assumptions
(e.g., requiring a � value that is independent of the perturbation
energies),

�i
��� �

�1 � ����ni�	
��� � �ni�U

����N3 � ���mi�	
��� � �mi�U

����N2

�1 � ����ni�F
��� � �ni�U

����N3 � ���mi�F
��� � �mi�U

����N2
. [5]

Here, mi is the number of three-body interactions in which mono-
mer i is involved, and superscript (�) indicates averaging the
ensembles (	, U, and F) in the presence of three-body energy.
When �30, Eq. 5 reduces to Eq. 3.

Miyazawa–Jernigan (MJ)-Based Models. The effect of heterogenity in
the model was also studied by interpolating between the Go� model
and the MJ models by varying the free parameter � between zero
(homogeneous Go� model) and unity (MJ model). The contact
energy for any pair of residues (not necessarily native) is then

�ij � �1 � ���2 � ��ij
MJ, [6]

where �2 is as above and �ij
MJ is proportional to the MJ interaction

energy (47) between the residue types of i and j, scaled by a factor
to ensure that the energy of the native structure is �-independent.
An interpolation between a uniform Go� model and a heteroge-
neous Go� model with native contact energies given by MJ param-
eters was also considered.

Contact Order and Statistical Significance. Absolute contact order is
the average sequence separation between residues having native
contacts (48): aCO � M�1¥ij �i � j�, where M is the total number
of native contacts. Relative contact order is scaled again by chain
length N: rCO � aCO�N.

Statistical significance or P value is the probability to achieve a
given correlation coefficient, r, assuming random data: P �
erf(�r��N/2). Small datasets almost always have fairly large P values,
even if r is large. Large datasets may still have small P values even
if the correlation is weak, which would still indicate a systematic
effect.

Results
Protein Folding Rates. Here we considered the effect of introducing
a three-body potential to an off-lattice two-body Go� model studied
in refs. 43, 44, and 49. Eighteen above-mentioned single-domain
proteins that are known to fold by a two-state mechanism were
selected and coarse-grained so that each amino acid corresponded
to a bead at the position of the C� atom. Long simulations at the
folding temperature Tf for a subset of the proteins showed a single
exponential distribution of first passage times: P(
) � exp(��t). For
these proteins, the simulated log folding rate, log(�), correlated very
strongly (r � 0.997) with the free energy barrier height �F	,
indicating that �F	 was an accurate predictor of the rate for the
simulated Go� models. We subsequently assume this proportionality
between �F	 and �log(�) for all simulated proteins, referring to
exp(��F	�kBT) as the ‘‘effective rate.’’

The above mentioned discrepancy between the effective protein
rates for our dataset and the experimentally determined rates for
the same proteins motivates an investigation of the effect of
many-body interactions on rates. When a portion of the total energy
is attributable to many-body interactions, energetic gain is not
achieved until a larger amount of native structure is present, with
a correspondingly larger entropic cost. Several polymer loops must
be simultaneously closed during folding to receive energetic gain.
This effect enhances the dependence of rate on contact order,
increasing the range over which rates vary.

By attributing a fraction � of the native energy to triples in the
native structure, we studied the effects of three-body interactions by
varying this single parameter (see Materials and Methods). The
effects on the free energetic potential surface for several proteins
are shown in Fig. 1B.

As the fraction of three-body energy is increased, the correlation
of the simulated effective rates with both absolute and relative
contact order and the range of values over which rates vary increase
(Fig. 2 A and B). Similar effects have also been seen in lattice
protein models (50, 51). We can also quantify how much three-body
energy at the residue level reproduces the experimental dispersion
in rates for single-domain proteins. The simulated effective rates
span six orders of magnitude when �20% of the energy in the native
state of the coarse-grained protein is due to three-body interactions.

Rates simulated with a two-body Hamiltonian do not correlate
significantly with experimentally determined rates at 25oC (Fig.
2C). We can remove the effects due to variations in stability and
reflect the conditions in the simulations by taking instead the rate
data at the various transition midpoints (after the addition of
GdHCl). We then found the correlation significantly increased to
r � 0.64 and P � 0.018. Adding three body energy in the simulations
increases the correlation with the experimental rates (at the tran-
sition midpoints) still further, with the best correlation achieved
when � � 10% (see Fig. 2D).

These results strongly suggest that (i) stability is an important
determinant of folding rate, (ii) many-body energy is present in the
energy functions of real proteins, and (iii) Go� or Go�-like models
(which ignore nonnative interactions) can predict experimental
rates, illustrating the minor importance of nonnative interactions in
governing folding barriers.

The correlation of log rates with rCO also improves as � is
increased from zero; however, the correlations are modest, increas-
ing from r � �0.29 and P � 0.24 at � � 0 to a best correlation of
r � �0.44 and P � 0.08 at � � 10% (data not shown).

Testing Pair-Interaction Matrices. The correlation between experi-
mental and simulational � values for a two-body Hamiltonian (r0,
P0) was typically not statistically significant (see Table 1), with the
exception of SH3. Rank-ordered measures of correlation, such as
Kendall’s 
, which are insensitive to the precise values of the data,
generally do not improve the agreement (Table 2). We also checked
whether simulations with a two-body Hamiltonian could accurately
predict residues that had higher � values. This calculation was done
by weighting the statistical averaging in the correlation coefficient
by the experimental � value itself as a Jacobian factor. Implement-
ing this recipe did not substantially increase the correlation coef-
ficient and, in fact, decreased it in the cases of acylphosphatase
(AcP) and CI2 (Table 1). Similar results were obtained by imple-
menting a simple cutoff imposing a lower bound for relevant
experimental � values (data not shown).

The experimental data can be used to test energy functions
characterizing pair interactions at the amino acid level, such as the
MJ matrix (47). We investigated whether MJ interaction parame-
ters improved the simulational predictions of � values by interpo-
lating between a homogeneous Go� model and a model with pair
interactions (between all residues) governed by MJ parameters (see
Eq. 5). We also interpolated between a homogeneous Go� model
and a heterogeneous Go� model with native interaction parameters
determined from the MJ matrix.

Results are shown for two proteins in Fig. 3. For CI2 and SH3,
no improvements in the correlation with experimental data were
seen by implementing this procedure. Table 1 shows the results for
the comparison between experimental �-value data and � values
obtained from a pairwise MJ Hamiltonian. In general, if correla-
tions increased by interpolating toward MJ parameters, they did so
only modestly: Only in the case of protein L did the improvement
reach statistical significance (P � 1%, see Table 1).

To check of the validity of the recipe of interpolating toward MJ
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parameters, we compared the largest improvement in correlation
(r�* � ro) with the value �* of MJ energy in Eq. 6 required to
achieve that correlation. This test determines whether the poorness
of the original correlation was due to the absence of MJ coupling
energies. We found that (r�* � ro) itself correlated well with �*;
however, the statistical significance was not particularly strong, and
the slope measuring the degree of improvement was not particularly
high (Fig. 4).

Testing Three-Body Interactions. The experimental data can also be
used as a benchmark to test what amount of three-body energy in
the Hamiltonian of the coarse-grained model gives best agreement
with experimental � values. We examined this question for the five

proteins listed in Table 1 by measuring the correlation between the
experimentally obtained � values and � values of the same residues
determined from simulations, with conditions ranging from be-
tween a pairwise interacting Go� model protein and one governed
exclusively by three-body interactions at the residue level (see
Materials and Methods).

As the strength of three-body interactions increased from zero,
the correlation coefficient also increased for all proteins studied
(Fig. 3 and Table 1). An exceptional case was SH3, which showed
only a modest increase in correlation for the KTSE and no increase
for the TTSE. The fraction �* of native three-body energy that gave
best agreement with experimental data varied from protein to
protein but correlated strongly with the increase in agreement with
experimental data (see Table 1). That is, the improvement in
correlation (r�* � ro) itself correlated very strongly with �* (r �
0.97, P � 0.005), further supporting the notion that the poorness of
the original agreement was due at least in part to the absence of
many-body forces (see Fig. 4).

For a protein with a large fraction of three-body energy, such as
CI2, the transition states in the presence of three-body interactions
is significantly different from the two-body transition state. For CI2,
the rms distance (rmsd) between all 315 structures in the KTSE was
found for both the two-body and two- plus three-body (at �*) cases.
From the rmsd, the ‘‘most representative’’ transition state structure
may be defined as having the minimal Boltzmann-weighted rmsd
(minimum over structure i of ¥j pj(rmsd)ij) to all others in the
KTSE. The two-body case shows more overall secondary structure,
in particular more �-helix but less �-sheet. The Q, QCO (see
Materials and Methods), and R (rmsd from the native structure)
values are shown in Fig. 6, which is published as supporting
information on the PNAS web site. These findings indicate that the
two- plus three-body transition state is less structured than the pure
two-body transition state. However, kinetically the structures are
about the same distance from the native in that their pFOLD values
are comparable (see Fig. 6). The structures have a rmsd of 7.8 Å
between them, so they are structurally distinct from each other.
Interestingly, the high-� residue 34 has more local secondary
structure in the pure two-body case than at �*; it also has no triples
in the native state and its high � value in the presence of three-body
interactions is the result of correlations with other triples made in
the transition state.

The procedure of adding three-body interactions was repeated
considering only residues in the hydrophobic core of native struc-
ture, in this case buried with less than �30% accessible surface area,
by using the Swiss–PDB Viewer (www.expasy.org�spdbv). We saw
qualitatively the same effect, but the change in correlation coeffi-
cient was less pronounced, increasing to �0.42 for CI2, for example.

Table 1. Two-body and three-body characterization of
proteins studied

Models

Proteins

SH3 FKBP AcP Protein L CI2

Go�
r0 0.58† 0.32 0.12 0.18 �0.10†

P0 0.0003 0.17 0.58 0.25 0.56‡

MJ
�*, % 0 10 50 20 0
r�* 0.59 0.41 0.35 0.38 �0.017
P�* 0.0003 0.07 0.1 0.01 0.92‡

MJ-Go�
�*, % 5 20 30 30 0
r�* 0.59 0.38 0.30 0.38 �0.017
P�* 0.0002 0.1 0.16 0.01 0.92‡

Three-body
�*, % 5 10 15 15 35
r�* 0.60† 0.43 0.32 0.53 0.57†

P�* 0.0001 0.057 0.14 0.00027 0.0004
N 56 107 98 62 65
N2 128 299 257 126 148
N3 32 111 97 30 54
n 35 20 23 41 35
�F�*

	 3.8 
 0.2 10 
 0.8 14 
 2.0 6.2 
 0.5 17 
 3.5
�F�*

	 ��F0
	 1.4 1.5 2.2 2.8 3.4

E3B
� �Etot

� , % 2.6† 5.5 8.9 3.3 13.0†

High �

r̃0 0.65† 0.37 �0.02 0.26 �0.43†

P̃0 2.7 � 10�5 0.10 0.91‡ 0.10 0.01‡

The sources for experimental �-value data for SH3, FKBP, AcP, CI2, and
protein L (PDB ID codes 1SRL, 1FKB, 1APS, 2CI2, and 2PTL, respectively) are refs.
54, 57, 56, 58, and 59, respectively. The Go� model data comprises the corre-
lation coefficient and statistical significance between experiments and simu-
lation of a pairwise interacting Go� model. �* is in general the value of the
interpolation parameter that gives best agreement with the experimental
data for each corresponding model. For the MJ models, Eq. 6 is used; for the
three-body models, Eq. 1 is used. r�* and P�* are the correlation coefficient and
statistical significance, respectively, at best agreement for each corresponding
model. N is chain length; N2 is the number of native pair contacts; N3 is the
number of native triples; n is the number of �-value data points used in the
comparison; �F�*

	 is the barrier height in kBT at �* for the three-body model;
�F�*

	 ��F0
	 is the ratio of the free energy barriers when � � �* and � � 0; and

E3B
� �Etot

� is the fraction of three-body energy in the transition state ensemble
at �*. For high-� weighting, r̃0 and P̃0 are the correlation coefficient and
statistical significance, respectively, including a Jacobian factor weighting
each term in the correlation function by the experimental � value itself, i.e.
averages are calculated as �A� � ��1

n � i
exp Ai����1

n � i
exp), where n is the

number of data points. This recipe simply stresses the importance of the
agreement between large � values.
†KTSE was used.
‡We allow for the possibility of anticooperativity in proteins and, hence,
ascribe statistical significance to negative correlations. Thus, P values here are
two-sided.

Table 2. Kendall’s � and statistical significance between
experiment and simulation

Models

Proteins

SH3 FKBP Protein L AcP CI2

Go�

0 0.42† 0.27 0.14 0.14 0.042†

P0 0.00044 0.10 0.19 0.37 0.72
Three-body

�*, % 0 10 20 25 35

�* 0.42† 0.31 0.36 0.33 0.40†

P�* 0.00044 0.055 0.00069 0.027 0.0008

Kendall’s 
 measure of ranked correlation and statistical significance [P(�
��
 �
�)] of 
 value between experiments and simulations for a pairwise inter-
acting Go� model and the two- plus three-body model. �* is the value of the
interpolation parameter that gives best agreement with experimental data
for a two- plus three-body Hamiltonian as in Eq. 1.
†KTSE was used.
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This finding implies that coarse-grained model proteins with ef-
fective solvent-averaged interactions have many-body interactions
involving residues on the surface as well.

For further information, see Supporting Text, which is pub-
lished as supporting information on the PNAS web site.

Discussion
The above results suggest that many-body interactions can play a
significant role in governing the folding mechanisms of two-state
proteins when described at the residue level. This conclusion seems
quite evident upon comparing the statistical significance rows in
Table 1 or Table 2 for the pure two-body Hamiltonian and the two-
plus three-body Hamiltonian at �*. In essentially all cases, many-
body interactions helped to establish consistency with protein
folding experiments. Some proteins showed dramatic improvement
and others showed mild improvement, so proteins may be addi-
tionally classified through this effect. The value of �* may be used
as an indication of the importance of many-body interactions in

governing the folding mechanism for a given protein, as the proteins
are ranked in Tables 1 and 2, for example.

Experimental rates vary by about four orders of magnitude more
than rates obtained from coarse-grained models with two-body
Hamiltonians. However, a modest three-body component to native
stability (�20% on average) was sufficient to reproduce the ex-
perimental variability in folding rates. Similar numbers for the
three-body energy have been obtained from triple-mutant studies
of barnase (52). It is an open question as to how large the
many-body component might be in finer-scale and all-atom models
of proteins. Quantifying this component in terms of the missing
degrees of freedom of either protein or solvent is nontrivial. Even
all-atom, explicit-solvent models may have large many-body effects:

Fig. 3. Comparison of the agreement of � values between simulation and
experiment for CI2 (A) and SH3 (B). Green curves show the correlation coef-
ficient and statistical significance (Insets) for � values derived from the TTSE in
the simulations as the Hamiltonian was continuously changed from a uniform
Go� model to one with pair interactions governed by MJ parameters (the curve
shown in A Inset is the statistical significance of the anticorrelation) (see Eq.
6). No improvement was seen for CI2 or SH3 by implementing this recipe. Red
and blue curves show the correlation coefficient and statistical significance
between experimental and simulated � values as a function of the fraction �

of three-body energy in the native state. Blue curves correspond to TTSE; red
curves correspond to KTSE. For CI2, the improvement as � is increased is
dramatic, with best agreement with the experiment at �35% three-body
energy. On the other hand, SH3 was exceptional in that it showed the opposite
trend, with best agreement for a purely pairwise interacting model for the
TTSE and � � 5% for the KTSE. All other proteins studied were bracketed by
these two extremes: They showed moderate components of three-body en-
ergy, with moderate to large increases in correlation coefficient (Table 1).

Fig. 4. Plot of the largest improvement in correlation (r�*
�ro) vs. the value of

interpolation parameter �* required to achieve that correlation. Energy
functions are interpolated toward a three-body Go� model (Eq. 1) and two-
body models with MJ energetic parameters (Eq. 6). The slope and correlation
indicate the validity of the interpolation procedure. Adding three-body en-
ergies gives a slope of 2.2, and (r � 0.97 and P � 0.005). Adding a MJ
component to the pair interaction energies gives a slope of 0.29 but a fit that
is not statistically significant (r � 0.83 and P � 0.38). Restricting the MJ
component to native interaction energies gives a statistically significant fit
(r � 0.956 and P � 0.044) but with a shallow slope (0.78), indicating only
moderate improvement.

Fig. 5. � value versus residue index for CI2, for experiment (blue trace),
simulated pairwise Go� model (light-blue background), and two- plus three-
body Go� model (red trace). The average � values for the various energy
functions are ��(Expt) � 0.25, �� (2) � 0.40, ��(2 � 3) � 0.33, again confirming the
more accurate two- plus three-body transition state is less structured. It is
worth noting that native state is more stable in the experiments than in the
simulations: The native stability is fixed at the transition midpoint in the
simulations, regardless of the value of �.
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Ab initio studies of interaction energies and reconfiguration barriers
in water clusters suggest many-body energies can be quite signifi-
cant (53).

For FK506-binding protein (FKBP), protein L, and CI2, the
correlation between experimental and simulational � values goes
from insignificant to significant as three-body interactions are
added. In the case of CI2, the agreement between simulations with
a two-body energy function and experimental data were the poorest
of the proteins studied, the fraction of three-body energy at best
agreement was the largest, and the improvement in correlation
coefficient was the most dramatic. In the case of SH3 on the other
hand, the folding mechanism appears to be governed more by
topology than by energetic considerations. In some sense, this is an
exception that proves the rule, as previous evidence supported a
folding mechanism dominated by topological considerations
(54, 55).

Interestingly, muscle AcP had the poorest improvement in mech-
anism prediction by adding three-body interactions, as measured by
the correlation coefficient; its original �-correlation for a two-body
Go� model was the second poorest after CI2. AcP also required the
largest amount of MJ interactions for best agreement with exper-
imental � values but still correlated poorly even at best agreement.
Intriguingly, AcP is also the slowest known two-state folder at
present yet a good two-state folder with no intermediates (56). The
slow folding is likely due to large contact order, however, and it
would be interesting in the future to apply the three-body recipe to
a topologically similar but faster folding protein, such as human
procarboxypeptidase A2. On the other hand, the improvement for
AcP as measured by Kendall’s 
 does, in fact, become statistically
significant and suggests a large three-body component. We are
inclined to take this more robust measure of statistical significance
more seriously. The discrepancy of r and 
 indicates some large
outliers in � values, likely because of variations in native stabilizing

interactions, which may exist for functional reasons. These fluctu-
ations in native interaction strength are not captured by the uniform
Go� model and two- plus three-body models.

The largest improvement in correlation (r�* � ro) with the value
of interpolation parameter �* required to achieve that correlation
was used as a measure to test the validity of the three-body and MJ
interpolation recipes. The results for the three-body interpolation
recipe showed a strong statistically significant correlation with a
large slope indicating large rate of improvement. The results for the
heterogeneous MJ Go� model also showed improvement, however
with smaller slope and smaller statistical significance. It is note-
worthy that for the case of CI2, in which the three-body recipe does
the best, the MJ recipe failed to improve the agreement with
experiment.

For CI2, the transition state in the presence of three-body
interactions shows less overall native structure than the purely
two-body transition state, despite the better agreement with exper-
imental � values for the three-body case. However it is not clear
whether this will be a general rule. In both cases, the transition state
consists largely of a disordered form of the native topology,
sufficiently disordered to be kinetically balanced between the
folded and unfolded states.

The low levels of agreement between experiment and simulation
for two-body Hamiltonians told a somewhat cautionary tale. Al-
though a large body of evidence leaves little doubt as to the
importance of native topology in governing folding mechanism,
these results should serve to show that realistic aspects of the energy
function, such as many-body component to native stability, should
not be ignored.
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