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Abstract

Proteins are minimally frustrated polymers. However, for realistic protein models, nonnative interactions
must be taken into account. In this paper, we analyze the effect of nonnative interactions on the folding rate
and on the folding free energy barrier. We present an analytic theory to account for the modification on the
free energy landscape upon introduction of nonnative contacts, added as a perturbation to the strong native
interactions driving folding. Our theory predicts a rate-enhancement regime at fixed temperature, under the
introduction of weak, nonnative interactions. We have thoroughly tested this theoretical prediction with
simulations of a coarse-grained protein model, by using an off-lattice C� model of the src-SH3 domain. The
strong agreement between results from simulations and theory confirm the nontrivial result that a relatively
small amount of nonnative interaction energy can actually assist the folding to the native structure.
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The mechanism of protein folding is of central importance
to structural and functional biology (see, e.g., Winkler and
Gray 1998; Fersht 2000; Creighton 2002; Plotkin and
Onuchic 2002a,b). An understanding of the fundamental
physical–chemical factors regulating the folding process
may help provide answers to some of the long-outstanding
problems in both functional genomics and biotechnology:
Rational design of drugs and enzymes, potential control of
genetic diseases, and a deeper understanding of the connec-
tion between biological structure and function are among
the applications that may benefit from advances in protein
folding.

Theoretical and computational studies have recently
achieved noticeable success in reproducing various features
of the folding mechanisms of several small- to medium-
sized fast-folding proteins (see, e.g., Shoemaker et al. 1999;
Sorenson and Head-Gordon 2000, 2002; Shea and Brooks
III 2001; Shimada and Shakhnovich 2002; Clementi et al.
2003; Karanicolas and Brooks 2003; Kaya and Chan 2003);
at the same time, the improved spatial and temporal reso-
lution of recent experimental techniques is now allowing
researchers to combine theoretical and experimental data to
give a more robust characterization of the folding free en-
ergy landscape (Lapidus et al. 2000; Ervin and Gruebele
2002; Schuler et al. 2002; Snow et al. 2002; Kubelka et al.
2003; Pande 2003). However, in spite of these recent suc-
cesses, a microscopically detailed observation of the indi-
vidual conformational motions that occur during folding
remains elusive. Knowledge of the time-dependence of ev-
ery degree of freedom in the system is, however, not of
inherent interest, because no additional insight to the un-
derlying physics of the folding process is gained from this
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information by itself. Nor is any particular degree of free-
dom especially important to folding, because the transition
involves the cooperation of many weakly (noncovalently)
interacting constituents. For these reasons, a statistical de-
scription of the process of folding, in terms of the behavior
of an ensemble of systems, is appropriate for distinguishing
general (self-averaging) properties from sequence-specific
ones (Bryngelson et al. 1995). The characterization of the
folding process in statistical mechanical terms can pinpoint
crucial questions that may be computationally or experi-
mentally addressed in more detail.

The idea of considering ensemble properties to charac-
terize the folding landscape underpinned studies of the tran-
sition state and folding mechanism as arising from the na-
tive-state topology (Shoemaker et al. 1997; Alm and Baker
1999; Galzitskaya and Finkelstein 1999; Munoz and Eaton
1999; Clementi et al. 2000a,b, 2001, 2003; Shea et al.
2000). As a general rule, the transition-state structure does
not differ dramatically between homologous proteins
(Baker 2000; Plaxco et al. 2000a; Gunasekaran et al. 2001),
and any exceptions are fairly readily explained (Ferguson et
al. 1999; Kim et al. 2000). Consistent with the above-men-
tioned notion of self-averaging, folding rates of homolo-
gous proteins are seldom seen to differ by more than an
order of magnitude when tuned to the same stability
(Mines et al. 1996; Plaxco et al. 2000b). This indicates
that the folding free energy barrier is not particularly sen-
sitive to the details of sequences folding to a given native
structure, but depends rather on more general features of
that ensemble of sequences, including the kinetic accessi-
bility of that native structure. In this sense, the topology of
the native structure largely determines the folding free en-
ergy barrier for those homologous sequences (Plaxco et al.
2000b).

These ideas motivated many studies of folding rates and
mechanisms using so-called Gō models (Ueda et al. 1975),
which neglect interactions not present in the native state. In
these studies, the possibility of structure prediction is traded
for the possibility of rate and mechanism prediction. More-
over, because of the robustness of rate and mechanism for
homologous proteins, the coarse graining of the Gō model
(i.e., removing the molecular details of side chains and sol-
vent) is often assumed a reasonable approximation.

Topology-based approaches seek to predict mechanism
by calculating �-values (Fersht et al. 1986; Matouschek et
al. 1990) or analogous quantities, which in an accurate
theory give values that correlate with experiment for the
measured cases. Occasionally one finds residues whose
�-values are negative. This is most likely caused by the
presence of nonnative contacts that stabilize the transition
state, but cannot be present in the native state. The presence
of nonnative interactions in the transition state is supported
by all-atom simulations using a Charmm-based effective
energy function, where it was found that ∼20%–25% of the

energy in the transition state arose from nonnative contacts
(Paci et al. 2002).

Hence, for a more realistic protein potential energy func-
tion, nonnative interactions must be taken into account. In
this paper, we analyze the effect of increasing the strength
of nonnative interactions on the folding rate as well as the
free energy barrier. Nonnative interactions are introduced as
additional contacts between pairs of residues not in contact
in the native structure, which are allowed to have a nonzero
mean and a nonzero variance. The nonnative interactions
are added perturbatively to the Gō model: All nonnative
contacts are given a random energy with mean �NN and a
variance b2, which is progressively increased to examine
more frustrated proteins, while the native contact energies
are all held fixed to the same number. The limiting case of
�NN � 0 and b � 0 corresponds to the plain Gō model.
This procedure essentially preserves the stability of the na-
tive state, where approximately no nonnative interactions
are present. However, the stability of the unfolded state is
lowered (as shown below).

At first glance, one would expect that introducing pro-
gressively larger nonnative contact energies to an otherwise
energetically unfrustrated Gō protein would slow the fold-
ing rate, for straightforward reasons: It would seem that
“noise” in the system would make the native basin harder to
recognize. One might argue by analogy that it is easier to
read a page of text without random misspellings. However,
the folding rate has been predicted to initially increase under
the introduction of weak, nonnative interactions, added as a
perturbation to the strong native interactions driving folding
(Plotkin 2001). This was a fold-independent result derived
from general principles of energy landscape theory. This
prediction was subsequently verified in simulations of a
36-mer lattice model (Fan et al. 2002), as well as off-lattice
molecular dynamics simulations of Crambin, in which at-
tractive nonnative contacts were successively added
(Cieplak and Hoang 2002). Independently, it was found that
nonnative interactions were present in the transition state of
a 28-mer lattice-model protein with side chains, and in-
creased the folding rate when strengthened (Li et al. 2000).
Similar observations were also seen in two-dimensional 24-
mer lattice models (Treptow et al. 2002). A different com-
putational study on a 36-mer lattice-model protein found
that at the temperature of fastest folding in simulation mod-
els, the folding rate monotonically decreases with increas-
ing ruggedness (Fan et al. 2002; the temperature of fastest
folding, of course, varies with the ruggedness). However,
this typically barrierless regime is rarely seen in the labo-
ratory (Gruebele 1999; Sabelko et al. 1999).

The prediction that strengthening nonnative interactions
that were initially weak would accelerate folding is also
consistent with experimental observations that strengthen-
ing nonspecific hydrophobic stabilization in the �-spectrin
Src homology 3 (SH3) domain sped up folding (and unfold-
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ing) for that protein (Viguera et al. 2002). This result was
significantly nontrivial, to the extent that the experimental
observation was originally interpreted (mistakenly) as evi-
dence against the energy landscape theory.

In this paper, we test this prediction with simulations of
a coarse-grained protein model, by using an off-lattice C�

model (see e.g., Honeycutt and Thirumalai 1992; Clementi
et al. 2000b) of the SH3 domain of src tyrosine-protein
kinase (src SH3). We use a Hamiltonian function that has
tunable amounts of nonnative energy (see Supplemental
Material for details). The results from simulations are com-
pared with the predictions of an improved version of the
existing theory (Plotkin 2001). The theory is improved by
introducing a finite-size treatment of packing fraction as a
function of polymer length, which takes better account of
the polymer physics involved in collapse as folding
progresses. Moreover, the previous study treated the rate
enhancement at fixed stability. Here, we show a perhaps
even less intuitive result, namely, that the rate enhancement
can happen at fixed temperature, and we derive the condi-
tions required for this to happen.

As the strength of nonnative interactions is increased to
larger values, we find that eventually the folding rate de-
creases drastically, as expected. In the limit of large non-
native contact energies, the chain behaves like a random
heteropolymer, having misfolded structures more stable
than the native state.

The folding mechanism is also nontrivially affected by
the introduction of nonnative interactions. In this regard,
the analysis of the robustness of the folding mechanism
against an increasingly strong perturbation on the non-
native interactions can provide a critical assessment on
the validity of unfrustrated protein models for the predic-
tion of folding mechanism, for different protein topologies.
This analysis goes beyond the scope of the present paper,
and it will be addressed separately (S.S. Plotkin and
C. Clementi, unpubl.).

The paper is organized as follows: In the next section, we
present the theory. After presenting the general ideas and
overall strategy, we discuss in detail how an explicit ex-
pression for the conformational entropy can be obtained in
terms of the packing fraction. We then use this result to
show how the thermodynamic free energy barrier is lowered
by the presence of nonnative interactions. In the third sec-
tion, we test the theoretical predictions with direct simula-
tion of the src-SH3 domain. We first compare the definition
of reaction coordinates and the relative approximations of
theory and simulations; thermodynamic and kinetic quanti-
ties obtained from simulations are then quantitatively com-
pared with the corresponding theoretical predictions.

The strong agreement between results from simulations
and theory confirms the nontrivial result that a relatively
small amount of nonnative interaction energy can actually
assist the folding to the native structure.

Theory of folding with nonnative interactions

Definition of the general strategy

Thermodynamic quantities relevant to folding may be ob-
tained from an analysis of the density of states in the pres-
ence of energetic correlations (Plotkin and Onuchic
2002a,b). In this context, we introduce two order param-
eters. We let Q be the fraction of contacts shared between an
arbitrary structure and the native structure, and we let A be
the fraction of possible nonnative contacts present in that
structure, that is, the number of nonnative contacts divided
by the total possible number of nonnative contacts. These
two order parameters are natural for the study of nonnative
interactions in protein folding. Both take on values between
zero and unity.

There are several relevant energy and entropy scales gov-
erning the thermodynamics of folding. Let the energy of the
native structure be given by EN. Let the total number of
contact interactions in a fully collapsed polymer globule be
given by M. Asymptotically, M scales like the total number
of residues in the chain, N, essentially because surface terms
are negligible compared with the bulk. However, for a fi-
nite-size system, the mean number of contacts per residue
(native or nonnative), that is, the coordination number z, is
itself a function of N. We can write the native energy as

EN = M� = zN�, (1)

where � is then defined as the mean native attraction energy
� (� < 0); that is, the native state is assumed to be fully
collapsed with the maximal number of contacts, and this is
the maximal number of total contacts of a fully collapsed
polymer globule. We neglect here the separate effects that
arise from the variance in the native interaction energies:
��2 � 0.

Let the conformational entropy of an ensemble of poly-
mer structures characterized by the order parameters Q and
A be given by Sc(Q,A). We can write the entropy in terms of
the entropy per residue sc(Q,A) as:

Sc�Q,A� = Nsc�Q,A� = Msc�Q,A��z. (2)

In addition to the energy scales � and ��2 governing native
contacts, there are also two energy scales governing nonna-
tive interactions. One is the mean energy of a nonnative
interaction �NN, and the other is the energetic variance of
nonnative interactions b2. We keep both of these terms, as
they enter the analysis on essentially the same footing. For
configurations with MA nonnative contacts, the total non-
native energy is taken to be Gaussianly distributed with
mean MA�NN and variance MAb2. Both of these terms con-
tribute to the overall ruggedness of the energy landscape by
favoring nonnative configurations.
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The strength of nonnative interactions is taken to be
weak, so that

b�� �� 1 (3a)

�NN�� �� 1 (3b)

are both satisfied. Condition 3a implies that the ratio of the
folding transition temperature TF to the thermodynamic
glass temperature TG is large (Goldstein et al. 1992),

TF�TG �� 1, (4)

that is, the proteins we consider are strongly (but not infi-
nitely) unfrustrated—we are perturbing away from the Gō
model. Condition 3b implies that collapse and folding occur
concurrently (Klimov and Thirumalai 1996), that is,

TF�T� �� 1, (5)

where T� is the temperature below which nonnative states
tend to be collapsed. For a given choice of nonnative inter-
action energies, the energies of configurations for the en-
semble of states characterized by (Q,A) is assumed Gauss-
ianly distributed with a mean of QM� + AM�NN and a vari-
ance of AMb2. Then the extensive part of the log number of
states having energy E and order parameters (Q,A) is given
by:

logn�E,Q,A� = Sc�Q,A� −
�E − �QM� + AM�NN��2

2AMb2 . (6)

From the definition of equilibrium temperature T−1 � �S/
�E, one can then find the thermal energy, entropy, and free
energy, which are given by (in units where kB � 1):

E�Q,A,T�

M
= �Q + ��NN −

b2

T �A (7a)

S�Q,A,T�

M
=

sc�Q,A�

z
− � b2

2T2�A (7b)

F�Q,A,T�

M
= �Q − T

sc�Q,A�

z
+ ��NN −

b2

2T�A. (7c)

These expressions can be understood straightforwardly. In
the absence of nonnative interactions (�NN � b � 0), the
thermal energy is just the energy of native contacts times the

number of native contacts, and the entropy is just the con-
figurational entropy. When nonnative energies are present,
just as � couples the order parameter Q, so does �NN couple
the order parameter A. When nonnative energies have a
variance, the lower energy conformations (with stronger
nonnative contacts) tend to be thermally occupied. This is
why �NN and −b2/T enter on the same footing in the energy.
The fact that the system spends more time in fewer states
means that the thermal entropy is reduced. However, the
entropy (times temperature) is only reduced by half as much
as the energy, so that there is a residual contribution to the
free energy E − TS due to the variance of nonnative inter-
actions.

A plot of the free energy at the folding temperature of the
Gō model TF° as a function of (Q,A) is shown in the first
row of Figure 1, for equation 7c together with the analytical
model of the configurational entropy SC(Q,A) described be-
low.

Figure 1 also shows plots of E(Q,A), S(Q,A), and F(Q,A),
as well as the number of states at energy E, taken from the
simulation data for the off-lattice model (see below). Plots
are at the folding temperature TF° of the Gō model, for
several different values of b indicated.

Conformational entropy in terms of packing fraction

The fraction of nonnative contacts A is not independent of
Q. As more native interactions are present, less nonnative
interactions are allowable, and eventually there can be no
nonnative contacts in the native structure. Previous studies
that investigated the folding rate at fixed stability have ex-
plicitly included this Q-dependence in equation 7c (Plotkin
2001). Here, our intention is to plot the folding rate at fixed
temperature rather than at fixed stability. For this purpose, it
is formally more convenient to keep this Q-dependence im-
plicit in A. Again this manifests itself only as a region of
allowed values of (Q,A), which can be seen in Figure 1.

The entropy loss due to native contacts is of a different
functional form than the entropy loss due to nonnative con-
tacts. The entropy loss caused by native contacts arises from
a specific set of polymeric constraints. The entropy loss
caused by nonnative contact formation arises from an in-
crease in polymer density, a nonspecific constraint. There
are many collapsed unfolded states with nonnative interac-
tions present, but only one folded state (neglecting the much
smaller entropy caused by native conformational fluctua-
tions).

We note that the conformational entropy SC(Q,A) takes
into account the extent to which polymer configurations
tend to have residue pairs in proximity, such that if they
interacted, that interaction would be considered a nonnative
contact. However, the strength of the typical nonnative in-
teraction (∼�NN ± b) is controlled by two free parameters in
the theory. When both �NN and b are set to zero, the thermal
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entropy reduces to that of the putative Gō model, with the
configurational entropy SC(Q,A) remaining unchanged.

The A-dependence in SC(Q,A) is related to the physics of
collapse, because at a given value of Q, the fraction of
nonnative contacts A depends on the packing fraction 	 of
nonnative polymer. When MQ native contacts are present,
AMAX ≡ M(1 − Q) nonnative contacts are allowable, and
AMAX nonnative contacts are present when 	 � 1.

As detailed in the Supplemental Material, a mean field
approximation allows one to estimate the conformational

entropy Sc(Q,	) of a disordered polymer at Q with packing
fraction 	 as:

Sc�Q,	� = N�1 − Q��ln



e
− �1 − 	

	
� ln�1 − 	�

−
1

6 ��	�Q�

	
�2�3

− 1�2�
≡ N�1 − Q�snn�Q,	�. (8)

Here 	̄(Q) � �̄(Q)−1/2 � [nL(Q)/N(1 − Q)]1/2, where �̄ is
the mean loop length formed by native contacts at Q (see

Figure 1. Free energy (first column from the left), energy (second column), and entropy (third column) surfaces as functions of the
fraction Q of native contacts, and the fraction A of nonnative contacts, as obtained from theory and simulations. Also shown is the
fraction of states, n(E), populated as a function of the energy E. The distribution of the energy in the unfolded ensemble is shown, along
with the distribution in the native state (fourth column). The distribution n(E) is normalized; that is, the integral of n(E) over all energies
is 1 in all the cases plotted here. All free energy contours are spaced at ∼1� (where � is the energy per native contact). Values of the
parameters are given in Table 1. (Top row) Theoretical free energy, energy, and entropy surface at the folding temperature, obtained
from equation 7c and equation A.16 in the Supplemental Material with all parameters set equal to the corresponding simulation values
(see Table 1) and btheory � 0.3�, where � is the energy per native contact (this corresponds to 0.9� < b < 1.3� in the simulations; see
text for detail). The transition state has more nonnative contacts than the unfolded state. The difference in the theoretical model is
�A‡ ∼ 0.035. This amounts to an increase in the total number of nonnative contacts of MA ∼ 5. The barrier height is ∼3.47� ∼ 3.3kBTf.
(Bottom three rows) Corresponding results obtained from simulations, for three different values of the nonnative energy perturbation
parameter b: b � 0.5� (second row), b � 0.9� (third row), and b � 1.3� (bottom row). The barrier heights and values of �A‡ obtained
in simulations are plotted in Figure 10 as a function of the nonnative energy perturbation parameter b.
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equation A.14 in the Supplemental Material), and nL(Q) is
the total number of loops at Q (see equation A.15 in the
Supplemental Material). In equation 8, the quantity in curly
brackets is the entropy per residue for the remaining disor-
dered polymer at Q.

Figure 2 shows a plot of the entropy per disordered resi-
due at Q, snn(Q,	) � S(Q,	)/N(1 − Q), as a function of 	,
for various values of Q. This shows that the nonnative poly-
mer density where most of the states are [where snn(	) is
maximal] is an increasing function of nativeness, Q.

From equations 2 and 8,

sc�Q,A� = �1 − Q�snn�Q,A��1 − Q�� (9)

The entropy per residue sc(Q,A) in equation 7b is then ob-
tained from equation 8 using

sc�Q,A� = sc�Q,	�|	=A��1−Q� (10)

(see equation A.3 in the Supplemental Material). The free
energy surface on which dynamics occurs can then be ob-
tained from equation 7c, and is plotted in the first row of
Figure 1. This is the reaction surface for the coordinates
(Q,A).

Effect of nonnative interactions on the free energy
barrier and folding rate

In the Gō model, nonnative contacts are given coupling
energies of zero. The Gō folding temperature TF° is taken
to be the temperature at which the unfolded and folded
thermodynamic states have equal probability. This is
given through equation 7c when F(0,A) ≈ F(1,0) and

�NN � b2 � 0. We are taking Q ≈ 0 in the unfolded state
and A � 0 in the folded state (see Fig. 1). This yields a Gō
folding temperature of

TF
o =

z|�|
sc�0, A*�0��

(11)

where A*(Q) is the most probable value of A at a given Q,
as determined below.

When considering the simulation data, the folding tem-
perature is taken to be the temperature in the Gō model at
which the unfolded and folded thermodynamic minima have
equal free energies (these minima need not be precisely at
Q � 0 and Q � 1).

The most probable value of A at a given Q for a protein
in thermal equilibrium, A*(Q), is obtained from:

�F�Q,A�

�A* |
Q

= 0. (12)

Using equations 7c and 8 this gives

�snn�Q,	*�

�	
=

z�NN

T
−

zb2

2T2. (13)

where 	*(Q) is the most probable packing fraction at a
given value of Q.

Using the following definitions,

�A*�Q� ≡ A*�Q� − A*�0�,

�snn�Q� ≡ snn�Q,A*�Q�� − snn�0,A*�0��,

the minimal free energy at Q, F(Q,A*(Q)), relative to the
minimal free energy F(0,A*(0)) in the unfolded state, is
obtained from equation 7c:

�F�Q,T� ≡ F�Q,A*�Q�, T� − F�0,A*�0�, T� (14)

�F�Q,T�

M
= Q�� +

Tsnn�0,A*�0��

z � −
T�1 − Q��snn�Q�

z

+ ��NN −
b2

2T��A*�Q� (15)

With the temperature set to the Gō transition temperature
TF°, the first term in brackets in equation 15 vanishes. The
free energy barrier (over TF°) at the Gō transition tempera-
ture can then be written as

�F�

TF
o

=
�Fo�

TF
o

+ M��NN

TF
o

−
b2

2TF
o2� �A*�Q�� (16)

Figure 2. The entropy per residue snn(Q,	) � Sc(q,	)/N(1 − Q) in equa-
tion A.16 in the Supplemental Material, for the disordered part of a protein
of nativeness Q, as a function of the disordered polymer’s packing fraction 	.
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where �F°� is the barrier height at TF° with �NN � b2 � 0,
that is, the putative Gō barrier height, and is given by

�Fo�

TF
o

= N�1 − Q���−�snn�Q
��� (17)

where the saddle point is located at (Q�,A� ≡ A*(Q�)).
Note that �snn(Q) < 0 because disordered polymer dressing
larger native cores is more collapsed than that for smaller
native cores. One can see that the barriers scale extensively
as a result of the mean field approximations made above.

Thus we see from equation 16 that the folding barrier
lowers with increasing nonnative interaction strength,
namely, if �NN < 0 (b2 > 0 always), so long as
�A*(Q�) ≡ �A� > 0. We therefore investigate the condi-
tions for which �A� > 0.

From equation A.1 in the Supplemental Material, the con-
dition �A� > 0 is equivalent to

�A� = 	*�Q���1 − Q�� − 	�0� �0 (18)

where 	* is determined from equation 13.
We are interested in the effect on the barrier when non-

native interactions are imagined to initially increase from
zero. For �NN, b ≈ 0, the most probable packing fraction is
interpreted geometrically through equation 13 as the value
of 	 where the entropy per disordered residue is maximal,
that is, the maximum of the curves in Figure 2. When
�NN < 0 and/or b > 0, 	* is determined as the value of 	
slightly to the right of the maximum in the curves in Figure

2. The most probable packing fraction as a function of Q is
plotted in Figure 3.

Equation 18 is not a particularly robust condition.
Whereas 	*(Q) is certainly a monotonically increasing
function of Q as can be seen from Figure 3, the factor of
(1 − Q) in equation 18 de-emphasizes, or may reverse, the
trend in A*(Q). In the earlier work addressing the trend in
rates at fixed stability rather than fixed temperature, the
factor determining whether rates would increase was merely
the increase in packing fraction �	(Q) by itself (Plotkin
2001).

The derivative of snn in equation 13 can be straightfor-
wardly determined from equation 8, and equation 13 then
becomes a nonlinear equation for 	*(Q) that can be solved
numerically. The result is shown in Figure 3. The packing
fraction increases as the length of disordered loops becomes
shorter (inset of Fig. 3), and thus increases monotonically
with nativeness Q.

Once 	*(Q) is known, �A*(Q) can be obtained from
equation 18. This determines the trend in the barrier height
in equation 16. A plot of �A*(Q) is shown in Figure 4. We
can see that if the barrier position Q� resides in a window
of Q where �A(Q) > 0, the barrier decreases with increasing
nonnative interaction strength, for weak nonnative interac-
tions. Otherwise, the barrier increases with increasing non-
native interaction strength.

When nonnative interactions are weak, the folding kinet-
ics are single exponential:

kF = ko��NN,b�e−�F���,�NN,b��T. (19)

Figure 3. The most probable packing fraction 	* is a monotonically in-
creasing function of nativeness Q. The dashed curve shows the character-
istic packing fraction when the disordered loops are assumed to obey ideal
chain statistics. The solid curve accounts for the effects of excluded vol-
ume, which are included in equation 8. (Inset) The most probable packing
fraction is a decreasing function of the mean disordered loop length �̄ in
equation A.14 in the Supplemental Material.

Figure 4. Fractional change in the number of nonnative interactions as a
function of nativeness Q, for the theoretical model. We can see that the
number of nonnative interactions initially increases before decreasing. For
the model considered here, the barrier position Q� is well within this
region of values where the number of nonnative interactions has increased.
There are generically more nonnative interactions present in the transition
state than in the unfolded state, for strongly minimally frustrated proteins.
The effect is fairly modest—for a 100-residue protein, there are about six
more nonnative interactions in the transition state. The shape of the curve
is obtained from setting �F/�A|Q � 0 in the first row of Figure 1.
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Increasing the strength of nonnative interactions slows the
prefactor k0, owing to the effects of transient trapping. How-
ever, as �NN and b are increased from zero, this slowing
effect on k0 does not become significant until a nonzero
characteristic value, which would indicate the onset of a
dynamic glass transition in an infinite-sized system (see
Takada et al. 1997; Wang et al. 1997; Eastwood and
Wolynes 2001; Plotkin 2001 for more detailed treatments of
this effect). In a finite system, the activation time ∼k0

−1

increases dramatically but only when b > bA or �NN > �A
NN.

The values of the energy scales bA and �A
NN are of order T,

thus there is a fairly large window upon increasing b, �NN

from zero where the prefactor k0 is unaffected to the first
approximation. In this regime, the effects on rate are gov-
erned solely by the effects on barrier height. Hence, the
decrease in barrier height shown above as �NN, b are in-
creased from zero may be associated with an increase in
folding rate.

In the next section we test the theoretical prediction di-
rectly with simulations of a model protein. The upshot is
shown in Figure 10, B and C (below), which shows, indeed,
an increase in folding rate with increasing nonnative inter-
action strength.

Comparison between theoretical prediction and
simulation results

We have thoroughly explored the range of validity of the
approximations made in the analytic theory by comparing
the predictions with the results obtained from simulations
on a Gō model increasingly perturbed by the addition of
nonnative interactions (see Supplemental Material for de-
tails on simulation).

A close and quantitative comparison of the results from
theory and simulations is possible if corresponding thermo-
dynamic quantities and reaction coordinates are identified.
For this purpose, before we proceed to test the prediction on
rate enhancement, three main points of the theory have to be
examined in comparison with the results from simulations:

• definition of the reaction coordinates Q and A;
• allowed values of the reaction coordinates (i.e., correla-

tion between Q and A);
• approximations made in the definition of energy and en-

tropy as functions of the reaction coordinates.

These points are clearly interconnected, and all affect the
detailed shape of the free energy landscape, the value of the
folding temperature, and the identification of the folded,
unfolded, and transition state ensembles. We expect that the
assumptions we have made in the analytical theory do not
qualitatively change the theoretical predictions; neverthe-
less, a careful dissection of the basic ingredients we have
used is needed for a quantitative assessment of the results.

In the following, we discuss in detail each of the points
above. Unless otherwise specified, the following results are
all obtained from simulations at the Gō folding temperature
Tf°, for all values of b/�.

Definition of reaction coordinates

The reaction coordinate Q, defined as the fraction of native
contacts formed in a given protein configuration, is readily
associated to configurations sampled by simulations (see
Supplemental Material). More care has to be used in trans-
posing the other reaction coordinate we have used in the
theory, A (defined as the fraction of nonnative contacts
formed), to the analysis of simulations data. In the analytical
theory, we have assumed that the maximum number of non-
native contacts that can be formed at a certain stage of the
folding reaction does not depend on the perturbation
strength, and is a function of the degree of nativeness, Q,
that is, Amax(Q) � 1 − Q, b (see equation A.1 in the
Supplemental Material). This implies that no nonnative con-
tacts can be formed in the native state (Amax ∼ 0 if Q ∼ 1),
and vice versa (Amax ∼ 1 if Q ∼ 0). This assumption in the
theory allows us to simplify the analytical calculations but
does not qualitatively affect the results. The dependence on
Q of the maximum number of nonnative contacts can be
directly checked in simulations. In this regard, an important
difference between theory and simulations is that a certain
number (typically ∼5) of nonnative contacts can be accom-
modated in a protein configuration with Q ∼ 1 and minimal
(<1 Å) RMSD from the PDB native structure. The increased
number of contacts around the native configurations arises
mainly from the fact that native or nonnative contacts are
considered formed in a small but finite length range (typi-
cally ∼1 Å) around the minimum of the interaction potential.
This leads to probable formation of some nonnative contacts
as the protein undergoes fluctuations around the native state.

Figure 5 shows that a subset of six nonnative contacts is
formed with probability >0.25 in the native state ensemble
for b/� � 1.3. Similar results are obtained for all values of
b/� used in this study, although the particular set of nonna-
tive contacts formed in each case depends on the choice of
nonnative interactions (data not shown).

Contacts that are easily formed in the native state cannot
be considered nonnative, even when they are not listed as
native contacts in the unperturbed Gō-like Hamiltonian. In
fact, contacts that can be made in the native state are not
competing against the formation of the native structure;
rather, they are assisting it. To remove this effect, we in-
troduce a new reaction coordinate A�, defined as the fraction
of nonnative contacts formed, restricting the list of nonna-
tive interactions only to the ones with a probability of con-
tact formation in the native state ensemble smaller than a
cutoff value pc. The native ensemble for each sequence is
identified as all configurations with Q > 0.9 sampled in
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simulation for that sequence. The results presented in the
following are all obtained with a probability cutoff
pc � 0.1. Smaller values of pc yield essentially the same
results. The reaction coordinate A� is then used in this study
to compare results from simulation with the theoretical pre-
dictions.

Another approximation that can be directly checked in
simulation is on the maximum number of nonnative con-
tacts that can be formed at different stages of the folding
reaction. In the analytical theory, the fraction of nonnative
contacts, A, is a function of the fraction of native contacts
formed in a configuration, Q, and of the packing fraction 	
of the nonnative part of the protein: MA � 	(1 − Q)M (see
equation A.1 in the Supplemental Material), with
0 � 	 � 1, Q. The maximum number of nonnative con-
tacts is then AmaxM � (1 − Q)M, and the maximum total
fraction of all contacts (native and nonnative) is
(A + Q)max � 1, Q. Indeed, the maximum number of all
contacts (both native and nonnative) recorded in simulations
is close to the number of native contacts formed in the
native state, that is, M(Q + A�)max � M, for all values of the
parameter b examined in this study (see Fig. 6A). Figure 6B
shows the behavior of the average number of nonnative

contacts formed in simulation (both coordinates A and A�
are plotted), as a function ofQ, for a perturbation b/� � 0.5
(right panel), and the value of Q corresponding to the maxi-
mum of 〈A�〉 (the corresponding Q for the uncorrected co-
ordinate 〈A〉 is also shown). Interestingly, the peak in the
average number of nonnative contacts is detected for a value
of Q corresponding to a pretransition state stage of the fold-
ing. A pre-TS peak is observed in both theory and simula-
tions, although in the theory it is closer to the unfolded state
than what is detected in simulations (see Figs. 6B and 7A).

Figures 6 and 7 present a thorough comparison between
the allowed and most probable values for the fraction of
nonnative contacts at different stages of the folding, as ob-
tained from theory and simulations. Although the maximum
number of nonnative contacts is always detected in a pre-TS
region, independently on the value of b/�, it is clear from
Figures 6A and 7A that larger values of b/� yield a larger
number of nonnative contacts formed, particularly in the
unfolded ensemble. Interestingly, however, the number of
nonnative interactions rapidly decreases to zero in regions
with very small Q. The cause of this effect is not contained
in the analytical expressions 7c, where it is assumed that
Amax � 1 − Q. This result is caused partly by coupling be-
tween nonnative contacts and the angle and dihedral terms
in the simulation Hamiltonian (which are not present in the
theory). This is a finite size effect that tends to increase the
polymer stiffness relative to that in the theory, which used
a bulk approximation for thermodynamic quantities. Com-
pact states with 	 ∼ 1 in which only nonnative interactions
are present have large energetic cost and are formed very
rarely. Another source of this effect is that forming col-
lapsed conformations induces some native contacts to be
formed, owing to the finite range of interactions. This effect
is particularly important for short-range contacts among
residues closely separated in sequence, and does not neces-
sarily go away as one considers larger-size systems. This is
the complementary effect to the already mentioned fact that
in simulations nonnative interactions are formed in the na-
tive state (that has led us to a redefinition of the simulation
reaction coordinate A�).

To quantify this effect, we have generated a large (50) set
of nonnative energy distributions with high and very high
variance (b/� � 2 and b/� � 2). Sequences with these high
values of b/� are not able to fold to the selected native
structure, but are useful to explore the region of the con-
figurational space corresponding to compact structures with
the maximum number of nonnative contacts formed. We
expect the glass temperature of these sequences to be higher
than their folding temperature (see the next section). After
an initialization at very high temperature (T � Tf°), a large
number (>1000) of quenching simulations (T � Tf°) has
been performed for each sequence to generate a represen-
tative sample of compact misfolded structures. The maxi-
mum fraction of nonnative contacts that can be formed,

Figure 5. Probability of formation of nonnative contacts in the native
configuration of SH3. Black dots in the contact map represent native con-
tacts, whereas nonnative contacts formed with probability >0.25 are shown
with probabilities given by the gray scale on top. Probability values are
computed by averaging the formation of nonnative contacts over �50,000
configurations with Q > 0.9 from folding/unfolding simulations. The data
shown in this figure are for a nonnative perturbation strength b/� � 1.3.
Similar results are obtained for different values of the parameter b (see
Fig. 6).
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A�max, is thus defined as the largest values of A� among the
vast pool of structures obtained by adding the results from
the quenching simulations for high b/� values to all con-

figurations collected in simulations at any temperature and
for any value of b/� used in this study. Figure 7B shows the
behavior of A�max as a function of the fraction of native

Figure 6. (A, lower panel) The maximum number of nonnative contacts registered in simulations for different values of the pertur-
bation parameter b (in units of �). Open circles indicate the maximum in the reaction coordinate A, whereas filled gray circles
correspond to the corrected coordinate A� (see text for details). (Upper panel) The maximum number of all contacts (both native and
nonnative) for different values of b. Open squares indicate the maximum value obtained when all contacts separated by at least three
residues along the sequence are considered (i.e., Q + A); filled gray squares correspond to the values obtained when nonnative contacts
likely to be formed in the native structure are removed (i.e., Q + A�). (B, right panel) Average number of nonnative contacts 〈A〉 formed
in simulations as a function of the number of native contacts formed, for a perturbation parameter b/� � 0.5. Horizontal bars at the
maximum of 〈A〉 correspond to the standard deviation around the average at the peak value. The black curve corresponds to the
coordinate A, and the gray line to A�. (Left panel) The values of Q corresponding to the maximum of 〈A〉 and 〈A�〉 for different values
of the perturbation parameter b (open circles and filled gray circles, respectively).

Figure 7. (A, upper panel) Continuous curves illustrate the behavior of 〈A〉 versus Q as predicted by the theory (with all parameters
set to the simulation values; see Table 1). The different curves correspond to values of b/� � 0.1, 0.3, 0.5, 0.7, 0.9 (increasing values
of b lead to higher values of 〈A〉). The thick black line represents the maximum value of A allowed in the theory at different values
of Q (independent of the value b). (Lower panel) 〈A�〉 vs. Q (continuous curves) as obtained from simulations, for values of b/� � [0.2,
1.6] (increasing values of b lead to higher values of 〈A�〉). Dotted curves represent the highest values of A� found in simulations at
different values of Q, for the same values of b/�. The maximum value of A allowed in the theory is also plotted for comparison (thick
black line). (B) Filled gray circles show the maximum value of A� detected in all equilibrium and quenched simulations for many values
of b (see text), as a function of the fraction of native contacts formed, Q. Open circles correspond to the maximum packing fraction
of the nonnative part of the protein, as obtained by using equation A.1 in the Supplemental Material, that is, 	max � A�max/(1 − Q).
Dotted lines show the maximum values for A (in black) and 	 (in gray) allowed in the theory. Continuous lines in the corresponding
colors represent the best fit of the data to a phenomenological exponential decay of A�max at small values of Q:
A�max � (1 − Q)[1 − exp(−Q/Qc)]. Regression analysis yields Qc � 0.12. The best fit for A�max is shown in gray, and in black for 	max.
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contacts present in the structures. The theoretical assump-
tion on the maximum fraction of nonnative contacts
Amax � 1 − Q holds remarkably well up to the values of
Q � 0.15 that correspond to the unfolded state minimum in
the free energy landscape (see Fig. 1). From these results,
we then expect the unfolded region of a free energy land-
scape associated with the simulated protein Hamiltonian to
be somewhat compressed toward smaller values of A with
respect to the theoretical prediction.

Energy, entropy, and free energy landscape

Figure 1 presents the energy, entropy, and free energy pro-
files obtained from simulations, as a function of the reaction
coordinates Q and A�, for three different values of the per-
turbation parameter b/�. The corresponding quantities ob-
tained from the analytical theory, with all the parameters set
equal to the simulations parameters (i.e., rightmost column
in Table 1) and b � 0.3�, is also shown for comparison. For
a more direct comparison with the results from simulations,
the thermodynamic quantities from theory are only plotted
in regions populated with probability >2 × 10−7, as we have
typical samplings of ∼5 × 106 configurations in folding/un-
folding simulations. It is apparent from Figure 1 that the
region of the (Q,A�) space populated with high probability
in simulations differs somewhat from the (Q,A) region pre-
dicted by theory. Several factors are responsible for this
difference and have to be considered before one tests the
predictive power of the theory with the simulation results:

1. The unperturbed energy function used in simulations in-
cludes a self-avoiding term for all nonnative contacts,
which is maintained in the perturbed Hamiltonian (see
equations D.32 and D.33 in the Supplemental Material).
This energy term is not explicitly considered in the

theory. The short-distance repulsive interactions limit the
formation of nonnative contacts (especially for small
values of b/�), and shifts the most populated regions of
the folding landscape toward lower values of A. This
effect also accounts for most of the differences in the
energy landscape between theory and simulation results
(see Fig. 1).

2. The analytic expressions are obtained in the thermody-
namic limit, whereas simulations are performed for a
small protein (57 residues). The theoretical expressions
do not explicitly keep track of finite-size effects due to
polymer stiffness. However, the extra effect of polymer
stiffness seen in the simulations only enhances the theo-
retically predicted rate acceleration effect (see below).

3. The functional form for the entropy is approximated in
the theory, and it is not expected to quantitatively repro-
duce the simulation results exactly. Particularly, the
theoretical assumption on the allowed values of A at
different Q (i.e., equation A.1 in the Supplemental Ma-
terial) directly enters the derivation of the entropy (see
Supplemental Material for details), and contributes to the
relative “distortion” of the theoretical free energy land-
scape with respect to the landscape in the simulations.
Nevertheless, the overall qualitative behavior of the en-
tropy is correctly captured by the theory (see third col-
umn of Fig. 1).

4. The position of the folded and unfolded free energy
minima emerging from simulation data differs from
Q � 0 and Q � 1, as assumed in the theory (see above).

Overall, the destabilization of the folding free energy land-
scape upon introduction of nonnative energy perturbation is
strongly reduced in simulations with respect to what is pre-
dicted by the theory. In fact, although in the theory a per-
turbation of b/� ∼ 1 renders a protein unfoldable (i.e., Tf /
Tg ∼ 1; see equation 21 and Plotkin 2001), it is found in
simulations that all sequences generated with a perturbation
parameter b/� � 1.7 (entering the Hamiltonian, equation
D.33 in the Supplemental Material) are able to reversibly
fold/unfold at the Gō transition temperature Tf°. The next
section quantifies this difference in the destabilization of the
folding mechanism by comparing the folding and glass tem-
peratures computed in simulations with their corresponding
theoretical predictions.

Folding temperature and glass temperature

The folding temperature Tf of each protein model is esti-
mated in simulations as the temperature corresponding to
the peak in the specific heat curve (see Fig. 8A). This value
is in good agreement (within the error bars) with the value
obtained from the alternative definition of Tf as the tem-

Table 1. Table of values for parameters in the model

Symbol Meaning Equationa
Simulation

values

N Total number of residues in the
protein

1 57

M Total contacts in a fully collapsed
globule

1 142

z Average number of contacts per
residue

1 2.49

� Native energy per contact 1 −1.0
EN Energy in the native state 1 −142.0
ln
 Maximal entropy per residue A.2 ∼2.4
�NN Mean energy of nonnative contacts 6, 7a 0.0
b2 Energetic variance of nonnative

contacts
6, 7a [0.0–4]

To
F Gō folding temperature (in energy

units)
11 ∼1.07

a Equation where the symbol is first defined, or representative equation.
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perature at which the folding and unfolding states have the
same free energy (see Fig. 8B).

From equation 7c, upon increasing nonnative interaction
strength (increasing b, and/or increasing |�NN| with �NN < 0),
the free energy F(Q) lowers with respect to the Gō free
energy at fixed temperature T � TF°. During this change of
Hamiltonian, the free energy of the native structure remains
roughly constant at EN (see Fig. 8C). Even though the un-
folded state is stabilized with respect to the folded state
during the process of increasing nonnative interaction
strength at fixed temperature, the folding rate nevertheless
accelerates, because the free energy of the transition state
lowers more than the unfolded state does. This is described
in more detail below, with the result shown in Figure 10B.

The thermodynamic glass temperature Tg can be esti-
mated by using the results obtained in the framework of the
random energy model (REM; Derrida 1981; Bryngelson and
Wolynes 1987). As the energetic frustration of the system
arises from randomly assigned nonnative interactions,
we assume that the energy of compact (misfolded) struc-
tures in the unfolded ensemble is Gaussianly distributed,
with mean value 〈Enn (Qu)〉 � MAmax�NN and variance �
Enn

2(Qu) � b2AmaxM, where MAmax is the maximum num-
ber of nonnative contacts the protein can form. In the
theory, the maximum number of nonnative contacts was
approximated at Q ∼ 0 as the total number of native contacts
MAmax � M. As we have already discussed above, the ac-
tual maximum number of nonnative contacts detected in
simulations is smaller than the theoretical value, and it is
expected to (slightly) vary with different realizations of the
nonnative noise (see Fig. 6).

The REM glass temperature is defined by the vanishing
of the thermal entropy (Derrida 1981; Bryngelson and
Wolynes 1987), which corresponds to setting equation 7b
to 0:

S�Qu, Amax, Tg� = Nsc�Qu, Amax� −
MAmaxb

2

2Tg
2 = 0. (20)

However, here we let Amax be a new parameter. This gives
for the glass temperature:

Tg = b�zAmax

2sc
=

�Enn�Qu�

�2Nsc

(21)

where �Enn(Qu) � MAmaxb2 is the energetic variance over
the set of misfolded structures. For each protein model (i.e.,
each value of b/�), we have performed several (>500) short
quenching simulations to explore the compact configura-
tions in the unfolded ensemble. A different open configu-
ration is initially created by means of ancillary high-tem-
perature simulations (with T � Tf), then rapidly quenched to
very low temperatures (T ∼ Tf/10, T ∼ Tf/25, and T ∼ Tf/50).
The fluctuations of the nonnative energy in the compact
misfolded configurations recorded during the quenching
simulations are used to compute �Enn(Qu) entering expres-
sion 21.

Figure 9A shows the folding temperature Tf and the glass
temperature Tg obtained from simulation, as a function of
the strength of the nonnative energy perturbation, b (in units
of the native energy per contact, �). The folding temperature

Figure 8. (A) Heat capacity as a function of temperature, as obtained from simulations for different values of the parameter b. Temperature is measured
in units of native energy per contact, �. (B) Free energy as a function of the fraction Q of native contacts, as obtained from simulations for several different
values of the nonnative energy perturbation parameter b. Free energy curves for all values of b shown in B are obtained at their corresponding folding
temperatures Tf(b) (estimated from the heat capacity curves, plotted in A), whereas all curves in C are at the folding temperature of the unperturbed case
Tf° � Tf(b � 0).
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is almost constant in the range shown, while the glass tem-
perature rises from zero (b � 0 corresponds to the plain
Gō-like model with no energetic frustration; see equation
D.3 in the Supplemental Material), to values close to Tf for
large nonnative perturbations (b � 1.6). When Tg/Tf ≈ 1,
many low-energy misfolded structures compete with the
native state, and folding is dramatically slowed down. As
the ratio Tg/Tf increases beyond unity, the system is no
longer self-averaging, and different realizations of the non-
native perturbation can lead to different folding mechanisms
consistent with the same native topology. This point is dis-
cussed in a separate publication (S.S. Plotkin and C. Clem-
enti, unpubl.). The glass temperature predicted by the theory
for different values of b is also obtained from equation 21,
with � Eu

2 � MAmax(Qu), MAmax(Q) � M(1 − Q), and Qu

corresponding to the unfolded free energy minimum at Tg.
The theoretical folding temperature is evaluated as de-
scribed above. The comparison of the folding and glass
temperatures from simulation with the corresponding values
predicted by the theory (dotted curves in Fig. 9A) clearly
shows that the destabilizing effect of the nonnative energy
perturbation on the folding process (quantified by the ratio
Tg/Tf) is much reduced in simulations with respect to the
theoretical prediction. Each value of b used in simulations
(bsim) is plotted in Figure 9B as a function of the value of b

used in the theory (btheory) that yields the same Tg. The
corresponding Tf(bsim) (from simulation) and Tf(btheory)
(from theory) are also found equal within the error bar.

Folding rate enhancement/depression upon nonnative
energy perturbation

The theoretical prediction on folding rate enhancement
upon small nonnative energy perturbation is expected to
hold for values of b with a corresponding small ratio Tg/Tf.
A perturbation that largely increases the ratio Tg/Tf will also
largely decrease the prefactor k0 in equation 19, and folding
then slows (see discussion above). Because of the extended
range of b for which the condition Tg/Tf � 1 remains valid
in simulations (see previous section), we expect to detect a
rate enhancement in simulations up to values of b ∼ 1; that
is, the theory is conservative in that rate is enhanced over a
wider range of b in the simulations.

We have shown in the previous section that the analytical
theory reproduces correctly, at a qualitative level, the ther-
modynamics quantities measured in simulations, although
we have highlighted some quantitative differences. The ef-
fect of these differences on equation 16, which predicts the
rate enhancement, is expected to be confined to the precise
evaluation of the difference in the number of nonnative

Figure 9. (A) Folding temperature Tf (open circles) and glass temperature Tg (filled gray circles), from simulation of the perturbed Gō
model, as a function of the nonnative energy perturbation strength b (with �NN � 0). Dotted lines represent the theoretical prediction
for Tf (black line) and Tg (gray line), when all the parameters of the theory are set equal to the simulation parameters (see Table 1).
Dashed lines represent the best fit of the simulation data to the theoretical prediction (see B). Temperatures and energies are measured
in units of �, the native energy per contact. The folding temperature is almost constant in the range shown, while the glass temperature
rises from 0 (plain Gō model, with no energetic frustration), to values close to Tf for a high level of nonnative perturbation. As Tg/Tf

approaches 1, several nonnative low-energy states compete with the native state and the folding is dramatically slowed down.
Moreover, as Tg/Tf → 1, the system is no longer self-averaging, and different realizations of the nonnative perturbation can lead to
different results. There is a wider range where Tf/Tg > 1 in the simulations than in the theory, indicating a larger range of b where rate
enhancement effects may be seen. (B) The same destabilizing effect on the folding predicted in the theory (in terms of Tf/Tg), for a given
value of the parameter b, is observed in simulations for a much larger value of b. All values of b used in simulations (bsim) are plotted
in this figure as a function of the values of b yielding the same glass temperature in the theory (btheory; see text for details). The dashed
line represents the best fit of the data to the expression bsim � �btheory + �, for bsim > 0.8. The result from this fit is also shown in A.
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contacts between the transition state and unfolded state,
�A� ≡ �A*(Q�), and to a lesser extent the precise positions
of the transition state and unfolded state, Q‡ and Qu, respec-
tively. Equation 16 can thus be directly and quantitatively
tested if �A*(Q�) is evaluated from simulation. Figure 10A
shows the difference M(〈A�〉TS − 〈A�〉U) ≡ M�A�� between
the average number of nonnative contacts M〈A�〉TS, formed
in the simulated transition state ensemble, and the average
M〈A�〉U, formed in the simulated unfolded ensemble. This
number slightly varies over the range of b values where we
expect to find the rate enhancement effect (Tg/Tf � 0.25 up
to b � 1.3�). Because the variation of M�A�� with b in this
range is smaller than the error bar associated to it, we con-
sider its average over the different b values (straight black
line in Fig. 10A). This average value is then used in equa-
tion 16; the resulting quantity ln(k/ko) � (�F0

� − �F�)/TF°
is compared with the difference in log folding rate estimated
directly from a large set of folding simulations. Figure 10B
shows that the agreement between the values predicted from
equation 16 (dashed black line) and simulation results for
the rate (filled gray circles) and barrier height (open circles)
is, indeed, remarkably good up to b � 1 − 1.1.

Folding rates obtained from simulations performed with
b � 0 and variable �NN are also plotted in Figure 10C.
As predicted by the theory, rates accelerate when �NN < 0
(attractive nonnative interactions) and decelerate when

�NN > 0 (repulsive nonnative interactions). The theory gives
excellent agreement with the simulations in the perturbative
limit (dashed line in Fig. 10C). The effect on the rate (at Tf°)
of a perturbation with (b, �NN) � (0, −b2/2TF°) is equivalent
to the case with (b, �NN) � (b, 0). When �NN becomes
sufficiently attractive, the prefactor becomes increasingly
important in determining the folding rate, and rates begin to
decrease dramatically.

Conclusions

In this paper, we derived a theory for the change in the free
energy barrier height to protein folding, as the strength of
nonnative interactions is varied. We find that the barrier
height initially decreases as the strength of nonnative inter-
actions increases.

This means that if one considers two idealized protein
sequences, one completely unfrustrated (a so-called Gō-like
protein) and one with weak nonnative interactions that are
either attractive or randomly distributed, the mildly frus-
trated protein will tend to fold faster at the same tempera-
ture, particularly when the temperature is near the transition
temperature of the Gō protein. This result follows from
energy landscape theory (Plotkin 2001).

The criterion for the rate to increase is related to an in-
crease in packing fraction in the transition state relative to
the unfolded state (equation 18).

Figure 10. (A) Average difference in the number of nonnative contacts in the transition state and unfolded state ensemble, as detected
from simulation, as a function of the perturbation parameter b/�. The values obtained by considering all nonnative contacts are shown
as open circles, whereas filled gray circles correspond to the corrected values (i.e., considering only nonnative contacts that are not
formed in the folded state; see text for details). The average of these quantities over all the considered values of b/� are plotted as
continuous straight lines of the same color. These numbers are comparable to the theoretical estimates of approximately six more
nonnative contacts in the transition state for a 100-residue protein (see Fig. 4). (B) Barrier height �F† (open circles) and log folding
rate k (filled gray circles) as a function of the nonnative energy perturbation strength b (for �NN � 0), and (C) log folding rate k as
a function of the average nonnative energy �NN (for b � 0). The parameters controlling the strength of the nonnative energy, b2/2T and
�NN, enter the free energy at the same footing in the theoretical model (see equation 7c). Results from simulations are in very good
agreement with the theoretical prediction (dashed black curve in B and C) obtained when the value of �A��—shown in A—is used as
an estimate of �A� ≡ �A*(Q�) entering equation 16 predicted by the theory. Values of lnk and �F† are normalized to the
corresponding values for the unperturbed case (lnk0 and �F0†). For large nonnative energy perturbations (b > 1, or �NN > 0.5), both
�F†(Tf°) and lnk rapidly decrease (see also Figure 8B,C). The energy parameters b and �NN are measured in units of native energy per
contact, �. Barrier heights are measured in units of the folding temperature for the unperturbed case (kBT0).
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The rate increase is supported by the theoretical proposal
that proteins exhibit a dynamic glass transition at nonzero
temperature. The consequence of this is that the prefactor to
the rate is initially unaffected as nonnative interactions are
increased in strength from zero. Thus, rate-determining ef-
fects for nearly unfrustrated proteins arise largely from ef-
fects on the folding barrier.

Off-lattice simulations of a coarse-grained C� model of
src-SH3 were used to test the theoretical predictions. Simu-
lation results showed even more robust rate-enhancement
effects than the theory, owing essentially to chain stiffness
and contact range effects that decrease the number of non-
native interactions in the unfolded state. When these cor-
rections are included, theory and simulations are in very
good agreement (Fig. 10).

The experimental relevance of this effect (reduced num-
ber of nonnative contacts in the unfolded state) depends on
whether the fraction of native contacts formed, Q, is a good
reaction coordinate for these systems. For unfrustrated or
nearly unfrustrated systems, Q has been shown to work well
as a reaction coordinate in lattice models (Nymeyer et al.
2000; lattice models have limited move-sets that may fur-
ther hinder the use of Q as a reaction coordinate, relative to
the off-lattice system we studied here), and off-lattice Gō-
like models of short proteins (Shea et al. 2000; Clementi et
al. 2001).

Random nonnative interactions as well as attractive non-
native interactions both speed the folding rate, when they
are perturbatively small compared with the large native in-
teraction energies that drive folding. The analysis here was
done at the transition temperature of the Gō model. Because
the coupling of collapse with folding is fairly generic, it is
expected that the effect of rate-enhancement would also be
seen at different temperatures and stabilities.

The effect of rate enhancement by nonnative stabilization
has been seen in several simulation models (Li et al. 2000;
Cieplak and Hoang 2002; Fan et al. 2002; Treptow et al.
2002), as well as experiments involving the strengthening of
nonspecific hydrophobic interactions in �-spectrin SH3
(Viguera et al. 2002).

Some proteins are thought to be sufficiently frustrated
that nonnative interactions may limit the folding rate. These
proteins would have nonnative energy scales somewhat
larger than unity in Figure 10B, at least for some nonnative
contacts. In some proteins such as lysozyme, these nonna-
tive interactions are thought to stabilize early-formed struc-
tures to prevent degradation or aggregation (Klein-Seethara-
man et al. 2002). All-atom simulations of the 36-residue
villin headpiece segment suggested that the breaking of
nonnative interactions incorrectly packed in the hydropho-
bic core may form the rate-limiting step on some folding
trajectories (Zagrovic et al. 2002; the authors caution, how-
ever, that this may indicate frustration in villin, or may
indicate an artifact of the forcefield used). For proteins that

must escape kinetic traps to fold, it is possible that other
evolutionary mechanisms in addition to funneling may as-
sist folding, such as the selection for amino acids that reduce
the escape barrier from the trap (Plotkin and Wolynes
2003).

To quantify the rate enhancement, it was necessary to
treat the entropy of a finite-sized, self-avoiding chain—a
problem of some interest to polymer physics. The mean-
field Flory entropy of a long, self-avoiding chain of packing
fraction 	 must be modified when the chain is sufficiently
short that configurations with the characteristic radius of
gyration have nonzero packing fraction. Then most states
have a finite packing fraction dependent on the length of the
chain, rather than the bulk value of zero.

From the analysis of simulation data and its comparison
with the theory, it emerges that nonnative perturbations up
to values of b ∼ � yield values of Tg/Tf � 0.4 (see Fig. 9),
that can still be considered realistic for proteins. All se-
quences characterized by this range of frustration are fast-
folders; however, the range of ruggedness is sufficiently
wide that a variety of scenarios are possible a priori for the
folding rate. Both rate enhancement and reduction are com-
patible for realistic levels of frustration. This fact may have
been exploited by natural evolution to select different ef-
fects for different purposes (in the same structural family).
It is worth noticing that the observed rate enhancement/
reduction induced by nonnative interactions is limited to
less than an order of magnitude (at least for the SH3 fold
considered here); thus, it cannot be used to explain the much
larger variation (spanning more than six orders of magni-
tude) of folding rates experimentally observed for single-
domain, two-state folding proteins (Plaxco et al. 1998,
2000b).

In this paper, we made a very simple generalization of the
Gō Hamiltonian for a foldable protein, and found this re-
sulted in nontrivial and rich behavior of the dynamics of the
system. It will be interesting to see what new phenomena
emerge from further considerations of the Hamiltonian de-
scribing biomolecular folding and function.
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