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Abstract
Motivated by the relation between the Chern–Simons gauge theory and (2+1)-
dimensional gravity, we find a formulation of gauge theories which applies to
both orientable and non-orientable manifolds, using orientation bundles and
density-valued forms. We show that on a non-orientable manifold, (2+1)D
gravity is equivalent to BF theory, which is still topological and can be mapped
in turn to Chern–Simons theory on the orientable double cover. By quantizing
U(1) BF theory on a non-orientable manifold, we find that non-orientability
introduces additional constraints on the quantized BF theory beyond those
present for an orientable manifold, such that the coupling constant can only
adopt a small number of discrete values. Specifically, for both the Klein
bottle of demigenus 2 (N2) and the compact surface of non-orientable genus
3 (Dyck’s surface or N3), we find explicit representations for the holonomy,
large gauge, and mapping class groups, as well as the Hilbert space; here the
above symmetries along with the non-orientability of the surface constrain the
coupling constant k to only take values 1/2, 1, or 2.

Keywords: non-orientable manifolds, canonical quantization, mapping class
group, quantum gravity, finite-dimensional Hilbert space
PACS numbers: 04.20.Cv, 04.60.Ds, 04.60.Kz

(Some figures may appear in colour only in the online journal)

1. Introduction

Models of gravity in (2+1)-dimensions are a prototype for (3+1)-dimensional gravity, wherein
many of the conceptual foundations regarding the nature of time, observables, topology, and
quantization may be addressed [1]. The Einstein–Hilbert action of (2+1)D gravity takes the
same form as its higher dimensional counterparts,

0264-9381/14/055008+20$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0264-9381/31/5/055008
mailto:si.chen@alumni.ubc.ca
mailto:steve@phas.ubc.ca


Class. Quantum Grav. 31 (2014) 055008 Si Chen et al

IEH[g] = 1
16πG

∫

M
d3x

√
− det g(R − 2"), (1)

where M is the spacetime manifold, g is the metric tensor, G is the gravitational constant, R is
the Ricci scalar, and " is the cosmological constant. It is well-known that the action of (2+1)D
gravity can be reformulated as a gauge theory action [1–3], which is typically taken as the sum
of two Chern–Simons actions, each of the form

ICS[A] = kCS

4π

∫

M
Tr

{
A ∧ dA + 2

3
A ∧ A ∧ A

}
, (2)

where M is an orientable, three-dimensional, spacetime manifold with no spatial boundary,
A is a 1-form field taking values in a Lie algebra g [4], and kCS is a coupling constant1. The
relation between (2+1)D gravity and Chern–Simons theory has been exploited to calculate
the entropy of Bañados–Teitelboim–Zanelli (BTZ) black holes by counting microscopic
states [5].

Interest in (2+1)D Chern–Simons theory has also been driven by applications to quantum
computing [6]. Quasiparticle excitations in low-dimensional systems, such as fractional
quantum Hall states in 2D electron systems, are not constrained by Bose or Fermi statistics but
instead obey anyon statistics corresponding to symmetry under the non-Abelian operations of
the braid group [7]. Such excitations constitute a topological phase, in that at low energies,
observable properties such as correlation functions are invariant under small deformations or
diffeomorphisms of the spacetime manifold in which the system lives. The energy gap that
accompanies a topological phase generally results in protection against decoherence [8] due to
local perturbations such as electron-phonon or hyperfine interactions. Chern–Simons theory
is the archetypal topological quantum field theory describing non-Abelian anyons.

The quantized Chern–Simons fields appearing in the gauge theory corresponding to
(2+1)D gravity are defined on a given manifold of fixed topology. On the other hand, the
calculation of observables in (2+1)D gravity involves a trace over all possible manifolds,
including manifolds having different topologies, and both orientable and non-orientable
manifolds. A quantizable gauge theory equivalent to quantum gravity that accounts for
topology-changing processes has not been fully explored; here we take a step in this direction
by exploring Chern–Simons theory on a non-orientable manifold.

Although Chern–Simons theory may provide a means of quantizing (2+1)D gravity,
subtleties exist in relating the two approaches. One inequivalence is that some gauge theory
configurations are mapped to degenerate metrics [9–11], which is putatively forbidden in
gravity theories. As a result, the gauge theory phase space splits into several sectors, and the
boundary between these sectors are composed of the states with degenerate metrics. If one
insists to include only states with non-degenerate metric, the resulting 3D gravity phase space
is only one of these sectors. Quantizations of these two different phase spaces are generally
different [12].

Here we focus on resolving another apparent inequivalence between Chern–Simons theory
and quantum gravity. The Chern–Simons action (2) is an integral of a 3-form, and thus is defined
only when the manifold is orientable. On the other hand, the path integral calculation involved
in (2+1)D gravity includes both orientable and non-orientable spacetime manifolds. But if
the spacetime manifold is non-orientable, the conventional definition of an integral over a
differential form fails. Fortunately, there is a generalization of such an integral [13, 14]: on an
orientable or non-orientable n-manifold, n-form densities can be integrated. An n-form density
is different from an n-form only in that, under a coordinate transformation with a negative

1 More generally, A may be taken to be a connection of a G-bundle on M, where G is a Lie group corresponding to
the Lie algebra g. Here we consider only single-valued (trivial) bundles.
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Jacobian determinant, an n-form density obtains an extra minus sign. The mathematical
definition of densities will be constructed in detail below. In terms of such integral, we find
below that the action in (2+1)D gravity can generally be written in terms of a gauge theory
known as BF theory [15]. We show that BF theory is closely related with Chern–Simons theory
defined on the orientable double cover with additional parity conditions on the solution.

In reference [16], Louko has made progress in this direction by formulating the (2+1)D
gravity action with vanishing cosmological constant as an integral of a 3-form density, and
developing the classical solution space for the spacetime topology R× (Klein bottle) in detail.
The formalism we develop below generalizes these results to arbitrary cosmological constant,
and arbitrary topology of the spacetime. We do not explore the space of classical solutions
however, and leave this as a topic for future work.

The outline of this paper is as follows. In section 2, the general definition and properties
of p-form densities are reviewed; in section 3, the relations between (2+1)D gravity, BF
theory, and Chern–Simons theory are established using p-form densities, for the case of a non-
orientable spacetime manifold; in section 4, the gauge theory formulation on a non-orientable
manifold is applied by quantizing the BF theory with U(1) gauge group on the compact space
manifolds of non-orientable genera 2 and 3, i.e. on the manifolds R × Ng with g = 2, 3.

2. p-form densities and integration

In this section we review the mathematical formulation involved in the integration of densities,
which can be used to deal with fields on non-orientable manifolds. A diffeomorphism of open
subsets of Rn is orientation-preserving if the Jacobian determinant of the diffeomorphism is
everywhere positive. Let M be covered by the atlas {Uα,φα}α∈A, where Uα’s are open sets that
cover M, and for each α, the chart φα : Uα → Rn is a homeomorphism. The atlas is oriented
if all the transition functions tαβ = φα ◦ φ−1

β are orientation-preserving, and M is orientable if
it has an oriented atlas. The set of all charts having orientation-preserving transition functions
with each other is called an orientation. There are two orientations on an orientable manifold;
either one is denoted by [M]. It can be shown that an n-dimensional manifold M is orientable
if and only if there exist a nowhere vanishing n-form on M.

On an orientable n-dimensional manifold M, after choosing an orientation [M], the
(conventional) integration of a n-form is defined as follows. Given an oriented atlas {Uα,φα}α∈A

within [M], the integration of n-form τ is∫

[M]
τ =

∑

α∈A

∫

Rn

(
φ−1

α

)∗
(ρατ ). (3)

Here {ρα}α∈A is a partition of unity [4] of the atlas A,
(
φ−1

α

)∗ is the pullback of φ−1
α , and the

integrals on the right-hand side are Riemann integrals [17], or in principle Lebesgue integrals.
Usually a fixed orientation [M] is understood, and the integration is simply written as

∫
M τ .

This definition of the integral
∫

M τ has the property that it is independent of the atlas and the
partition of unity.

With the above definitions regarding conventional integrals of forms in mind, we define
several concepts to deal with integration on non-orientable manifolds. All of the following
concepts and properties apply to both orientable and non-orientable cases: for the orientable
cases they reduce to rather trivial counterparts of the conventional concepts.

As mentioned above, an n-form indeed cannot be integrated on a non-orientable n-
dimensional manifold; the value of the integral would not be invariant of the partition of unity.
Another set of objects however, the n-form densities, can be integrated. Let the n-dimensional
manifold M be covered by the atlas {Uα,φα}α∈A. The orientation bundle, denoted by (O, M,π )
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[13, 14], is a Z2-fiber bundle over M, specified by transition functions Tαβ = sgn[det(Jαβ )],
where Jαβ is the Jacobian of the transition function tαβ between two charts. Let (p(M) denote
the bundle of smooth p-forms on M. A p-form density is a smooth section of the bundle
(p(M) ⊗p O, where the notation ⊗p means the tensor product is taken for the fibers at each
point.

The orientation bundle merely stores information about relative orientation between local
charts—if two overlapping charts have the same orientation, their transition function is 1,
otherwise it is −1. A given term in the p-form density is expressed as (ai1···ip (x

i1 , · · · , xip )dxi1 ∧
· · · ∧ dxip, z), where z is in Z2. The combination of coefficients z · ai1···ip of a p-form density
transforms between two coordinate charts (unprimed to primed) as [17]

z′ · a′
j1··· jp

= sgn(det J)
∑

i1,...,ip

∂xi1

∂x′ j1
· · · ∂xip

∂x′ jp
z · ai1···ip . (4)

That is, they transform in the same way as coefficients of regular p-forms, except that there is
an extra minus sign when the coordinate orientation is reversed. Examples in physics include
the magnetic field and angular momentum, and are generally called an axial scalar, vector, or
tensor. p-form densities can thus be thought of as an axial generalization of p-forms.

The total space of the orientation bundle of M is called the orientable double cover of
M, and is denoted as M̃. Explicitly, assuming that M is covered by the atlas {Uα,φα}α∈A, M̃
is the set (

⋃
α∈A Uα × {±1})/ ∼, where (x, z) ∼ (x′, z′) if and only if x = x′ ∈ Uα ∩ Uβ and

z = Tαβ (x)z′. In this way M̃ is a two-fold cover of M, with the projection map π : M̃ → M
given by π (x, z) = x. M̃ as a manifold is described by the atlas {Ũα,z, φ̃α,z}α∈A,z∈Z2 , where
the new atlas is labeled by two indices α and z, and φ̃α,z = (φα, z). If Uα ∩ Uβ ,= ∅, then
Ũα,z ∩ Ũβ,tαβ z ,= ∅, and the transition function between Ũα,z and Ũβ,tαβ z is φβφ−1

α .
To show that the orientable double cover M̃ is orientable, one can construct a refinement

{Vβ}β∈B of {Ũα,z}, that is, for any β ∈ B, there exists α and z such that Vβ ⊆ Ũα,z, and {Vβ}β∈B

still covers M̃. Define the functions χβ (x̃) such that χβ (x̃) = 1 for x̃ ∈ Vβ , χβ (x̃) = 0 for
x̃ /∈ Ũα(β),z(β), and χβ (x̃) ! 0 everywhere. Consider the n-form

∑

β∈B

zχβ (x̃) dx̃1
β ∧ · · · ∧ dx̃n

β ,

where for each β, z is the value in Z2 such that Vβ ⊆ Ũα,z. It can be seen that for each point
in M̃, z takes the same value. Also, for each point in M̃, at least one term in the summation
over β is nonzero, since {Vβ}β∈B covers M̃. Thus we have shown that this n-form is nowhere
vanishing, and so M̃ is orientable.

Example 1. As a first example, let M be orientable. By the nowhere vanishing n-form on
M, all coordinate charts fall into two families: charts on which the coefficient of the n-form
is positive/negative. The orientation bundle is a trivial Z2-bundle—it is composed of two
disconnected copies of M, i.e., O = M̃ = M × {±1}. !

Example 2. A simple non-orientable example is the Möbius strip. It can be covered by three
coordinate charts (see figure 1) (x, y) ∈ φ1(U1) = (0, 1/2) × (0, 1), (x′, y′) ∈ φ2(U2) =
(1/3, 5/6) × (0, 1), (x′′, y′′) ∈ φ3(U3) = (2/3, 7/6) × (0, 1), and the transition functions tαβ

are

(x′, y′) = t2,1(x, y) = (x, y)

(x′′, y′′) = t3,2(x′, y′) = (x′, y′) (5)

(x, y) = t1,3(x′′, y′′) = (x′′ − 1, 1 − y′′).

4
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Figure 1. The Möbius strip can be covered by three charts—see example 2 in the text.
The three charts in the example are denoted by red (U1), green (U2), and blue (U3)
regions. The regions overlapping two charts are colored olive (U1 ∩ U2), teal (U2 ∩ U3),
and purple (U3∩U1). Coordinates delineating the charts are indicated- note the difference
in coordinates and coordinate axes between U3 and U1.

Consider a constant 0-form α and a constant 0-form density β. Assume that on U1, α = a,
where a is a constant real number. By the coordinate transformation law, it is easy to see that
α = a on all charts. Assume that on U1, β = b, where b is a constant real number. By the
coordinate transformation law of densities, by t2,1, β = b on U2; by t3,2, β = b on U3; by t1,3,
β = −b on U1. Thus this constant 0-form density is inconsistent unless b = 0.

Now consider a general 2-form. It can be expressed on the above three charts as

U1 : f (x, y) dx∧ dy

U2 : f ′(x′, y′) dx′∧ dy′

U3 : f ′′(x′′, y′′) dx′′∧ dy′′.

The transition functions (5) dictates that the coefficients satisfy

f (x, y) = f ′(x, y), ∀(x, y) ∈ (1/3, 1/2) × (0, 1),

f ′(x′, y′) = f ′′(x′, y′), ∀(x′, y′) ∈ (2/3, 5/6) × (0, 1),

f ′′(x′′, y′′) = − f (x′′ − 1, 1 − y′′), ∀(x′′, y′′) ∈ (1, 7/6) × (0, 1).

As a consequence, one can see that at least one of f , f ′ and f ′′ must have a zero point, which
is consistent with the general statement that on an n-dimensional non-orientable manifold, an
n-form must have a zero point.

The orientable double cover of the Möbius strip by construction is covered by six
coordinate charts, φi,±1, and the transition functions are

(x′
+, y′

+) = t2,+1,1,+1(x+, y+) = (x+, y+)

(x′′
+, y′′

+) = t3,+1,2,+1(x′
+, y′

+) = (x′
+, y′

+)

(x−, y−) = t1,−1,3,+1(x′′
+, y′′

+) = (x′′
+ − 1, 1 − y′′

+)

(x′
−, y′

−) = t2,−1,1,−1(x−, y−) = (x−, y−)

(x′′
−, y′′

−) = t3,−1,2,−1(x′
−, y′

−) = (x′
−, y′

−)

(x+, y+) = t1,+1,3,−1(x′′
−, y′′

−) = (x′′
− − 1, 1 − y′′

−).
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These charts and transitions simply describe a cylinder, where the above transition functions
connect pairs of coordinate charts, with the last chart connected back to the first, and two of the
transition functions flip the orientation. It can be shown that if M is non-orientable, its orientable
double cover M̃ is always connected, and if M is orientable, M̃ is always disconnected. !

With respect to the involution σ : M̃ → M̃ given by σ (x, z) = (x,−z), p-forms on M̃
split into even forms and odd forms

(p(M̃) = (
p
+(M̃) ⊕ (

p
−(M̃) (6)

according to (σ ∗ω̃+)(x̃) = ω̃+(x̃), and (σ ∗ω̃−)(x̃) = −ω̃−(x̃). The pullback π∗ : (p(M) →
(

p
+(M̃) is a bijection, so regular forms on M are equivalent with even forms on M̃. Given a

p-form density ξ on M and v1, . . . , vp ∈ T(x,z)(M̃), we can define ξ̃ ∈ (
p
−(M̃) by

ξ (π∗(v1), . . . ,π∗(vp)) = ξ̃ (v1, . . . , vp) ⊗ (x, z), (7)

which gives an identification of p-form densities on M and odd forms on M̃. In plain words, on
M there exists p-forms and p-form densities, and equivalently we can work on the orientable
double cover M̃, on which we only consider p-forms with a definite parity. It is obvious that
the wedge product of two odd forms is an even form, the wedge product of two even forms is
an even form, and the wedge product of an odd form and an even form is an odd form. These
relations hold for both p-forms and p-form densities correspondingly; see the diagram below.

on M : regular forms densities
1 1

on M̃ : even forms odd forms.

We can also define Lie algebra valued p-form densities. They are sections of the tensor
product space g ⊗ ((p(M) ⊗p O).

The exterior derivative d commutes with σ ∗, because in general, the exterior derivative
commutes with pullbacks. The de Rham cohomology group splits accordingly,

H p(M̃, R) = H p
+(M̃, R) ⊕ H p

−(M̃, R), (8)

so the concept of harmonic p-forms generalizes to harmonic p-form densities on M.
The most important property of densities is that a p-form density can be consistently

integrated on a p-dimensional manifold. From the above discussion, one can easily see that
the following integration of p-form densities on a p-dimensional manifold M′ is well defined,

∫

M′
ξ = 1

2

∫

M̃′
ξ̃ , (9)

where on the right side it is the regular integral of the corresponding odd p-form on the
orientable double cover.

Consider a p-form density ξ supported on one coordinate chart. By equations (3) and (9),
the integration of ξ is given in terms of the coordinates by

∫

M′
ξ =

∫
zai1···ipdxi1 · · · dxip .

Under a diffeomorphism of M′, the integration transforms into
∫

z̄ā j1··· jpdx̄ j1 · · · dx̄ jp =
∫ [

sgn(det J)
∑

i1,...,ip

∂xi1

∂ x̄ j1
· · · ∂xip

∂ x̄ jp
zai1···ip

]

×
[

sgn(det J)
∑

i1,...,ip

∂ x̄ j1

∂xi1
· · · ∂ x̄ jp

∂xip
dxi1 · · · dxip

]
.
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So the transformations of the two parts cancel exactly, and the integration is invariant under
arbitrary diffeomorphisms, as opposed to regular integrations, which are only invariant under
orientation-preserving diffeomorphisms. This conclusion holds for integration of a general
p-form density, because it can be decomposed into a sum of p-form densities supported on
one coordinate chart, using a partition of unity for M′.

Example 3. 2-form density on the Möbius strip, with integral given in equation (9).
Consider a general 2-form density ω defined on the Möbius strip, which is covered by the atlas
in example 2. Assume that on the three charts, ω is expressed as

U1 : (g(x, y)dx ∧ dy, 1)

U2 : (g′(x′, y′)dx′ ∧ dy′, 1)

U3 : (g′′(x′′, y′′)dx′′ ∧ dy′′, 1).

According to the transition functions (5), the coefficients must satisfy

g(x, y) = g′(x, y), ∀(x, y) ∈ (1/3, 1/2) × (0, 1),

g(x′, y′) = g′′(x′, y′), ∀(x′, y′) ∈ (2/3, 5/6) × (0, 1),

g(x′′, y′′) = g′(x′′ − 1, 1 − y′′), ∀(x, y) ∈ (1, 7/6) × (0, 1).

By the definition (9), ω can be integrated as
∫

M
ω =

∫ 1

0
dy

(∫ 1/3

0
g(x, y) dx +

∫ 2/3

1/3
g′(x, y) dx +

∫ 1

2/3
g′′(x, y) dx

)
.

!

Example 4. The Klein bottle, which is a compact non-orientable surface, can be represented
as a square with its sides identified as in figure 2(a). The schematic figures of its orientation
bundle and the oriented double cover are shown in figures 2(b) and (c), respectively. One can
see that the oriented double cover is a torus, and from this relation we can derive the harmonic
forms on the Klein bottle. In section 4 we consider the quantization of U (1) BF theory on a
non-orientable surface, for which the space of harmonic 1-forms and 1-form densities must
be identified.

On the torus, the space of harmonic 1-forms is two-dimensional, for which the basis can
be taken as the two uniform 1-forms shown on the right side of figures 2(d) and (e). The 1-form
on the right side of figure 2(d) is even with respect to the involution σ , so it corresponds to
a harmonic 1-form on the Klein bottle, shown on the left side of figure 2(d). Similarly, the
1-form on the right side of figure 2(e) is odd with respect to σ , so it corresponds to a harmonic
1-form density on the Klein bottle, shown on the left side of figure 2(e). Conversely, because
any harmonic form or harmonic form density on the Klein bottle corresponds to a harmonic
form on the torus, the harmonic 1-form/1-form density that we have found on the Klein bottle
is the complete basis for the space of harmonic 1-forms/1-form densities. !

3. The relation between (2+1)D gravity, BF theory, and Chern–Simons theory
on non-orientable manifolds

In the previous section the integral of n-form densities on non-orientable n-manifolds was
defined. Using this construction we can define field theories on manifolds with any orientability
by constructing an n-form density as the Lagrangian. In particular, this formalism can be used
to express the (2+1)D gravity action as a gauge theory action, even if the spacetime manifold
is non-orientable.

7



Class. Quantum Grav. 31 (2014) 055008 Si Chen et al

p

(a)

(p, z)

(p,−z)

(b)

(p, z)

σ(p, z) = (p,−z)

(c)

(d)

(e)

Figure 2. Schematic representations of (a) the Klein bottle; (b) the orientation bundle
of the Klein bottle; (c) the orientable double cover of the Klein bottle; (d) the basis of
harmonic 1-forms on the Klein bottle and corresponding even harmonic 1-forms on the
orientable double cover; (e) the basis of harmonic 1-form densities on the Klein bottle
and corresponding odd harmonic 1-forms on the orientable double cover.

The BF theory [15] is a gauge theory whose action is closely related to that in (2+1)D
gravity. The BF action can be straightforwardly interpreted as the integral of a density, which
in n dimensions is

IBF0[A, B] = kBF0

2π

∫

M
Tr{B ∧ F}. (10)

Here, B is a g-valued (n − 2)-form density, F = dA + A ∧ A, A is a Lie algebra g-valued
1-form field, and kBF0 is the coupling constant. In contrast to Chern–Simons theory, this theory
is well-defined regardless of the orientability of M.

To map the BF theory to (2+1)D gravity with arbitrary cosmological constant (see (1)), a
generalized BF theory is needed: To construct an n-form density, each term of the Lagrangian
must include an odd number of densities. In n = 2 + 1 dimensions, another term composed
of A and B may be added to equation (10),

IBF[A, B]M = kBF

2π

∫

M
Tr

{
B ∧ F − λ

3
B ∧ B ∧ B

}
(11)

where kBF and λ are parameters. When we relate this theory with 3D gravity below, λ will
become the cosmological constant ". In the rest of this section, we will analyze this three-
dimensional, generalized BF theory, and will refer to it simply as BF theory.

8
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The BF theory is related with 3D gravity theory. From the 3D gravity action in equation (1),
one can change the fundamental variable from the metric g to the local frame e and spin
connection ω, according to the definitions

ηabe a
µ e b

ν = gµν, (12)

∇µe a
ν + ω a

µ be b
ν = 0 (13)

where η = diag{−1, 1, 1}. We also define the spin connection field with one local index

ωa = 1
2εabcωµbc dxµ (14)

where εabc is totally antisymmetric with ε012 = 1, and its indices are raised and lowered by ηab

and ηab. Note that in this change of variable, according to (12), the local frame e is determined
by g up to a local Lorentz rotation. This local Lorentz symmetry is an additional gauge
symmetry of the resulting model. On the other hand, ω is fully determined by e classically
from equation (13):

ω a
µ = εabceν

c(∂µeνb − ∂νeµb) − 1
2εbcd

(
eν

beρ
c∂ρeνd

)
e a
µ ,

so there is no additional gauge symmetry associated with ω.
Now we rewrite the action (1) in terms of the new variables e and ω. The determinant of

the metric is related to the local frame e by

(− det g) =
(
εµνλe 0

µ e 1
ν e 2

λ

)2
,

where εµνλ is totally antisymmetric with εtxy = 1. When taking square root on both sides,
there may or may not be an extra minus sign, so the volume element in the Einstein–Hilbert
action (1) is

√
− det gd3x = 1

6εabcea ∧ eb ∧ ec · sgn(det e). (15)

The left-hand side of (15) is a volume form that can always be integrated; the right side is a
3-form, and it is integrable on a non-orientable manifold only if ea is a 1-form density. Thus
we identify ea as a 1-form density field with a local frame index. According to the definitions
(13) and (14), ωa is still a 1-form field with a local frame index. The Einstein–Hilbert action
can then be cast into the so-called Palatini form [18]:

I′
P = 2

16πG

∫

M

{[
ea ∧

(
dωa + 1

2
εabcω

b ∧ ωc
)

− "

6
εabcea ∧ eb ∧ ec

]
· sgn(det e)

}
. (16)

If the topology of M is fixed, this action takes the form of a well-defined gauge theory
action, except for the potentially awkward term sgn(det e). For a model of gravity however,
the metric is traditionally required to be non-degenerate everywhere [18], so for any solution
of (16) corresponding a gravitational solution, the factor sgn(det e) does not change sign,
and thus has no effect at all. However, as soon as we write the metric in terms of the local
frame in this way, we allow the factor sgn(det e) to change sign within the spacetime, which
is equivalent to allowing the metric to take degenerate values. In other words, the gauge
theory defined by (16) is not exactly a reformulation of 3D gravity, but an extension whose
classical solutions include the gravity solutions as a subset [9, 10]. For the same reason, one
can choose to neglect the factor sgn(det e) in (16), and the result is another extension of 3D
gravity. It has been conjectured that such a gauge theory extension may give a quantization of
3D gravity [3], which circumvents the difficulties in quantizing Einstein gravity directly. We
follow this strategy here, and choose to neglect the factor sgn(det e) in equation (16), so the
action becomes

IP = 2
16πG

∫

M

{
ea ∧

(
dωa + 1

2
εabcω

b ∧ ωc
)

− "

6
εabcea ∧ eb ∧ ec

}
. (17)

9



Class. Quantum Grav. 31 (2014) 055008 Si Chen et al

This Palatini gravity action is nothing but the BF action (11) with a cosmological constant
term, if we interpret the local indices as labeling the components of a gauge field taking value
in the Lie algebra sl(2, R). That is, if we let

B = eaTa , A = ωaTa (18a)

T0 = 1
2

(
0 −1
1 0

)
, T1 = 1

2

(
1 0
0 −1

)
, T2 = 1

2

(
0 1
1 0

)
(18b)

where Ta in (18b) are a set of sl(2, R) generators that have the properties [Ta, Tb] = ε c
ab Tc,

Tr(TaTb) = 1
2ηab. Then

IP = IBF = 1
4πG

∫

M
Tr

{
B ∧ (dA + A ∧ A) − "

3
B ∧ B ∧ B

}
. (19)

Equation (19) gives the relation between BF theory and 3D gravity, at the level of the action.
We may further relate Gravity to Chern–Simons theory by showing that the BF theory

action is the sum of two Chern–Simons actions. In this relation, the Lie algebra of the BF
theory is not restrained to sl(2, R). However, this relation does depend on the sign of the
parameter " as follows.

3.1. Case I: " < 0

If " < 0, let 2 = 1/
√

−", and define D± = Ã ± 2−1B̃, where Ã is the even form field on the
orientable double cover M̃ corresponding to A, and B̃ is the odd form field on M̃ corresponding
to B. Then

IBF[A, B]M = kBF

4π

∫

M̃
Tr

{
2

4
(D+ − D−) ∧ (dD+ + dD−)

+2

8
(D+ − D−) ∧ (D+ + D−) ∧ (D+ + D−)

+ 2

24
(D+ − D−) ∧ (D+ − D−) ∧ (D+ − D−)

}

= 2kBF

16π

∫

M̃
Tr

{
D+ ∧ dD++ 2

3
D+ ∧ D+ ∧ D+−D− ∧ dD−− 2

3
D− ∧ D− ∧ D−

}

= 1
2
(ICS[D+]M̃ − ICS[D−]M̃ ) (20)

where ICS[D±]M̃ is the Chern–Simons action kCS
4π

∫
M̃ Tr{D± ∧ dD± + 2

3 D± ∧ D± ∧ D±}, and
the coupling constants of the two theories are matched by kCS = 2kBF/2. Relation (20) has
been well-studied for orientable manifolds [1, 3].

It is well-known that the Chern–Simons theory is a Schwarz-type topological theory [19],
so from this relation it is clear that the BF theory is topological too. Because Ã is an even
1-form field and B̃ is an odd 1-form field, D± cannot take arbitrary values. Rather, they must
satisfy

σ ∗D+ = D−, (21)

where σ is the involution defined in section 2, and σ ∗ is its pullback. By this parity condition,
D− is determined by D+. In fact, because σ ∗ commutes with the wedge product and the
exterior derivative, and its operation amounts to a minus sign after integration,

ICS[D−]M̃ = −ICS[D+]M̃, (22)

and the action of BF theory can then be re-expressed simply as

IBF[A, B]M = ICS[D+]M̃. (23)

10
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This is an exact equivalence between the BF theory on M and the Chern–Simons theory on the
orientable double cover M̃. Properties of the BF theory on the left-hand side of (23), such as
its gauge symmetry, classical moduli space, and quantization schemes, can be read off directly
from the Chern–Simons theory on the right-hand side of (23) [20].

3.2. Case II: " > 0

If " > 0, we let 2 = 1/
√

", and define C = Ã + i2−1B̃. Then

IBF[A, B]M = kBF

4π

∫

M̃
Tr

{
2

4i
(C − C∗) ∧ (dC + dC∗) + 2

8i
(C − C∗) ∧ (C + C∗) ∧ (C + C∗)

+ 2

24i
(C − C∗) ∧ (C − C∗) ∧ (C − C∗)

}

= 2kBF

16iπ

∫

M̃
Tr

{
C ∧ dC + 2

3
C ∧ C ∧ C − C∗ ∧ dC∗ − 2

3
C∗ ∧ C∗ ∧ C∗

}

= 1
2i

(ICS[C]M̃ − ICS[C∗]M̃ ) (24)

where the coupling constants of the two theories are again matched by kCS = 2kBF/2. The
gauge group of the right hand side theory is GC, which is a group with algebra gC, which in
turn is the complexification of g.

The parity conditions on Ã and B̃ are equivalent to the following condition on C,

σ ∗C = C∗. (25)

Note that this does not imply the C field is real—rather, this is a constrained Chern–Simons
theory. A similar relation to equation (23) follows from the relation I∗

CS[C] = ICS[C∗], and so
the BF action can be written as

IBF[A, B]M = Im ICS[C]M̃. (26)

The gauge transformations are parameterized by a GC-valued function gC(x̃),

C → (gC)
−1

dgC + (gC)
−1

CgC. (27)

Gauge transformations consistent with the parity conditions are of the form

σ ∗gC(x̃) = Z(x̃)gC∗
(x̃), (28)

where Z(x̃) belongs to the center of GC. The classical moduli space is Hom(π1(M̃), GC)/ad GC

with the constraint

exp
(∫

α

C
)

= exp
(∫

σα

C∗
)

. (29)

Existing quantization methods of Chern–Simons theory [19, 21–26] can still be applied, but
the constraint (25) or (29) restricts the phase space that will be so quantized.

4. Quantization of U(1) BF theory on non-orientable manifolds

In this section, we study the quantization of U(1) BF theory as an application of the formalism
developed in the previous section. An exact solution for the quantized states of the BF action on
a non-orientable manifold is tractable for the Abelian gauge group U(1). The choice of using
the U(1) gauge group can also be motivated by considering the coupling of the gauge fields to
an external electron current; then the U(1) gauge group arises naturally as a consequence of
electron charge conservation. Bergeron and Semenoff [27] considered a Chern–Simons model

11
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including external U(1) current coupling, wherein they also found a finite-dimensional Hilbert
space and quantization condition on the coupling constant k, by solving the clock algebra,
large gauge transformation (LGT) group, and braid group for an orientable surface of any
genus. We draw similar conclusions here for non-orientable surfaces; to do so we use the full
mapping class group (MCG) rather than the braid group: the elements of the braid group can
be viewed as equivalence classes of diffeomorphisms, thus the braid group is a subgroup of
the MCG.

We follow the method in [28], where U(1) Chern–Simons theory was quantized on
orientable manifolds. We look for explicit representations of the discrete symmetry groups of
BF theory: (1) the LGT group; (2) the holonomy group; (3) the MCG.

4.1. General formalism

For the Abelian gauge group U(1), the BF theory action (11) simplifies to

I = k
2π

∫

R×N
B ∧ dA (30)

where k = kBF, B is a 1-form-density U(1) gauge field, and A is a regular 1-form U(1) gauge
field. By decomposing the fields into time-like components and space-like components, the
action becomes

I = k
2π

∫

N×R

(
By∂tAx − Bx∂tAy + BtFA

xy + AtFB
xy

)
(31)

where FA
xy =

( d
dx Ay − d

dy Ax
)
dx∧dy, FB

xy =
( d

dx By − d
dy Bx

)
dx∧dy. At, Bt are Lagrange multipliers

and impose FA
xy = 0, FB

xy = 0. By choosing the gauge fixing conditions At = 0, Bt = 0,
and regarding A and B as forms on a two-dimensional manifold, the constraint equation is
dA = 0, dB = 0. Any classical solution thus can be Hodge-decomposed as

A = dU +
∑

aiη
i

B = dV +
∑

biξ
i (32)

where {ηi}({ξ i}) is a complete basis of harmonic 1-forms (1-form densities).
The topology of a non-orientable compact surface is specified by the non-orientable

genus or demigenus g, and we denote the corresponding surface by Ng, so for example g = 2
corresponds to the Klein bottle N2. The orientable double cover of Ng+1 is the genus gorientable
compact surface 3g [29], so for example the orientable double cover of the Klein bottle N2

is the toroid 31. Let #(α,β) be the algebraic intersection number between two loops α and
β. Generators of the fundamental group π1(3g) can be taken as αi,βi, i = 1, . . . , g, where
i labels the handles on the surface 3g. See figure 3 for the convention used for choosing
the fundamental group generators. The generators αi, βi obey #(αi,α j) = 0, #(βi,β j) = 0
and #(αi,β j) = δi− j. Each loop generator α,β on handle i corresponds to a harmonic form
ωα,i,ωβ,i, such that∫

αi

ωα, j =
∫

βi

ωβ, j = δi− j,

∫

αi

ωβ, j =
∫

βi

ωα, j = 0, (33)

which implies the following orthogonality conditions on the surface 3g:
∫

3g

ωα,i ∧ ωβ, j = δi− j,

∫

3g

ωα,i ∧ ωα, j =
∫

3g

ωβ,i ∧ ωβ, j = 0. (34)

From the harmonic forms ωα,i,ωβ,i on 3g, one can construct the corresponding harmonic
forms and densities on Ng+1. For this purpose, let the surface 3g be embedded into R3, which

12



Class. Quantum Grav. 31 (2014) 055008 Si Chen et al

ᾱ1 ᾱ(g+1)/2 ᾱg

β̄1
β̄(g+1)/2 β̄g

O

(a)

ᾱ1 ᾱg/2 ᾱg/2+1 ᾱg

β̄1 β̄g/2 β̄g/2+1 β̄g

O

(b)

Figure 3. The orientable compact surface 3g embedded in R3, with point O at the origin.
The case of odd g and even g are shown in (a) and (b), respectively. The generators of
the fundamental group that we choose are shown as directed loops. If pairs of points on
3g are identified using the involution σ , then the resulting surface is Ng, composed of
the part say to the left of the straight dashed line. For example, the orientable compact
surface 31 would consist of the top schematic with only the center hole present (a torus),
and the Klein bottle N2 would be the projected/involuted surface constituting say the left
half. The surface 32 would contain only the center two holes of the bottom schematic,
and the non-orientable surface N3 would be the projected/involuted surface consisting
of say the left half.

is equipped with a coordinate system such that the embedded surface is symmetric with
respect to x ↔ −x, y ↔ −y and z ↔ −z, separately (see figure 3). The involution σ can
be constructed as σ (x, y, z) = (−x,−y,−z). With the generators of the fundamental group
chosen as in figure 3, one can see, using relations such as σ ∗(ωα,i) = −ωα,(g+1−i), that the
following harmonic forms are even

η̃i = ωα,i − ωα,(g+1−i), i = 1, · · · , 5g/26,
η̃g−i = ωβ,i + ωβ,(g+1−i), i = 1, · · · , 5g/26, (35)

η̃(g+1)/2 = 2ωβ,(g+1)/2, if g is odd,

13
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and the following harmonic forms are odd

ξ̃ i = ωβ,i − ωβ,(g+1−i), i = 1, · · · , 5g/26,
ξ̃ g−i = −ωα,i − ωα,(g+1−i), i = 1, · · · , 5g/26, (36)

ξ̃ (g+1)/2 = −ωα,(g+1)/2, if g is odd.

These harmonic forms are normalized such that∫

3g

η̃i ∧ ξ̃ j = 2δi− j,

∫

3g

η̃i ∧ η̃ j =
∫

3g

ξ̃ i ∧ ξ̃ j = 0. (37)

Applying the general definition (7) to η̃ and ξ̃ , it follows that η̃ ∧ ξ = η̃ ∧ ξ̃ , so that from (9),
the corresponding harmonic forms and densities on Ng satisfy

∫

Ng

ηi ∧ ξ j = δi− j,

∫

Ng

ηi ∧ η j =
∫

Ng

ξ i ∧ ξ j = 0. (38)

See figure 2 for the example of Klein bottle, which has g = 1 (Ng+1 = N2). The harmonic
forms and densities we found above should be complete, because it can be shown any harmonic
form or density on Ng+1 induces a harmonic form on 3g, and there are 2g harmonic forms on
3g, while we already found g harmonic forms and g harmonic densities on Ng+1. Using these
explicit harmonic forms on Ng+1, we obtain the symplectic structure of the phase space.

Using continuous (small) gauge transformations, in (32), the factors U and V can be
eliminated. Then substituting (32) and (38) into (31), the BF action simplifies to

IBF = k
2π

∫
dt

g∑

i=1

ai∂tbi, (39)

from which we can read off the canonical commutation relation [ai, b j] = −i2π
k δi− j. After

the small gauge symmetries are fixed, the BF action is still invariant under the LGT, which
effectively translates ai and/or bi by multiples of i2π . Thus instead of quantizing the U(1)-
valued coordinates ai, bi, we quantize the LGT-invariant U(1)-valued holonomies

τA
i =





exp

(∮
αi

A
)

, i < g/2

exp
(∮

βg+1−i
A
)

, i ! g/2

= exp (ai) ,

τB
i =






exp
(∮

βi
B
)

, i < g/2

exp
(
−

∮
αg+1−i

B
)

, i ! g/2

= exp(bi),

(40)

where A and B are the fields appearing in (32), and the loops αi,βi are on Ng+1—they are
projections of the loops αi,βi on 3g. Here the holonomies are defined in terms of loops and
fields on Ng+1, because in this way it is easier to keep track of how they transform under MCG.
We also quantize the U(1)-valued LGT group itself, which has the generators

ρA
i =






exp
(

k
∮
αi

A
)

, i < g/2

exp
(

k
∮
βg+1−i

A
)

, i ! g/2

= exp (kai) ,

ρB
i =






exp
(

k
∮
βi

B
)

, i < g/2

exp
(
−k

∮
αg+1−i

B
)

, i ! g/2

= exp(kbi).

(41)
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Classically, the holonomy group and the LGT group formed from these generators are Abelian.
After quantization however, these two groups are each deformed to be non-Abelian within
themselves due to the canonical commutators, i.e.:

τA
i τB

j = τB
j τA

i exp
(−i2π

k
δi− j

)
,

ρA
i ρB

j = ρB
j ρ

A
i exp(−i2πkδi− j). (42)

Still, these two groups commute with each other, so we can treat them separately. Their
representations are related by the duality transformation k ↔ 1/k, as pointed out by
Polychronakos [30].

In addition to the holonomy and LGT groups, we consider the MCG, which is defined as

MCG(M) = Diff(M)/Diff0(M), (43)

where Diff(M) is the diffeomorphism group on M, and Diff0(M) is identity component of
Diff(M). Thus states that are covariant with respect to MCG constitute ‘toy’ U(1) analogues
of quantum states in general relativity; we will require here that the quantum states form a
representation of the MCG.

The MCG of the Klein bottle MCG(N2) was found to be Z2 ⊕ Z2 in [31]. It was shown in
[29] that the MCG of a non-orientable surface can be derived from its oriented double cover,
and an explicit presentation of MCG(N3) was derived there. In [32] an algorithm was devised
to provide an explicit presentation of the MCG for any non-orientable surface, and this was
applied to N4 in [33]. However, the resulting presentation of MCG(N4) is quite complicated,
and we shall not calculate the representation of this group in the quantization of BF theory.
Beyond N4, no explicit presentation is presently known.

4.2. Quantization on the surface N2 (Klein bottle)

For the Klein bottle N2 having non-orientable genus or demigenus 2, the fundamental group
is generated by two loops α1,β1, with the relation

α1β1α1β
−1
1 = 1. (44)

It has one even harmonic form η1 = ωβ,1 and one odd harmonic form ξ 1 = ωα,1, so we define
two holonomies

τA ≡ τA
1 = e

∮
β1

A = ea, τB ≡ τB
1 = e−

∮
α1

B = eb. (45)

From [a, b] = −i2π
k , we obtain the clock algebra [27]

τAτB = τBτAω−1, (46)

where ω = exp
( i2π

k

)
.

The MCG of the Klein bottle is generated by two elements, a Dehn twist A and a cross-cap
slide Y [31]. If one establishes a coordinate system (x, y) with 0 < x, y < 1 on the surface of
the Klein bottle (figure 2), then the action of the cross-cap slide is y → 1 − y and the action
of the Dehn twist is y →

{x+y if x+y<1,
x+y−1, if x+y>1 . These operations act on the loops α,β as:

A(α1,β1) = (α1,α1β1) (47)

Y(α1,β1) = (α−1
1 ,β1). (48)

It can be shown using (44) that A2 = 1, Y2 = 1, AY = YA, which confirms the MCG is
Z2 ⊕ Z2.
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The induced operations on the holonomies are

A†(τB, τA)A = (τB, τA), (49)

Y†(τB, τA)Y = ((τB)−1, τA). (50)

Note that although the Dehn twist A maps the loop β to αβ, the holonomies are not affected
by the operator A.

We now seek a representation of τB, τA, A, Y that satisfies (46), (49), and (50). We solve
the clock algebra equation (46) first. For the MCG to have a finite-dimensional representation,
k must be rational: k = p/q, with p, q coprime [30]. Up to a unitary transformation, it can
be shown that the holonomies α and β have the block-diagonal form, with one holonomy
diagonal. Specifically, we let the matrices representing the holonomies be composed of r
blocks of p × p sub-matrices, where r is an arbitrary integer:

τA = diag
{
β̃
(
k, θβ

0

)
, . . . , β̃

(
k, θβ

r−1

)}
, τB = diag

{
α̃
(
k, θα

0

)
, . . . , α̃

(
k, θα

r−1

)}
, (51)

where θ
α,β
i is an arbitrary angle in [0, 2π

p ), and the p × p sub-matrices are given by

β̃(k, θβ )i j = δi− jω
ieiθβ

,

α̃(k, θα )i j = δ(i− j−1)modpeiθα

. (52)

In (52), i, j start from zero, so e.g. for k = 3:

β̃(3, θβ ) =




1

exp(i2π/3)

exp(i4π/3)



 eiθβ

α̃(3, θα ) =




0 0 1
1 0 0
0 1 0



 eiθα

.

Solving (49) yields trivial representation for A. To solve the equations Y†βY = β−1, Y†αY = α

in (50), we decompose Y into r × r blocks of p × p elements as we did for the holonomies.
Substituting (51) into (50), we find that for each block

Ỹi j = Ỹiδi+ jmodp

Ỹi j = Ỹi+1, j+1,

where Ỹi are constants, for which a solution exists only if p = 1 or 2; the expression for each
block of Y is simply

Ymn = uY
mnỸ, Ỹ = 1 or

(
0 1
1 0

)
,

where uY
mn is a complex number. Because Ỹ does not depend on the indices m, n, Y can be

written as the tensor product form Y = UY ⊗ Ỹ, where UY is a unitary matrix.
The conditions A2 = 1, Y2 = 1, AY = YA are trivially satisfied. Note that in this case for

the surface N2, the angles θ
α,β
i are not fixed by the MCG and remain arbitrary. We will see

below that for the surface N3, the corresponding angles are constrained to be zero.
The representations for the LGT group is just the dual of the representation of the

holonomy group, with p ↔ q. Thus q can also only take value 1 or 2, i.e., k is quantized to
be:

k = 1
2 , 1, or 2.

The full representation of these discrete groups is

τB = Uα ⊗ α̃(k, 0) ⊗ Iq, τA = Uβ ⊗ β̃(k, 0) ⊗ Iq,

ρB = Uρ ⊗ Ip ⊗ α̃(1/k, 0), ρA = Uσ ⊗ Ip ⊗ β̃(1/k, 0), (53)

A = UA ⊗ Ip ⊗ Iq, Y = UY ⊗ Ỹ(k) ⊗ Ỹ(1/k),
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where UA and UY form a unitary representation of the generators of the MCG Z2 ⊕Z2, Uα,Uβ

are diagonal unitary matrices such that

(UA)†(Uα,Uβ )UA = (Uα,Uβ )

(UY)†(Uα,Uβ )UY = ((Uα )−1,Uβ ),

and similarly for Uρ,Uσ .

4.3. Quantization on the surface N3 (Dyck’s surface)

According to the general formalism in section 4.1, the canonical commutators are [ai, bi] =
−i2π

k , i = 1, 2. We define the holonomies as

τA
1 = e

∮
α1

A = ea1 , τB
1 = e

∮
β1

B = eb1 ,

τA
2 = e

∮
β1

A = ea2 , τB
2 = e−

∮
α1

B = eb2 . (54)

Then again we find the clock algebra αiβi = βiαiω
−1, i = 1, 2. The clock algebra

representation can be written as

τA
1 = diag

{
β̃
(
k, θβ,1

0

)
⊗ Ip, . . . , β̃

(
k, θβ,1

r−1

)
⊗ Ip

}
,

τB
1 = diag

{
α̃
(
k, θα,1

0

)
⊗ Ip, . . . , α̃

(
k, θα,1

r−1

)
⊗ Ip

}
,

τA
2 = diag

{
Ip ⊗ α̃

(
k, θα,2

0

)
, . . . , Ip ⊗ α̃

(
k, θα,2

r−1

)}
,

τB
2 = diag

{
Ip ⊗ β̃−1(k, θβ,2

0

)
, . . . , Ip ⊗ β̃−1(k, θβ,2

r−1

)}
,

where β̃ and α̃ are given by (52).
The MCG generators act on the loops as [29]

A(α1,β1) = (α1,β1α1),

B(α1,β1) =
(
β−1

1 α1,β1
)
,

Y(α1,β1) =
(
α−1

1 ,β1
)
,

and they have the relations ABA = BAB, (BAB)4 = 1, Y2 = 1, YAY = A−1, YBY = B−1.
Their induced operations on holonomies are

A†(τA
1 , τB

1 , τA
2 , τB

2

)
A =

(
τA

1 , τB
1

(
τB

2

)−1
, τA

2 τA
1 , τB

2

)
,

B†(τA
1 , τB

1 , τA
2 , τB

2

)
B =

((
τA

2

)−1
τA

1 , τB
1 , τA

2 ,
(
τB

1

)−1
τB

2

)
,

Y†(τA
1 , τB

1 , τA
2 , τB

2

)
Y =

((
τA

1

)−1
, τB

1 , τA
2 ,

(
τB

2

)−1)
.

To find representations of the MCG, we again decompose A, B and Y into r × r blocks of
p × p elements. Let us first focus on the (m, m)th block. Amm and Bmm have the solution

Bmm = uB
mmB̃

(
k, θβ1

m , θβ2
m , θB)

,

Amm = uA
mmÃ

(
k, θα1

m , θα2
m , θA)

,

where

B̃
(
k, θβ1

m , θβ2
m , θB)

i1 j1,i2 j2
= ω−i1i2 e−i(i1θ

β2
m +i2θ

β1
m )δi1− j1δi2− j2 eiθB

Ã
(
k, θα1

m , θα2
m , θA)

i1 j1,i2 j2
= 1

p
ω(i1− j1 )(i2− j2 )e−i[(i1− j1 )θα2

m +(i2− j2 )θα1
m ]eiθA .

The periodicity of Ã and B̃ enforces that θβ1
m , θβ2

m , θα1
m , θα2

m are all multiples of 2π/p. However
a unitary transformation on α̃ and β̃ can shift any of these angles by a multiple of 2π/p, hence
we can take all of these angles to be 0. This restriction on the phase angles is stronger than
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the restriction on the surface N2, where each of the phase angles could take any value on the
interval [0, 2π/p). After fixing these phase angles, the holonomies take the simplified form

β1 = Ir ⊗ β̃(k, 0) ⊗ Ĩp,

α1 = Ir ⊗ α̃(k, 0) ⊗ Ĩp,

β2 = Ir ⊗ Ĩp ⊗ β̃(k, 0),

α2 = Ir ⊗ Ĩp ⊗ α̃(k, 0).

and it is straightforward to solve for all blocks of A, B,

B = UB ⊗ B̃(k, 0, 0, θB),

A = UA ⊗ Ã(k, 0, 0, θA),

where UB and UA are arbitrary r-dimensional unitary matrices.
The relation ABA = BAB gives θA = θB. Note that in this case no quadratic Gauss sum

is involved in the equation. The relation (BAB)4 = 1 gives ei12θB = 1.
However, when solving for Y, it turns out that solution exists only if p = 1 or 2, and

Y = ±Ip ⊗ Ip, θA = θB = 0 or π . As the previous cases, these choices of phases can
be absorbed into the Abelian representation of the MCG, which leaves the part of MCG
representation that interacts with the holonomy group trivial when p = 1, and

B̃ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



 , Ã = 1
2





1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1



 , Ỹ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





when p = 2.
As for the representation of LGT and the part of MCG interacting with LGT, the same

result can be found, with p ↔ q. Thus when 3 = N3, the quantization condition for k is the
same as for the Klein bottle N2, namely that k can only take values:

k = 1
2 , 1, or 2.

5. Discussion

In this paper, we have taken the formalism involving the integration of p-form densities on
non-orientable manifolds in section 2, and established the relations between (2+1)D gravity,
BF theory, and Chern–Simons theory. We found that the well-known relation between (2+1)D
gravity and Chern–Simons theory can be extended to the case of non-orientable manifolds:
then (2+1)D gravity defined on a non-orientable manifold is equivalent to Chern–Simons
theory on the orientable double cover, and thus Chern–Simons theory continues to give a well-
defined quantization scheme for (2+1)D gravity. This formalism was then applied in section 4
to quantize U(1) BF theory defined on the spacetime manifold R × Ng+1, where Ng+1 is the
non-orientable surface whose orientable double cover is 3g.

In quantizing U(1) BF theory, the holonomy group and the large gauge transformation
(LGT) group are deformed according to the canonical commutation relations, while the
mapping class group (MCG) is not deformed. For non-orientable surfaces having non-
orientable genera 2 and 3 (the Klein bottle N2 and Dyck’s surface N3), explicit and tractable
presentations of MCG are known; for these cases we found explicit, finite-dimensional
representations of the discrete groups. In order to consistently quantize the system, the values
of the coupling constant k are strongly restricted to be either 1/2, 1 or 2. We suspect, though
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we have not proved it, that the allowable values of k are at least this restricted for higher genus
surfaces as well.

For the non-orientable surface N3, the phase angles associated the holonomy group
generators and the LGT group generators are fully fixed by the value of k, due to the requirement
of representing the MCG; the same situation occurs for the case of an orientable surface 3g

[28]. For the Klein bottle N2 on the other hand, the MCG contains only 4 elements, and does
not fix the phase angles, which remain continuously adjustable on the interval [0, 2π/p).
Although no straightforwardly applicable presentation of the MCG is known for Ng+1 with
g > 2, promotion of the MCG to quantum operators is evidently important in characterizing
the allowable dimension of the Hilbert space ∼ (pq)g where k = p/q: before applying the
MCG, arbitrarily large Hilbert spaces were allowed.

It is finally worth noting that the quantum states on the non-orientable manifold are not
simply the quantum states on the oriented double cover with the correct parity. For example,
on N2 and N3, when k does not take a value among 1/2, 1 or 2, there is no quantum state
consistent with a representation of the MCG, while on 31 and 32, k can take any rational
value with the numerator or the denominator being even, and quantum states with any parity
can be constructed. The extra restriction on k on non-orientable manifolds is due to non-
trivial effects arising from the quantization of the MCG. Specifically, in the calculation of
section 4.3, representing the Dehn twists A and B, which have analogues on the orientable
surface 32, does not introduce this extra quantization condition. It is only when we calculate
the representation of the Y -homeomorphism Y, which is unique to the non-orientable surface,
that the quantization condition appears.
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