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Inspired by ‘‘quantum graphity’’ models for spacetime, a statistical model of graphs is proposed to

explore possible realizations of emergent manifolds. Graphs with given numbers of vertices and edges are

considered, governed by a very general Hamiltonian that merely favors graphs with near-constant valency

and local rotational symmetry. The ratio of vertices to edges controls the dimensionality of the emergent

manifold. The model is simulated numerically in the canonical ensemble for a given vertex to edge ratio,

where it is found that the low-energy states are almost triangulations of two-dimensional manifolds. The

resulting manifold shows topological ‘‘handles’’ and surface intersections in a higher embedding space, as

well as nontrivial fractal dimension consistent with previous spectral analysis, and nonlocal links

consistent with models of disordered locality. The transition to an emergent manifold is first order, and

thus dependent on microscopic structure. Issues involved in interpreting nearly fixed valency graphs as

Feynman diagrams dual to a triangulated manifold as in matrix models are discussed. Another interesting

phenomenon is that the entropy of the graphs are superextensive, a fact known since Erdős, which results

in a transition temperature of zero in the limit of infinite system size: infinite manifolds are always

disordered. Aside from a finite universe or diverging coupling constraints as possible solutions to this

problem, long-range interactions between vertex defects also resolve the problem and restore a nonzero

transition temperature, in a manner similar to that in low-dimensional condensed-matter systems.
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I. INTRODUCTION

Since the first systematic studies of random graph
models by Erdős and Rényi [1], the relation between graph
theory models and physics models, in particular statistical
physics models, has attracted much interest. Concepts and
tools in graph theory have been applied to problems in
physics, computer science, and biology to produce remark-
able results. For example, Feynman diagrams that are
planar have special roles in the large N QCD model [2];
in causal dynamical triangulation, four-dimensional trian-
gulated manifolds with fixed edge lengths, which can be
viewed as a class of graphs, are used to construct spacetime
on the Planck scale to regularize the quantum gravitational
path integral [3,4]; statistical mechanical models of net-
work growth can explain the connectivity of systems such
as the Internet [5]; structures of amorphous solids can be
quantified using graph theory properties [6]; intracellular
signaling networks can exhibit emergent behavior stored
within biochemical reactions, including integration of
signals across multiple time scales and self-sustaining
feedback loops [7]; neural networks can collectively and
robustly produce content-addressable memories from
partial cues [8], indicating capacity for generalization,
familiarity recognition, and categorization. Added to these
discoveries, a new collection of graph models has been
proposed as candidates for emergent spacetime, as
described below.

A manifold can be approximated by a triangulation,
which in turn can be viewed as a graph filled with
simplices. From this observation, one can consider how a

graph may give rise to a manifold; i.e., from a family of
graphs, following some constraints and obeying some set
of rules for dynamical processes, is it possible that a
manifold-like structure can emerge? To be more precise,
consider the possibility that a graph G gives rise to a
smooth manifold M. A vertex in G corresponds to a point
in M; when a pair of vertices in G are connected by an
edge, the corresponding pair of points in M have a certain
distance �. When the length scale under consideration is
much larger than �, G resembles the smooth manifold M.
In such cases, one can say that the manifold M, including
its dimensionality, topology, and metric, emerges from the
graph G in the continuous limit.
From this general idea, in Refs. [9,10], a graph model

was constructed from a given graph Hamiltonian, where it
was proposed that the low-energy phase of the model may
be interpreted as an emergent spacetime. In addition, it was
found that when the edges of the graph possess a spin
degree of freedom, the model could give rise to a U(1)
gauge theory [10]. In Ref. [11], Konopka has analytically
and numerically studied the above graph model as a sta-
tistical model. A phase transition was found, where it was
argued that the low-temperature phase can be related to
spacetime only if the graph can interact with some matter
degrees of freedom. In Refs. [12,13], a related model,
which in addition to graphs corresponding to spacetimes,
also incorporates a matter field that resides on the vertices,
was proposed to study the role of matter in the emergence
of spacetime from graphs. In Ref. [14], Conrady has
constructed a Hamiltonian favoring low-temperature,
two-dimensional manifolds through terms that explicitly
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favor two-dimensional triangulations; for example, each
vertex is favored to have 6 edges as in a triangular lattice,
and tetrahedra are penalized. The model was simulated for
small system sizes (N � 180 edges), which showed a heat
capacity peak, and a transition temperature that decreased
with system size.

In this paper, we also investigate a statistical model of
graphs, in that the objects under consideration are merely
abstract graphs, without any information on the positions
of the vertices, or the lengths of the edges. A graph can
randomly transform into another graph according to a set
of transformation rules. Graphs with given numbers of
vertices and edges are considered, and they are governed
by a Hamiltonian that favors graphs with a set of local
symmetries. If these local symmetries are preserved, the
resulting graphs should be nearly triangulations of mani-
folds with a certain dimensionality, where the dimension-
ality is controlled by the ratio of vertices to edges. We are
interested in whether any global structure of the graphs
arises as a consequence.

Because every edge in this model corresponds to a
positive length �, only real positive distances can arise,
so this model can only be used to describe Riemannian
manifolds (i.e., with positive definite metric). The metric of
a Riemannian manifold can be alternatively viewed as a
distance function between any pair of points, which sat-
isfies the triangle inequality. On a graph, there is also a
natural notion of distance, namely the length of the shortest
path between a pair of vertices. This distance is also
positive definite and satisfies the triangle inequality. Thus
on any graph, there is a well-defined distance function, as
well as a corresponding geodesic. Graph geodesics be-
tween two vertices are often highly degenerate, however,
unlike the case for manifolds. If a manifold is to emerge
from a graph, one expects that in the continuous limit all
degenerate geodesics are close by, and the differences of
their path lengths are only of order �. After establishing
this distance function between vertices, mapping the graph
to a Riemannian manifold is still a nontrivial problem.
If we enforce that every edge is identical in that they
have the same length when mapped to the Riemannian
manifold, then only for certain graph configurations will
a Riemannian manifold emerge from the graph. Otherwise
the system will be frustrated and unable to meet the con-
dition of constant edge length, without increasing the
dimension above that of the manifold that would emerge
from the graph.

In this paper, after reviewing the relevant graph theory
preliminaries, we introduce a graph Hamiltonian based
only upon local symmetries. We evolve the graph under
the Monte Carlo rules obeying statistical mechanical equi-
librium, and we investigate whether a low-temperature
manifold state emerges. We investigate the sharpness of
the phase transition using energy as an order parameter for
different size systems, and we discuss the likely first-order

nature of the transition. We construct heat capacity curves
as a function of temperature and investigate the transition
temperature as a function of system size, which points
toward a zero-temperature phase transition in the bulk
limit. The Haussdorf dimensionality of the emergent mani-
fold is investigated and found to be an increasing function
of system size and approximately 3 for the largest system
sizes we investigated (2000 vertices). Correlation functions
between defect-carrying vertices and edges are investi-
gated to determine whether the effective potential between
defects is attractive or repulsive. Finally, we argue in
analogy to condensed-matter systems that a nonzero phase
transition temperature requires long-range interactions and
shows that a Coulombic-like term between graph vertices
yields an apparently finite-phase transition temperature,
but with a highly ramified manifold.

II. GRAPH THEORY PRELIMINARIES

Before motivating for details of the model, we shall
remind the reader about some graph theory concepts,
which will be needed later in constructing the model.
A graph G is composed of a set of vertices VðGÞ and a

set of edges EðGÞ, where every edge is a subset of VðGÞ
with two elements. Note that by this definition, the two
vertices in an edge set cannot be the same vertex, and two
edges cannot connect the same two vertices. Such graphs
are sometimes called ‘‘simple graphs,’’ as opposed to
‘‘multigraphs.’’ Because we will only consider graphs of
this definition, they will simply be referred to as ‘‘graphs.’’
Avertex v is incidentwith an edge e if v 2 e. We denote

an edge e by its vertices, or ends, say u and v, as e ¼ fu; vg,
or simply e ¼ uv. A vertex u is a neighbor of, or is
adjacent to, a vertex v if uv is an edge. The valency or
degree of a vertex is the number of edges incident to that
vertex.
A graph in which every vertex has the same valency is

regular. It is k regular if every vertex has valency k.
A graph in which every pair of vertices is connected by

an edge is complete. It is denoted by Kn if it has n vertices.
G0 is a subgraph of a graph G, which is a graph if

VðG0Þ � VðGÞ and EðG0Þ � EðGÞ, and this is denoted by
G0 � G.
IfU � VðGÞ, the subgraphG0 induced byU is the graph

for which VðG0Þ ¼ U, and EðG0Þ contains an edge xy if
and only if x, y 2 U and xy 2 EðGÞ. This is denoted by
G0 ¼ G½U�, and G0 is called an induced subgraph of G.
(For example, in Fig. 1, the vertices k, o, p, s, and the five
thick edges compose an induced subgraph; the vertices i,m,
n, q, and the four thick dotted edges compose a subgraph,
but not an induced subgraph.) In particular, in a graph G,
the subgraph induced by the set of neighbors of a vertex v is
called the neighborhood of v and is denoted by GNðvÞ.
A path is an alternating sequence of vertices and edges,

beginning with a vertex and ending with a vertex, where
each vertex is incident to both the edge that precedes it and
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the edge that follows it in the sequence, and where
the vertices that precede and follow an edge are the end
vertices of that edge. The length of a path is the number
of edges in the path. [For example, in Fig. 1,
ða; ab; b; bf; f; fg; gÞ is a path with length 3, in which
the edges are denoted by dotted lines, and is also one of
several paths between a and g having the minimal dis-
tance.] The distance between two vertices is the length of
shortest path between them. In a graph G, the distance
between vertices u and v is denoted by dGðu; vÞ.

A graph is connected if any two vertices are linked by
a path.

The eccentricity �GðvÞ of a vertex v in a graph G is the
maximum distance from v to any other vertex, i.e.,

�GðvÞ ¼ max
u2VðGÞ

dGðv; uÞ;

where dGðv; uÞ is the distance between v and u in the
graph G.

The diameter diamðGÞ of a graph G is the maximum
eccentricity over all vertices in a graph, and the radius
radðGÞ is the minimum,

diam ðGÞ ¼ max
v2VðGÞ

�GðvÞ; radðGÞ ¼ min
v2VðGÞ

�GðvÞ:

When G is not connected, diamðGÞ and radðGÞ are defined
to be infinite. Some examples of neighborhood subgraphs
are shown in Fig. 2. For every vertex in Fig. 1, the neigh-
borhood subgraph is Fig. 2(a); for every vertex in Fig. 3,
the neighborhood subgraph is Fig. 2(f). Figures 2(b)–2(e)
are examples of neighborhood subgraphs that appear com-
monly in the simulation.
Given a lattice, the corresponding lattice graph is the

graph whose vertices are the points in the lattice, and
whose edges are the pairs of nearest points in the lattice.
(For example, the whole graph in Fig. 1 is an equilateral
triangular lattice graph.)

III. THE MODEL

To gain intuition on the form of constraints and
Hamiltonians that may induce manifolds, let us construct
some graphs resembling some manifolds, starting with the
example of a flat two-dimensional plane R2. Intuitively,
any two-dimensional lattice graph as defined above forms a
‘‘two-dimensional’’ manifold, and a coordinate system of
the manifold naturally inherits from the coordinates of the
lattice graph. This is directly analogous to a Bravais lattice
in crystallography. A priori there seems no decisive reason
to choose any particular Bravais lattice as the preferred
graph configuration; however, we shall choose the equi-
lateral triangular lattice graph (Fig. 1), using the following
argument. On R2, for any point p and any distance �, let
B�ðpÞ denote the geodesic ball centered at p with radius �,
and B�ðpÞ � p has the topology of a circle S1. For graphs,
we can define the notion of ‘‘geodesic ball’’ similarly with
that in Riemannian geometry. Let BnðvÞ be the set of the
vertices that has distance from vertex v no greater than n,
including v itself. For any two-dimensional lattice, if we
denote the corresponding graph by G, for sufficiently large
n, the induced subgraph G½BnðvÞ � v� also looks like S1

topologically. However, for n ¼ 1, namely the neighbor-
hood subgraph GNðvÞ ¼ G½B1ðvÞ � v�, this property is no
longer true for all lattices. For example, on the square
lattice, GNðvÞ is composed of four disconnected vertices.
Only for the equilateral triangular lattice, GNðvÞ looks

FIG. 2. Some examples of neighborhood subgraphs. The
eccentricity is labeled for each vertex, and the difference of
diameter and radius of these subgraphs, which is denoted by �,
is labeled below each graph. (a) The neighborhood subgraph of
vertices in the triangular lattice graph (Fig. 1); (b)–(e) appear
commonly in simulations, as parts of the defects; (f) the neigh-
borhood subgraph of vertices in the graph in Fig. 3.

FIG. 3. A 6-regular graph that is not similar to any manifold.
This graph can be viewed as an infinite rooted ‘‘tree’’ graph,
in which each node has three children (except the root node
has four children), and every node of the tree is actually a
tetrahedron.

FIG. 1. Examples for the graph theory concepts.
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topologically like S1. Thus in this sense, the equilateral
triangular lattice graph is the closest analog to R2 among
all the two-dimensional lattice graphs, on all distance
scales down to �.

A graph can form a two-dimensional lattice for the
correct ratio of edges to vertices. While a thermalized
lattice in two dimensions is isotropic [15–17], the connec-
tivity of such a lattice is still well defined at low temp-
erature. We thus choose to add defects in the form of
extra edges or bonds, which will evolve under some
Hamiltonian. This allows bonded vertices to be permuted,
so that the low-temperature phase is still a ‘‘quasifluid’’
that retains a symmetry corresponding to randomized
graph connectivities. The extra edges induce defects in
the lattice, which may be mobile. The exact shape of
the defects and the reason why the defects are unstable
or metastable depend sensitively on the Hamiltonian. We
shall construct a candidate Hamiltonian and test the stabil-
ity of the defects by numerical simulation. This construc-
tion generalizes to Rn straightforwardly: We can see
that the defect-free lattice is the n-dimensional lattice as
arising from a regular tiling of n-dimensional tetrahedra.
The defect is a (n� 1)-dimensional ‘‘foam’’ that divides
the space into many patches of lattices with random
orientations.

We seek the simplest Hamiltonian that can give rise to
manifold-like triangulation graphs as classical solutions,
which contain defects that facilitate graph permutation
symmetry. We assume that the action is local, in the sense
that it should be a sum over the vertices and/or edges, such
that each term involves a finite number of vertices and/or
edges within some cutoff distance. This condition is impo-
sed because almost all physics models for which the
Hamiltonian or Lagrangian is an integral of the corre-
sponding density are local in the same sense.

A defect manifests itself as a local structure containing
vertices with anomalous valency. One obvious local prop-
erty of manifold-like graphs is that all vertices not in any
defects would have the same valency. Moreover it is likely
that vertices in the defects have just one more or one
less neighbor. These properties can be enforced by a
Hamiltonian quadratic in the valency:

H1 ¼ c1
X

v2VðGÞ
n2v; (1)

where nv is the valency of vertex v, and c1 is a positive
constant (which will be taken to be infinite as described
below). The average valency of the vertices is given by

� ¼ 2NE

NV

; (2)

where NE is the total number of edges and NV the total
number of vertices. Note that, for example, � ¼ 6 is
compatible with a regular equilateral triangular lattice,
which in turn implies that the emergent manifold is two

dimensional, while � ¼ 12 is compatible with the face-
centered cubic lattice, which implies a three-dimensional
emergent manifold. Thus without changing the form of the
Hamiltonian, we should be able to find manifolds with
different dimensionalities by adopting different a priori
values of �. In the simulations described below, we choose
� to be a noninteger, so that there exists an ‘‘excess’’
number of edges, which contribute to the presence of
defects. Because the total number of vertices and edges
are fixed, the term in (1) is minimized when every vertex
has valency either b�c or d�e. In our simulations, c1 is taken
to be infinite and so is no longer an adjustable parameter of
the model, and the corresponding term in (1) is enforced to
be minimal.
To obtain manifold-like solutions consisting of patches

of close-packed lattices interspersed with defects, it is not
sufficient to impose only the condition that each vertex has
approximately the same number of neighbors. Many regu-
lar graphs do not look like any manifold at all (see, for
example, Fig. 3). Additional terms in the Hamiltonian are
thus required for manifold-like solutions.
One candidate for such a term consists of particular

subgraphs that can be embedded into the graph. From
this viewpoint, nv is the number of K2 subgraphs (two
vertices connected by an edge) that go through the vertex
v. It is likely, however, that choosing more terms of this
type will affect the dimensionality of the resulting space-
time. For example, if we incorporate terms that favor
more K3 subgraphs (triangles) and fewer K4 subgraphs
(tetrahedra), then it can be expected that these terms would
favor two-dimensional manifolds [14]. As we hope to find
a model that does not select the dimensionality at the level
of the Hamiltonian, we will not use any other term of this
type besides H1.
Another property of manifold-like graphs is that around

most vertices, the graph has a local discrete rotational
symmetry that reflects the local isotropy of the emergent
manifold. This can be restated as for each vertex v, the
subgraphs G½BnðvÞ � v� for most v should have a discrete
rotational symmetry. To reduce the number of possible
Hamiltonian terms, we impose this condition only on
G½B1ðvÞ � v�, which is also GNðvÞ. We introduce the term

H2 ¼ c2
X

v2VðGÞ
�ðvÞ; (3)

where c2 is a positive constant, and

�ðvÞ ¼ diamðGNðvÞÞ � radðGNðvÞÞ; (4)

in which diamðGNðvÞÞ is the diameter of the subgraph
GNðvÞ, and radðGNðvÞÞ is the radius of the subgraph
GNðvÞ. By the definitions of diameter and radius of graphs,
if the subgraph GNðvÞ is not connected, they are both
infinite. Here, we additionally define that their difference
diamðGNðvÞÞ � radðGNðvÞÞ is also infinite when GNðvÞ
is not connected. The term H2 then enforces that all
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neighborhood subgraphs are always connected. When
GNðvÞ is connected, the difference between its diameter
and its radius is a measure of its asymmetry. Figure 2 shows
several examples of neighborhood subgraphs. The eccen-
tricity of every vertex in the subgraphs is labeled, along
with the value of�ðvÞ for each subgraph. For Figs. 2(a) and
2(b), the GNðvÞ’s have a rotation symmetry of D6 and D7,
respectively, while Figs. 2(c)–2(e) are not rotationally
symmetric.

In two dimensions, a graph forms a triangulation of a
surface if and only if all the neighborhood subgraphs are
cycles [18]. When the degrees of the subgraphs are either 6
or 7, which is imposed by theH1 term, one can see from the
examples in Fig. 2 that the H2 term indeed favors cyclic
neighborhood subgraphs, with only one exception shown
in Fig. 2(e). We thus expect that, in this model, a graph with
low energy is almost a triangulation of a surface.

Thus we propose the following model: Consider a sim-
ple graph with NV vertices and NE edges. All the vertices
are labeled, so isomorphic configurations with different
labeling are considered to be different configurations.
The Hamiltonian is composed of two terms, as motivated
previously:

H ¼ H1 þH2: (5)

Because the Hamiltonian is prohibitive to analytical
solution, we implement a numerical simulation, as
described in the next section, to study the equilibrium
states of this model in the canonical ensemble, i.e., at a
given temperature. In particular, we will be interested
in the structures of the states with low energies, and the
nature of the phase transition, if one exists, to these low-
energy states.

IV. NUMERICAL SIMULATION

We sample equilibrium states in the model using a
Monte Carlo simulation [19]. The parameter � defined in
(2) as giving the mean number of edges per vertex is taken
to be slightly larger than 6, which we expect will induce
two-dimensional structures dictated by triangulations as
described above. There is no fixed boundary on the graphs.
The size of the graphs is specified by the number of
vertices NV and the number of edges NE. For convenience,
in the following we use NV and the number of extra edges
X � NE � 3NV , to specify the size of the graphs. Given
the graph size, the initial configuration is taken to be a
randomly generated, connected graph.

The graph is evolved in the canonical ensemble with
temperature 1=�. In each Monte Carlo step, one end of an
edge can jump from one vertex to another. We randomly
pick an edge, and randomly label its ends by u and v. To
find the new location of the edge uv, we perform a random
walk starting from v as the origin, which does not pass
through the edge uv (this condition guarantees that a
connected graph remains connected after such a move).

The number of steps ‘ of the walk is a random positive
integer chosen from the probability distribution Pð‘Þ ¼
�‘�1 � �‘, where � is a parameter between 0 and 1 (we
take � ¼ 0:5 below). Denote the ending vertex of the
random walk as v0. The edge is then moved from uv to
uv0. If the new graph is still simple, its energy is compared
with that of the old graph, and this move is accepted or
rejected according to the Metropolis algorithm [19]. Each
‘‘sweep’’ through the system contains NE Monte Carlo
steps, so on average each edge has one chance to jump in
one sweep. Such a method is ergodic; moreover with this
jumping scheme, the energy of only a few vertices is
affected after each Monte Carlo step, and the energy of
only these vertices needs to be updated.
Simulations are performed with c1 ¼ 1, c2 ¼ 1:0,

� ¼ 0:5, and various values of NV , X, and �. Before
showing the thermodynamics results from the simulations,
let us first describe the method that we used to render a
graph from the simulations, in order to interpret its
evolution.

A. Rendering graphs

To render a graph such that its structure can be best
visualized, we need to devise an appropriate drawing
scheme. A drawing of a graph maps vertices to points in
Rn with line segments connecting adjacent points.
The following method is used to generate drawings in
R3. For any drawing of a graph G, we seek to minimize
the function

Hdraw ¼ X
e2EðGÞ

�
a1l

2
e þ a2

l2e

�
þ X

i;j2VðGÞ;i�j;
i;jnot adjacent

a3
l2ij

; (6)

where le is the length of the drawing of edge e, lij is the

distance of the drawing between vertices i, j, and a1 ¼ 1:0,
a2 ¼ 1:0, a3 ¼ 5:0. The first term gives a preferred length
for every edge, and the second term gives a repelling force
to every nonadjacent pair of vertices. The functionHdraw is
chosen this way in order to make every edge have approxi-
mately the same length in the drawing, and as well, to make
the drawing as expanded as possible. In practice, even for
moderate-sized graphs, Hdraw has numerous local minima
and is difficult to minimize. We thus use another
Monte Carlo calculation to search for its near-optimal
values. Initially, all the vertices are located at the origin
of R3. In each Monte Carlo step, a randomly chosen vertex
is randomly moved to another position within the ball of
radius � ¼ 2:5, centered at the original position, and the
new position has uniform probability distribution within
the ball. After the Monte Carlo calculation, because the
low-temperature configurations in the model are conjec-
tured to be similar to triangulations of surfaces, we also
search for all the K3 subgraphs (triangles) in the graph, and
render (flat, solid) triangles to fill the interior of the K3’s.
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Figure 4 shows some snapshots taken from the
simulations. Figures 4(a)–4(c) are for the system of size
NV ¼ 200 and X ¼ 20. Figure 4(a) shows the initial
configuration, Fig. 4(b) shows a typical configuration
at high temperature (� ¼ 1:0), and Fig. 4(c) shows a
typical configuration at low temperature (� ¼ 2:0).
Figure 4(d) is for the system of size NV ¼ 1000 and
X ¼ 100, and it is a typical configuration at low tempera-
ture (� ¼ 2:0).

In the sample drawings in Fig. 4, different colors are
used to denote different types of vertices. The color code is
as follows:

Degree ¼ 6 Degree ¼ 7
Zero contribution to H2 Black Green

Nonzero contribution to H2 Red Blue

Also, yellow lines are drawn at places where two triangles
intersect; i.e., this identifies where the triangulated surface
intersects with itself.

B. Topology of the manifold in the presence of defects

For the low-temperature graphs, several examples of
common local defects are shown in Fig. 5. They are called

FIG. 4 (color online). Some snapshots from the simulations, drawn in three dimensions. Panels (a)–(c) are for the system with
number of vertices NV ¼ 200 and number of extra edges X ¼ 20, where (a) is the initial configuration, (b) is a typical configuration at
high temperature (� ¼ 1:0), and (c) is a typical configuration at low temperature (� ¼ 2:0). Compared with the sphere, the drawing
(c) has three more handles, and the surface intersects with itself in three places, so it has a nontrivial, nonorientable topology. Panel
(d) is for the system of size NV ¼ 1000 and X ¼ 100, and shows a typical configuration at low temperature (� ¼ 2:0). In these
drawings, if a vertex has valency 6, it is black if its � value is zero and is red if its � value is nonzero; if a vertex has valency 7, it is
green if its � value is zero and is blue if its � value is nonzero (see text). As well, yellow lines are drawn at places where two triangles
intersect, and the manifold thus passes through itself.
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local in the sense that in the vicinities of these defects, the
graph is similar to some triangulation of surfaces with
trivial topology. Among these examples, the ‘‘bubble-
wrap’’ defects Figs. 5(a)–5(c) do not increase the total
energy, and around such defects the ratio between the
number of edges and vertices is larger than 3. In other
words, these defects can ‘‘absorb’’ the extra edges without
energy cost. Also note that Figs. 5(a) and 5(b) do not
change the long range order of the lattice orientation, while
Fig. 5(c) does alter the long range order. Taken together,
these defects induce configurational degeneracies in all the
energy levels, including the ground state energy level, and
at the same time induce graph permutation symmetry by
randomly breaking the lattice’s long range order, at least in
the rendering scheme of the manifold described above.
The bubble wrap defect Fig. 5(d) and ‘‘frenulum’’ defect
Fig. 5(e) increase the total energy, and alter the lattice
orientation more drastically.

As discussed above, low-temperature graphs in the
model are similar to two-dimensional triangulated sur-
faces. However, they contain local defects, and there are
overall topological features of the surfaces that emerge
from the graphs. For example, in the drawing Fig. 4(c),
one can see that the emergent surface contains several
handles, and the surface intersects itself in several
places. In the drawing Fig. 4(d), the topology of the
emergent surface is too intricate to easily identify. The
Hamiltonian does not constrain the topology in any way,
so in general, emergent surfaces of low-temperature graphs
in the model have complicated topologies. The emergent
surfaces have potentially many handles, and are in general
nonorientable, in that there is no separation between inte-
rior and exterior sides of the surface. In our simulations, we
also observe that the topology of the graphs’ emergent
surfaces can dynamically change, even at a low energy.

We note, however, that the choice of NV and NE can
constrain the topology. At low temperatures, the graphs are
nearly triangulations, albeit with potentially complicated
topologies. If a graph is strictly a triangulation, and we
denote the number of triangles as NF, then the Euler
characteristic � of the surface is given by � ¼ NV � NE þ
NF. For a triangulation, 3NF ¼ 2NE; and we previously
defined NE ¼ 3NV þ X. Putting these three equations to-
gether, we find � ¼ �X=3. As we showed above, defects
on the graphs can absorb edges, so the relation for the
nearly triangulated graphs becomes an inequality � �
�X=3. In addition, for any surface, � � 2, with � ¼ 2
corresponding to the topology of a sphere. Thus the Euler
characteristic � of the emergent surface can take any
integer value between �X=3 and 2. The X values used
in our simulations are not very small, so this constraint
still allows for many possible different topologies for the
emergent surface.

C. Phase transition

In this section we study the transition between the low-
and high-temperature phases. For system sizes NV ¼ 100,
200, 300, 500, 1000, 1500, 2000, and number of excess
edges X ¼ 0:1NV , the expectation value of energy hEi, and
the heat capacity C ¼ �2ðhE2i � hEi2Þ are computed for
various inverse temperatures �, where the angle bracket
here means averaging over all the samples in a simulation.
The results are shown in Figs. 6 and 7. For the three

largest systems with NV ¼ 1000, NV ¼ 1500, and NV ¼
2000, we also employ the weighted histogram analysis
method (WHAM) [20,21] to improve the sampling quality.
The inverse transition temperature �c is defined as the
inverse temperature where the heat capacity is maximal.
It can be seen that �c increases as NV increases, an effect

FIG. 5. Examples of some common defects. Once the graph is triangulated to construct a surface, defects (a)–(d) have ‘‘bubble-
wrap’’ morphology, while defect (e) has ‘‘frenulum’’ morphology. The figures in the first row are the schematic drawing of the defect,
in which a vertex is marked with a square if its valency is 7, a vertex is marked with an open circle if it contributes positive energy to
H2, and otherwise a vertex is marked with a filled circle. The figures in the second row are the corresponding drawings of the defects
using the method described in Sec. IVA. Compared with the equilateral triangular lattice, examples (a)–(e) have 2, 3, 2, 0, and 0 extra
edges, respectively.
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also seen previously in other graph models [11,14]. Near
the transition temperature �c, jdhEi=d�j also increases as
NV increases, and thus the widths of the heat capacity
peaks decrease as NV increases, indicating the transition
becomes more cooperative. Figure 8 shows a log-log plot
of the inverse transition temperature as a function of NV .
The linear relation in the plot indicates that as NV goes to
infinity, the transition temperature would go to zero. In
addition, Fig. 9 shows the probability density distribution
of E=NV , for the systems of size NV ¼ 1000, 1500, and
2000, at each system’s transition temperature. As NV in-
creases, the energy distribution of the two phases become
more bimodal, and the temperature dependence of the heat
capacity in Fig. 6 becomes sharper, indicating a more
cooperative transition with increasing system size
[22,23]. Together this implies that the transition is first
order in the bulk limit, with a corresponding nucleation
barrier [24]. That is, a Landau functional using system
energy as an effective order parameter has a double-well

structure with corresponding barrier separating the low-
and high-energy phases [25].
In Appendix B, we give the acceptance ratio in our

simulations as a function of inverse temperature.
Although the acceptance ratio substantially decreases in
the low-energy phase, the system is still able to undergo
dynamics because some local defects cost little or
no energy.
A transition temperature of zero for infinitely large

graphs is actually not very surprising on entropic grounds.
Consider a first order phase transition of an extended
physics model. Denote the size of the system by N, and
denote the number of states in the high- and low-
temperature phases by �H and �L, respectively. Because
the energy difference between these two phases is
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FIG. 6 (color online). The average energy density hEi=NV as a
function of inverse temperature � for several NV’s indicated in
the legend.
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FIG. 7 (color online). The rescaled heat capacity C=N2
V ¼

�2ðhE2i � hEi2Þ=N2
V as a function of inverse temperature � for

several NV’s indicated in the legend.

10
1

10
2

10
3

10
4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

FIG. 8. Log-log plot of the inverse transition temperature �c in
the model as a function of system size NV , and the best fit line.
The straight line fit indicates that as NV ! 1, the transition
temperature Tc ! 0.
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FIG. 9 (color online). The probability density of the intensive
energy E=NV for the systems of size NV ¼ 1000, 1500, and
2000, at each system’s transition temperature. The error of
pðE=NV Þ for E=NV � 0:5 is small (�p � 0:1), the error for
0:01<E=NV < 0:5 is �p � 0:6, and the error for the smallest
values of energy E=NV � 0:01 is �p � 2:5.
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proportional to N, the phase transition temperature Tc is

given approximately by �He
��N=Tc ¼ �L, where � is a

positive number. As N increases, for a ‘‘typical’’ physics
system with short-ranged interactions, the ratio between
�H and�L increases as e

�N, where � is a positive number.
This behavior results in a finite, nonzero transition tem-
perature in the infinite size limit. On the other hand, the
number of inequivalent graphs withNV vertices is typically

N
�0NV

V (for example, see Refs. [1,11,26]), where �0 is a
positive number that depends on the constraints of the
allowed graphs. In our case, the allowed graphs should
have every vertex valency equal to six or seven, and every
vertex neighborhood should be connected. While we do not
have an algorithm to count the exact number of allowed
graphs, it is reasonable to assume for our system that the
ratio between �H and �L has the typical asymptotic
behavior of graphs, which explains a transition temperature
of zero; i.e., the transition temperature Tc is given by

N
�0NV

V e��NV=Tc � 1.
To validate the above argument, we can calculate the

entropy difference across the transition as given by

�S ¼
Z T1

T2

CðTÞ
T

dT ¼
Z �2

�1

Cð�Þ
�

d�; (7)

where C is the heat capacity, and �1 and �2 are typical
inverse temperatures in the high-temperature phase and
low-temperature phase, respectively, which are taken to
be �1 ¼ �c � 100=NV and �2 ¼ �c þ 100=NV ; i.e., we
ensure that the window defining the transition narrows as
the width of the heat capacity peak narrows. Figure 10

shows the difference in entropy density �S=NV as a func-
tion of NV , which, rather than remaining constant, is a
monotonically increasing function. Thus the entropy of
the system is superextensive. If the ratio �H=�L of the

model scales like N�0NV

V as argued above, �S=NV will have
the form �S=NV ¼ �0 lnNV þ b. The best fit line using
this logarithmic function is also shown in Fig. 10, which is
consistent with a superextensive entropy, with �0 ’ 0:065.

D. Geometric properties

In this section, we analyze some geometric properties of
the two phases: if a geometric property is distinct in the two
phases, it can serve as an order parameter that signals the
phase transition.
As was mentioned before, because the low-energy

graphs are nearly triangulations for our Hamiltonian, it is
useful to introduce an order parameter that measures how
similar graphs are to triangulations. For this purpose we
can study the distribution of edge valencies, where the edge
valency is defined as the number of triangles that an edge is
part of. In a perfect triangulation of a surface without
boundaries, the edge valencies are always two, so we
expect that at low temperatures, the distribution of edge
valency should approximate a delta function around two.
The distribution of edge valencies for the system of size
NV ¼ 1000, X ¼ 100 is shown in Fig. 11 as a function of
temperature. Indeed, almost all edges have edge valency
two at temperatures below the transition temperature. Near
the transition temperature, however, there is a sudden
change in the distribution of edge valencies: above the
transition temperature, edge valencies both above and
less than two appear.
Another quantity that is useful as an order parameter is

the average distance between all pairs of vertices, denoted
by h �di, where the bar means averaging over all pairs of
vertices in a graph, and the angle bracket means averaging
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FIG. 10. The entropy density difference across the transition
�S=NV as a function of NV . The best fit line using a logarithmic
function is also shown. The inset shows �S=NV as a function of
NV for a model including a Coulomb potential between valency-
7 vertices (see Sec. V). Including long-range interactions can
remove superextensivity of the entropy.
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FIG. 11 (color online). Distribution of edge valencies as a
function of inverse temperature �c, for the system of size NV ¼
1000. There are no edges in the simulation with edge valency
less than one or larger than five.
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over samples of an equilibrium simulation. We expect that
above the phase transition temperature, graphs will exhibit
‘‘small-world’’ topologies, and thus h �di will be relativity
small. The quantity h �di gives the characteristic linear size
of the graphs. Figure 12 plots h �di vs inverse temperature
�, for NV ¼ 1000. Indeed, the low-temperature phase
has a larger h �di than the high-temperature phase; low-
temperature graphs tend to have much more structure
than high-temperature graphs, resulting in larger values
of h �di.

In Fig. 13, the average distance h �di is shown as a
function of the system size NV , at � ¼ 1:0 (above the
transition) and at � ¼ 2:0 (below the transition). The
best fit lines using a logarithmic function and using a power
function are also shown in Fig. 13. The p value for each
best fit line is calculated for the null hypothesis that the
residues ðdfit � h �diÞ=�d come from a normal distribution
with variance smaller than 1, so that a higher p value
indicates a better model. These relations between h �di and
NV can be understood by comparing with random graphs,
which generally display small-world connectivity, with
average distances growing logarithmically with the num-
ber of vertices [1]. In our model, the Hamiltonian only
constrains the graphs locally, so these graphs satisfy small-
world behavior in the high-temperature phase accurately,
as shown by the logarithmic best fit line in Fig. 13(a). For
the low-temperature phase, we can define an effective
scaling dimension (see, e.g., Ref. [27])

Ds ¼ d lnNV

d ln h �di : (8)

On a nonfractal surface, h �di � N1=2
v , i.e.,Ds ¼ 2. However,

it is seen from Fig. 13(b) that the residuals with the square
root function are too large. If we take Ds as a parameter in

the fitting, a power-law function with Ds ’ 3:5 is a much
better fit to the empirical scaling. Perhaps surprisingly
however, the logarithmic function is still the best fit func-
tion, indicating that the low-temperature graphs still dis-
play small-world connectivity. Enforcing a power-law fit at

every system size, i.e., h �di � N
1=DsðNvÞ
v , would induce a

variable dimensionality in the exponent.
Another related definition of dimensionality measures

the increase in number of vertices with distance from a
given vertex. On a graph, one can pick an arbitrary central
vertex and count how many vertices Nr have distance no
greater than r from that center. We can then average both
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FIG. 12. Average distance h �di between pairs of vertices, plot-
ted as a function of inverse temperature �, for the system of size
NV ¼ 1000. h �di is first averaged over all pairs of vertices in a
given snapshot, and then averaged over all snapshots at a given
temperature. The vertical bars at each data point indicate the

standard deviation between snapshots:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih �d2i � h �di2p

.

FIG. 13 (color online). The average distance h �di between pairs
of vertices as a function of the system size NV (discrete points),
and the best fit lines using a square root function (green dashed
lines), using a power function (red dotted lines), and using a
logarithmic function (black solid lines). Plots are shown both
above the transition (� ¼ 1:0) in panel (a) and below the
transition (� ¼ 2:0) in panel (b). For each best fit line, its
expression and p value are also shown, where the p values
are calculated for the null hypothesis that the residues
ðdfit � h �diÞ=�d come from a normal distribution with variance
smaller than 1. For both temperatures, the logarithmic function
gives the best fit to the measured data.
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over all central vertices and over all equilibrium confi-
gurations at a given temperature, denoting the doubly
averaged volume by h �Nri. If h �Nri increases with r
polynomially, the fractal (Haussdorf) dimension can be
defined as

Df ¼ d ln h �Nri
d ln r

: (9)

In practice the dimension of the graph may itself depend on
the radius r, so it makes sense to talk rigorously about the
dimensionality of a graph only if Df is essentially constant

over some range of r. A log-log plot of h �Nri vs r is shown
in Fig. 14, for NV ¼ 2000 at � ¼ 1:0 and � ¼ 2:0, where
the slope thus gives the dimensionality and is shown in the
inset. One can see that the effective dimension Df is

smaller below the transition. Consistent with the previous
analysis using (8), there is no well-defined dimension for
the graphs, which are small-world-like. Instead there is an
increasing dimensionality with increasing length scale,
until boundary effects of the system are felt. The dimen-
sionality has values around 2 for small values of r, because
of the local latticelike structure; it is also small for very
large values of r, because a finite-sized graph must even-
tually be bounded, at which point h �Nri will no longer
increase polynomially at large r. Table I lists the maximal
value of DfðrÞ for systems with different sizes, at inverse

temperatures � ¼ 1:0 and � ¼ 2:0. As the table shows,
Df;max increases with NV , which indicates that as NV

increases, there is no universal fractal dimensionality that
can be approached by the graphs. Instead, the graphs are
still small world.

The small-worldness of the low-temperature graphs in
the bulk limit can be viewed as a consequence of the graph

Hamiltonian in (5), which is a sum of local terms. The
defects in the manifold are also local—in the bulk these
have no effect on the large-scale structure of the resulting
graphs. This is manifested for finite-size graphs by the fact
that as NV increases, the topologies of graphs become pro-
gressively more complicated; see e.g., Figs. 4(c) and 4(d).
The manifolds contain numerous handles and surface
intersections, so that a planar dimensionality does not
adequately describe the system. In this sense there is
already the signature in the low-temperature phase of the
finite system that the bulk system is always disordered.

E. Correlation functions

Defects in this model such as those shown in Fig. 5
contain irregularities that make them differ from part of a
regular lattice. However, regions far away from them may
not be affected by their existence; i.e., there may be no
long-range correlation between such defects. In this sub-
section, we define and calculate correlation functions
between defect pairs.
Because valency-7 vertices induce defects, we first mea-

sure the radial correlation function of valency-7 vertices. In
general, the correlation between two random variablesX, Y
with expected values �X, �Y and standard deviations 	X,
	Y is defined as

corrðX; YÞ ¼ E½ðX ��XÞðY ��YÞ�
	X	Y

; (10)

where E is the expectation value operator. In our case, we
take all pairs of vertices with distance d in a graph; X is 1 if
the first vertex in a pair has valency 7, and 0 otherwise, and
Y is defined similarly for the second vertex. Then the
correlation function is averaged over all equilibrium
samples. The result for NV ¼ 2000, taken at inverse tem-
peratures � ¼ 1:62 and � ¼ 1:65, which are marginally
below and above �c, respectively, is shown in Fig. 15(a).
When the distance d is very small (d ¼ 1 or 2), the
correlation function deviates from zero, because of the
local structure of the defects (see Fig. 5), which in this
case induces anticorrelation. For intermediate values of d
(3 � d � 10), the correlation is very small, indicating the
defects are uncoupled. However, for large values of d,
the correlation function becomes negative. This is because
the valency of a vertex, and the distance from this vertex to
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FIG. 14 (color online). Log-log plot of h �Nri, the thermally
averaged number of vertices within a distance r, as a function
of r; the slope gives the dimensionality of the system, which in
this case is distance dependent. The plot shown is for the system
with size NV ¼ 2000, at � ¼ 1:0 (blue solid line) and at � ¼ 2:0
(red dashed line), which bracket the transition. For the same
system, the inset shows the fractal dimension as a function of r.

TABLE I. The maximal value of the fractal dimension Df as
defined in (9) for systems with NV ¼ 1000, NV ¼ 1500, and
NV ¼ 2000, at inverse temperatures � ¼ 1:0 above the transi-
tion and � ¼ 2:0 below the transition.

� ¼ 1:0 � ¼ 2:0

NV ¼ 1000 3.62 2.72

NV ¼ 1500 3.99 3.11

NV ¼ 2000 4.26 3.20
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other vertices, are not independent: compared with the
valency-6 vertices, the valency-7 vertices tend to have
smaller distances to other vertices. For example, for NV ¼
2000, � ¼ 1:62, the mean distance to valency-6 vertices is
7.18, while the mean distance to valency-7 vertices is 7.04.
Thus it is less probable to find two valency-7 vertices with
a large distance, and hence they anticorrelate at large
distances. The correlation function is quite small over a
range of d as one might anticipate, but the above global
effect makes it difficult to quantitatively confirm that
defects are decoupled at a large distance.

As another measure of the correlation between defects,
we can measure the radial correlation function of valency-3
edges, since their existence indicates deviation of the graph
from a triangulation of surface. For example, every defect
in Fig. 5 contains valency-3 edges. The distance between
two edges is defined by taking the 4 vertices defining the
two edges, and finding the pair of vertices with the mini-
mum distance between them. Since a pair of edges having a

common vertex would then have a distance of zero, we add
one to the above definition of edge distance. The results for
NV ¼ 2000, at � ¼ 1:62 and � ¼ 1:65, are shown in
Fig. 15(b). At small distances (d � 3), there exists short
range positive correlation between the valency-3 edges—
the mean force between them is attractive, again because of
the particular structure within a given low-energy local
defect. At large distances (d � 14 for � ¼ 1:62, d � 17
for � ¼ 1:65), the correlation function becomes negative,
because valency-3 edges correlate with valency-7 vertices,
which in turn anticorrelate at large distances for the reasons
described above. However, for a wide range of intermedi-
ate distances, this correlation function is also nearly zero,
indicating again that the defect attraction is short ranged.

V. ADDITION OFA COULOMB POTENTIAL

We found above that as the graph size NV increased to
infinity, the transition temperature Tc approached zero
(Fig. 8). This is apparently a universal property of models
based on graphs, because of the superextensive entropy of
the high-temperature random phase. Similar arguments
appear in the theory of phase transitions of low dimen-
sional systems [28], wherein the nonextensive energy cost
of defect formation is outweighed at any nonzero tempera-
ture by the (extensive) free energy attributable to transla-
tional entropic gain, so long as interactions are sufficiently
short ranged. This analogy motivated us to introduce a
model with long-ranged interactions between defects,
anticipating that such a defect-filled system incurs super-
extensive energetic cost, which may in turn result in a
nonzero transition temperature.
Thus, in addition to the original two terms in the

Hamiltonian (5), we introduce a nonlocal Coulomb poten-
tial term to the Hamiltonian, which gives a repulsive force
between any pair of degree-7 vertices,

H3 ¼ c3
X

v;u2VðGÞ;v�u

�nv;7�nu;7

dðv; uÞ : (11)

This is one of the simplest nonlocal Hamiltonian terms that
one can add to the original Hamiltonian. The Coulomb
force is chosen to be repulsive, because most of the high-
temperature states are small world, in that they have
smaller average distances than those of low-temperature
states, so such a Coulomb potential can suppress the
appearance of these small-world graphs.
We test the effect of addition of this Coulomb term by

another set of simulations, in which c3 ¼ 1:0. Figure 16
shows the sample drawings of graphs with NV ¼ 200,
X ¼ 20 (a) at high temperature (� ¼ 1:0) and (b) at low
temperature (� ¼ 2:0). These temperatures bracket the
heat capacity peak for the system so that the system is in
the disordered and ordered phases, respectively (Fig. 17).
Because of the nonlocality of H3, simulations are much
slower in practice than before and smaller systems are thus
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FIG. 15 (color online). Radial correlation function defined
through (10) of (a) valency-7 vertices and (b) valency-3 edges.
Correlations are calculated for the system with size NV ¼ 2000
at � ¼ 1:62, which is in the high-temperature phase, and at
� ¼ 1:65, which is in the low-temperature phase.
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employed: simulations are performed for NV ¼ 80, 100,
120, 150, 200, and 250, and X ¼ 0:1NV . The inset of
Fig. 17 shows the rescaled heat capacity C=NV as a func-
tion of �, for several system sizes. The rescaling factor is
now chosen differently than in Fig. 7, because the systems
with the Coulomb potential have maximal heat capacity
approximately proportional to NV . From the maximal heat
capacity, the inverse transition temperature �c is deter-
mined and is shown in Fig. 17 (main panel), in comparison
with the �c values without the Coulomb potential.

From the graph drawings in Fig. 16, we can see that
because of the repulsive Coulomb force, both the high-
temperature and low-temperature manifold configurations

become rather extended to achieve longer average
distances between defects. This may also explain why
the transition temperature does not change very much
with NV : The characteristic linear size of the systems is
much larger when the repulsive Coulomb potential is
present, which penalizes the increase in complexity that
was observed for a local Hamiltonian as NV increased. We
thus suspect that the entropy would be extensive for the
long-ranged interaction model. To quantify this, as a final
check we plot the entropy change between disordered and
ordered phases as a function of NV in the inset of Fig. 10,
where �S is calculated by Eq. (7), and �1 ¼ 1:0, �2 ¼
2:0. As opposed to the entropy difference in the original
model, �S=NV of this model is approximately constant as
NV increases; i.e., the entropy difference is no longer
superextensive—rather it is extensive or subextensive.
We also simulate the model with an attractive Coulomb

potential, in which c3 ¼ �1:0. Figure 18 shows sample
drawings of graphs with NV ¼ 200, X ¼ 20 (a) at high
temperature (� ¼ 1:0) and (b) at low temperature
(� ¼ 2:0). The effect of the attractive potential can be
observed in these samples, in that the valency-7 vertices
(green and blue dots) are usually located close together. In
addition, because a local move must involve a valency-7
vertex, the configuration cannot evolve in the regions com-
posed of purely valency-6 vertices, and thus the simulation
is inefficient. As can be seen in Fig. 18(b), in the region of
valency-6 vertices, the configuration does not minimize the
Hamiltonian (red dots have positive contribution toH2) and

FIG. 16 (color online). Sample configurations for the model
with Coulomb potential in (11) with c3 ¼ 1:0, for the system
with number of vertices NV ¼ 200 and number of extra edges
X ¼ 20, drawn in three dimensions. (a) A typical configuration
in the high-temperature phase with � ¼ 1:0. (b) A typical
configuration in the low-temperature phase with � ¼ 2:0.
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FIG. 17 (color online). Log-log plot of transition temperatures
�c as a function of system size NV , for the model with local
Hamiltonian in (5) (drawn as circles, with best fit drawn as solid
line), and for the model with Coulomb potential in (11) with
c3 ¼ 1:0 added to the local Hamiltonian (discrete points with
error bars). The inset shows the rescaled heat capacity C=NV as a
function of inverse temperature � for systems with the Coulomb
potential added, and from which the values and uncertainties of
�c values are determined.
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is not a triangulation. Thus Fig. 18(b) depicts a long-lived
metastable state on an energy landscape of states character-
istic of a frustrated system [22,23]. Such a model has
numerous local minima with large reconfigurational bar-
riers between them, and consequently glassy relaxation
dynamics.

VI. DISCUSSION

In this paper we have constructed a graph model with a
local Hamiltonian that simply enforces minimal valency
subject to a given total number of graph links, along with a

graph symmetry between the local graph radius and di-
ameter. The above minimal condition along with a fixed
total link number gives rise to near constant valency for all
vertices. This Hamiltonian gives rise to an emergent mani-
fold at low temperature. The one free parameter in the
model does not appear in the Hamiltonian but as an initial
condition of the system. This parameter � determines the
edge to vertex ratio, which is conserved for the system and
determines the dimensionality of the emergent manifold.
When � is slightly larger than 6, the low-temperature
solutions have structural properties consistent with trian-
gulations of two-dimensional surfaces. We obtained a rep-
resentation of the emergent manifold by an optimization
scheme, wherein adjacent vertices are brought as close as
possible to a certain link distance, nonadjacent vertices are
repelled from each other, and every triangular subgraph is
assumed to be filled to render the manifold.
The spacetime manifold has historically been treated as

a triangulation in several previous approaches, in order to
regularize the partition function by constructing discrete
analogs to the continuum manifold [29–33]. For example,
in dynamical triangulation theory a given spacetime mani-
fold is triangulated by simplices to calculate a discretized
gravitational action [4,34,35]. In matrix models of gravity,
graphs may be constructed as dual to Feynman diagrams
arising from the limit of a large internal symmetry group;
by construction the graph constitutes a manifold. The
partition function for two-dimensional (2D) quantum grav-
ity can be expressed as a sum over topologies of triangu-
lated 2D surfaces, for actions of various forms describing
the coupling between matter fields and spacetime [36]; this
problem has connections to string theory via the Polyakov
action [37]. The formalism may be extended to study
higher dimensional generalizations of quantum gravity
by group field theory models [38]. In this context, the
emergence of a smooth ‘‘hydrodynamic’’ spacetime has
been described as a condensation of simplicial quantum
building blocks [39]. Such dual graph triangulations have
widely varying vertex valency but generally represent
manifoldlike surfaces, at least in the condensed phase. In
contrast, the emergent manifolds that we observe have near
constant valency, but often bifurcating morphologies, e.g.,
the bubble-wrap or frenulum defects in Fig. 5.
One can ask whether the present graph model could act

as a substitute for the Feynman diagram construction in
matrix models. The Feynman diagram construction has
fixed valency and is dual to a triangulated manifold,
so a graph model of nearly fixed valency nv could in
principle give rise to an emergent manifold of dimension-
ality nv � 1 as its dual. The present graph-symmetry-based
Hamiltonian, and the resulting triangular latticelike graphs
in the low-temperature phase, makes this interpretation
unlikely. The mean valency in the low-temperature phase
of our graph model is approximately 6, corresponding
to the triangular lattice graph; we thus may consider a

FIG. 18 (color online). Sample configurations for the model
with Coulomb potential in (11) with c3 ¼ �1:0, for the system
of size NV ¼ 200, X ¼ 20 drawn in three dimensions. (a) A
typical configuration in the high-temperature phase with
� ¼ 1:0. (b) A typical configuration in the low-temperature
phase with � ¼ 2:0.
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tesselation of a five-dimensional Euclidean space by tetra-
hedra. The triangular lattice graph has the smallest cycles
of three vertices, corresponding to traversing the smallest
triangles in the graph. However, a Euclidean tesselation
using nonobtuse simplices will have cycles of its dual
graph with no less than 4 vertices; i.e., due to the acuteness
(or more precisely nonobtuseness) of the simplices, every
cycle consists of a (potentially nonplanar) polygon of at
least four sides. As an illustration of this, consider the dual
graph to a 3D tesselation by tetrahedra with nonobtuse
dihedral angles. A section of a 3D tiling by such tetrahedra
is shown in Fig. 19(a), and the corresponding dual graph is

shown in Fig. 19(b). Here we see that the smallest cycles
of the dual graph are indeed 4, corresponding to 
=2
dihedral angles of the tiling tetrahedra. However a signifi-
cant fraction of the cycles have length 6. Moreover, the
cycles of length 4 appear as faces of 3D cubes in the dual
lattice. All of this structure is incompatible with a regular
planar graph of valency 4 as a potential dual to the 3D
tesselation; in particular, a graph having the topology of a
square lattice is ruled out.
In the model, there are no constraints on the global

structure of the graph. As a consequence, the low-
temperature phase can still retain complicated topologies
with small-world properties, for which the corresponding
manifold shows handles, self-intersections, and local
defects that deviate from the manifold, in that a higher
embedding dimension is necessary to represent them.
Defects on the low-temperature manifold induce scattering
and lensing effects on the propagation of bosonic matter
fields [40] and are an interesting topic of future work for
our model. As well, the presence of nonlocal links in the
low-temperature graph, and the corresponding nonlocality
in the emergent manifold, is consistent with the possible
presence of disordered locality in loop quantum gravity
[41] and might constitute a mechanism for its generation.
In the context of loop quantum gravity, macroscopic
expectation values of area or volume deviate from those
on a flat metric by Oð‘2pÞ or Oð‘3pÞ where ‘p is the Planck

length; nonlocal connections in the underlying metric
modify the local Hamiltonian coupling a matter field to
loop quantum gravity but leave the above expectation
values essentially unchanged, indicating locality may be
macroscopically smooth but microscopically disordered.
As a general property of the graph model, the high-

temperature phase has an entropy that grows superexten-
sively with system size NV . This results in a transition
temperature of zero in the limit NV ! 1, so that the
infinite manifold is always disordered at any finite
temperature. Aside from a finite universe or diverging
coupling constraints as possible solutions, we implemented
long-range interactions between vertex defects with repul-
sive Coulombic potential, to energetically penalize the
many graph configurations with defect arrangements
consistent with small-world topologies. In analogy with
low-dimensional condensed matter systems, long-range
potentials that couple defects induce prohibitive energetic
cost to configurations that would otherwise destroy order
entropically, so that an ordered phase at low temperature is
restored. Here, we found that such potentials result in a
nearly constant transition temperature as the size of the
graph NV increases. In addition, we found that attractive
Coulombic potentials result in long-lived metastable states
in the simulations.
Another interesting feature of the model is that the low

lying energy levels, including the ground state level, have
large configurational degeneracy. This residual entropy is

FIG. 19 (color online). (a) A 3D cube triangulated into five
tetrahedra [53] may be replicated by translation and reflection to
tesselate the 3D space. Here, part of the dual lattice is shown as
well with red lines. Red vertices are at the centers of the
tetrahedra in the original triangulation. At the sites where
the dual lattice bonds pass through the faces of tetrahedra in
the original tesselation, open circles are drawn. (b) The 3D
Euclidean space subdivided into the cubes shown in (a) (gray
lines); triangulation of the cubes in (a) is not shown explicitly
here. The thicker black lines correspond to the dual graph of this
triangulation.
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due to local defects that can ‘‘absorb’’ extra edges without
energetic cost. As well, the simulation dynamics indicates
that the energy barriers between different low-energy states
are not high. Thus at temperatures below the phase tran-
sition, the degrees of freedom in the system arising from
this residual entropy are not frozen. The small or zero-
energy barriers between degenerate states make the low-
temperature graph system similar to the spin ices observed
in spinel structures and pyrochlore lattices [42–44].

We have implemented here a sufficiently general
Hamiltonian such that the same dynamic model can give
rise to space-times of different dimensionality; i.e., spaces
of different dimensions are solutions to the same model.
Exclusively from the graph theory point of view, there is
no a priori reason to choose any particular dimensionality
as a phenomenological term in the Hamiltonian. The
‘‘emergent dimensionality’’ then comes from initial con-
ditions. Our motivation for this was to choose the simplest
Hamiltonian possible that was free of phenomenological
parameters, so that the dimensionality of space-time was
not ‘‘baked into’’ the energy function that governed
dynamics. That said, we acknowledge that this approach
effectively shifts the space-time dimension from extra
phenomenological parameters in the Hamiltonian that fa-
vor or disfavor particular subgraphs [14] to special initial
conditions. Our Hamiltonian is local in that it is a sum over
all the vertices, and each term depends only on a small
neighborhood (in our case, the neighborhood subgraph) of
each vertex. This contrasts with other quantum graphity
Hamiltonians, which have actions that depend on the num-
ber of loops with long lengths [10].

It is intriguing to interpret the low-temperature configu-
rations of this graph model as an emergent spacetime—a
notion other researchers have explored for similar graph
models [3,4,9–14,45]. In this picture, general relativity is
an effective ‘‘hydrodynamic’’ theory emerging from the
collective dynamics of more fundamental degrees of free-
dom. The graph model is appealing in that both spacetime
manifolds and locality emerge in the low-temperature
regime of a discrete structure. The graph model introduced
here gives rise to real, positive distances, so the emergent
manifold can only be a Wick-rotated, Euclidean version
of spacetime. Monte Carlo ‘‘time’’ steps in the current
Hamiltonian methodology are distinct from the time evo-
lution of the graph or manifold and are only a mechanism
to sample equilibrium states. In the present formulation,
the Euclidean gravity theory undergoes a phase transition
to smooth metrics below a ‘‘temperature’’ parameter �.
Exploiting the isomorphism between the quantum propa-
gator and the statistical mechanical partition function [46],

the quantity e��H=
R½dg�e��H is the equivalent to the

Euclidean path integral measure that determines Green
functions hg1 . . . gni for the metric g in a quantum gravity
model with the corresponding action. While we have seen a
phase transition for the system with Euclideanized action,

the identification of the appropriate thermal quantum
states that are periodic in real time, and so related to the
parameter �, is not clear at present. We see this problem
of mapping back to the space-time coordinates with
Minkowskian signature as a general challenge for quantum
graphity models. Another general issue is the absence of an
underlying symmetry principle to determine the action in
quantum graphity models, analogous to the role of general
covariance in the action for quantum gravity.
The complex topologies of surfaces corresponding to

low-temperature graphs, along with graph defects having
zero energetic cost, implies that a graph model consisting
solely of the current Hamiltonian does not reduce to a
classical theory of Euclidean gravity in the macroscopic
limit. On the other hand, other discrete models of gravity
are also known to have scale-dependent spectral dimen-
sion, indicating fractal, nonsmooth geometries for the
emergent manifolds at least at intermediate length scales
[47–49]. The set of all possible low-energy graphs in this
model could potentially be identified with the phase space
of a Euclidean gravity theory before imposing the equation
of motion, i.e., the space of all possible metrics modulo
diffeomorphisms. Because the low-temperature graphs of
our model are nearly triangulations, and random triangu-
lations form the phase space of many other discrete gravity
models [4,34–36,38], it may be interesting to investigate
whether the graph model’s action may be extended to
include terms in dynamical triangulation theory, which
do reduce to the gravitational action in the continuous
limit.
The transition from disordered to ordered manifolds is

first order in the present graph model. However, the order
of the transition, and its potential relevance to universality
or independence of underlying lattice specifics, is a non-
issue for the investigation of ordered phases below the
transition, where correlation lengths are finite. Power-law
correlations calculated in causal dynamical triangulation
are between graphical elements analogous to graviton
fields, so that graviton coupling is power law as in the
classical limit. Space to time ratios of simplices have
second order transition in this model, while the transition
involving gravitational coupling is first order [50]. In any
event, a graph model at a critical point would have wildly
fluctuating connectivity and resemble more a fractal mix of
ordered and disordered states, which is not consistent with
an emergent manifold. The issue of the universality classes
and corresponding exponents of a transition is a separate
one from the properties of an emergent manifold as a low-
temperature phase below a phase transition. Retention of
microscopic structure in the disorder to order transition is a
prediction of the graph model and may enable future
experimental tests.
Finally, it is intriguing to speculate on the utility of a

such a graph theoretical transition to describe a transition
involving nonlocal to local causality, as might occur in a

SI CHEN AND STEVEN S. PLOTKIN PHYSICAL REVIEW D 87, 084011 (2013)

084011-16



preinflationary universe. Such models may address the
low-entropy initial condition problems that occur in infla-
tionary models [51,52].
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APPENDIX A: THE WEIGHTED HISTOGRAM
ANALYSIS METHOD

The WHAM is a method used to combine the samples
from several Monte Carlo simulations taken under condi-
tions of different temperature and added potential. We
employ WHAM to generate optimal estimates of energy
distributions of the graph model. In this model, the energy
takes only integer values between 0 and M ¼ 1:5NV .
Assume that S simulations are performed (in our cases,
S ¼ 4 for NV ¼ 1000, S ¼ 10 for NV ¼ 2000), with in-
verse temperature �i, and biasing potential ViðEÞ; i.e., in
the ith simulation, the system is sampled with energy
distribution �ðEÞ exp ð��iðEþ ViðEÞÞÞ, where �ðEÞ is
the yet-unknown number of states with energy E. The
inverse temperature �i’s are taken to be near the inverse
transition temperature. Because there is a large free energy
barrier between the low- and high-energy phases near the
transition temperature, a biasing potential is used to obtain
better sampling in the barrier region. The form of the
biasing potential is taken to be parabolic:

ViðEÞ ¼

8>>>><
>>>>:

vi

�
ðE�El

i
þEh

i
2 Þ2

ðE
h
i
�El

i
2 Þ2

� 1

�
; El

i � E � Eh
i ;

0; E < El
i;

0; E > Eh
i ;

where the parameters vi, E
l
i, and E

h
i are chosen by trial and

error to make the energy distribution of each simulation as
flat as possible.

After performing the simulations, let niðEÞ be the num-
ber of counts of energy E from the ith simulation and Ni

the total number of samples from the ith simulation. From
this information, the optimal estimate of the probability

p0ðEÞ of energy level E at inverse temperature �0 without
any biasing potential is given by

p0ðEÞ ¼
P

S
i¼1 niðEÞP

S
i¼1 NificiðEÞ

; (A1)

where ciðEÞ is the biasing factor ciðEÞ ¼ exp ½�ð�i �
�0ÞE� �iVðEÞ�, and fi is a normalization constant
satisfying

f�1
i ¼ XM

E¼0

ciðEÞp0ðEÞ: (A2)

To solve these equations, we take an arbitrary set of initial
values for fi (namely f0i ¼ 1) and apply (A1) and (A2)
iteratively to find the solution to these equations. After
finding p0ðEÞ, it is then straightforward to calculate the
average energy and heat capacity at inverse temperature �0.

APPENDIX B: ACCEPTANCE RATIO

As a practical matter, we plot the acceptance ratio as a
function of � for NV ¼ 1000 in Fig. 20. The low-energy
phase occupied at large values of � has a much lower
acceptance ratio than the high-energy phase, both because
of the lower temperature and because the low-energy
graphs have many more structural constraints, and thus
have more rigidity with respect to the local moves.
However, because some the local defects cost little or no
energy, low-energy graphs still have a nonzero acceptance
ratio and so are able to undergo dynamics during the
simulations.
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FIG. 20. For the system of size NV ¼ 1000, the acceptance
ratio of Monte Carlo moves in the simulations is plotted as a
function of inverse temperature �.
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