
Phys 511: HOMEWORK ASSIGNMENT No (3)
March 11th 2007

DUE DATE: Monday April 2nd 2007.
(Please note that late assignments may not receive a full mark.)

QUESTION (1): INSTANTON FOR SPIN TUNNELING

A spin tunneling in a biaxial potential with Hamiltonian H = −DŜ2
z + EŜ2

x, with D,E > 0.
The semiclassical instanton paths for tunneling are along the 2 lines defined by 0 ≤ θ ≤ π, and
φ = 0, π.

(i) Show that the instanton solutions are given, after eliminating the dependence on φ from
the imaginary equations of motion, by

sin θ(τ) =
1

cosh(ωoτ)
; where ωo = 2S

√
D(D + E) (1)

(ii) Then show that the semiclassical instanton action along these paths is given by the expres-
sion

S(η)
o = 2Sh̄ ln

[(
D + E

E

)1/2

+
(
D

E

)1/2
]

+ iπηS (2)

where η = ±1 labels the paths.

(iii) Now show that if we add a very small extra field b to the problem, oriented in the xy-plane,
then there will be a small extra term in the action given by

δS(η)
b =

πη

ωo
[bx + if(D/E)by] (3)

and find an expression for f(D/E).

QUESTION (2): QUANTUM REGISTER WITH DIAGONAL COUPLINGS

A well-known model for a ’quantum memory’ device has the simple Hamiltonian given by

H =
M∑

j=1

εj τ̂
z
j +

1

2

∑

i6=j
Kzz
ij τ̂

z
i τ̂

z
j +

∑
q

∑

j

vj(q)xq τ̂
z
j +

1

2

∑
q

(
p2
q

mq

+mqω
2
qx

2
q

)
(4)

where vj(q) couples the j-th ’qubit’, modeled by a Pauli spin τ̂j, to a set of oscillators with coordi-
nates {xq} and momenta {pq}. Note that both the couplings and the fields εj acting on the qubits
are diagonal. This model is also a useful ’zero-th order’ starting point for the discussion of not only
errors in quantum computation, but also for quantum spin glasses.

(i) Consider first a single qubit alone, so that the effective Hamiltonian is

H = ετ̂ z +
∑
q

v(q)xq τ̂
z +

1

2

∑
q

(
p2
q

mq

+mqω
2
qx

2
q

)
(5)

and find a canonical transformation of this Hamiltonian which allows a decoupling of the qubit from
the oscillators. You should also explain the reasoning which leads you to this transformation.
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(ii) Now give an analogous transformation for the entire register. Then assume a more specific
form for the couplings in this problem, in which vj(q) = vo(q)e

iqRj , where Rj = jao is the distance
along the line of qubits (assumed to be a 1-dimensional structure); write down the final form of the
transformed Hamiltonian for this case.

QUESTION (3): INTEGRATING OUT THE OSCILLATORS

Consider a system described by a Lagrangian which couples a set {Xq} of oscillators to a
particle with coordinate Q, according to the effective Lagrangian

L =
1

2
MQ̇2 − U(Q)−∑

q

cqXqQ +
1

2

∑
q

mq(Ẋ
2
q − ω2

qX
2
q )

U(Q) = Vo(Q)−∑
q

c2
qQ

2

2mqω2
q

(6)

(7)

in which the extra term in the renormalised potential U is there to cancel the shift in the original
potential Vo caused by the oscillators.

(i) Find the coupled equations of motion for the classical paths Q(t) and the {xq(t)}, treating
(7) as a classical Lagrangian.

(ii) Now go to imaginary time and also make the Fourier transform

Q(τ) =
1

h̄β

+∞∑

m=−∞
Qme

iΩmτ (8)

with a similar transform for the {Xq(m)}. Then show that we can write the Euclidean (ie., imaginary

time) action for the system as S̃o[Q] + S̃R[Q,Xq], where the action for the ’rest’ includes the
interaction plus the bath, and can be written as

S̃R[Q,Xq] =
1

h̄β

∑
m

∑
q

mq

2


Ω2

m|Xq(m)|2 + ω2
q

∣∣∣∣∣Xq(m)− cq
mqω2

q

∣∣∣∣∣
2

 (9)

and show also the form for the Euclidean S̃o[Q]. Show that the solution for the classical path of
each oscillator is just

Xq(m) =
cq

mq(Ω2
m + ω2

q )
Qm (10)

(iii) Now to find the quantum behaviour write the Euclidean paths for the oscillators in the
form Xq(m) = X̄q(m) + xq(m), where xq(m) is a small deviation from the classical path X̄q(m)
of minimum action, already discussed above. By expanding the action to quadratic order in the
deviations around the classical paths, show that we can now write the Euclidean action in the form
S̃R[Q, xq] = S̃E[xq] + S̃int[Q], where the self-interaction term S̃int[Q] has the form

S̃int[Q] =
M

2

1

h̄β

∑
m

∫ ∞
0

dω

π

J(ω)

ω

Ω2
m

ω2 + Ω2
m

(11)

in which the spectral function is defined by

J(ω) =
π

2

∑
q

c2
q

mqω2
q

δ(ω − ωq) (12)
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You should also exhibit the form of S̃E[xq], which describes fluctuations in the oscillator environ-

ment. Finally, Fourier transform S̃int[Q] to imaginary time τ , and show it is given as a convolution
over paths Q(τ) and Q(τ ′), with a kernel whose form you should exhibit.

QUESTION (4): SHERRINGTON-KIRKPATRICK MODEL

When the replica trick is applied to the partition function for a simple infinite-range exchange
spin glass, we define the average of n replicas of the original partition function, each one labelled
by a ’replica index’ α, as

Zn =
n∏

α=1

≡ 〈∑
Jij

P [Jij]Z
n(Jij)〉 (13)

where the ’sum’
∑
Jij is really a functional integral over the distribution of the random couplings

{Jij}, with a weighting function P [Jij], in a Hamiltonian whose form we assume to be

HJ = −1

2

N∑

i 6=j
Jijsisj − ho

N∑

j

sj (14)

To be specific here we will assume a set of random couplings satisfying the constraints 〈Jij〉 = 0,
〈J2

ij〉 = J2
o/N ; and we assume that the Ising spins take the values sj = ±1.

(i) Show that after sample averaging, we can write this n replica average as

Zn =
∑
s

exp


 J2

o

2N(kT )2

∑

i<j

(
n∑

α=1

siαsjα

)2

+
ho
kT

∑

j

∑
α

sjα


 (15)

where T is the temperature, and where the sum
∑
s is a sum over the different configurations of the

{sjα}, ie., over the 2N spin configurations and over the 2n replica configurations for each spin.

(ii) Now show, using the standard trick to deal with the Gaussian integrals above, that we can
write (15) in the form

Zn =
∏

α<β

∫
dQαβ

(
N

2π

)1/2

Z[Q] exp


 N

4(kT )2


n−∑

α6=β
Q2
αβ




 (16)

Z[Q] =
∑

S

exp


 1

2(kT )2

∑

α6=β
QαβSαSβ +

ho
kT

∑
α

Sα


 (17)

where we have now introduced a set of variables Sα = ±1 which range over the 2n replica spin
configurations. Find an expression for Qαβ if we assume a Gaussian distribution for the probability
distribution P [J ], of form

P [Jij] =
1

(2π)1/2Jo
e−

1
2

(Jij/Jo)
2

(18)

QUESTION (5): PHENOMENOLOGY OF DIPOLAR GLASSES

In a dipolar glass system (whether it be a spin dipole glass or an electric dipole glass), one
begins with an effective Hamiltonian of form

Heff =
∑

j

(∆j τ̂
x
j + εj τ̂

z
j +

1

2

∑

ij

V zz
ij τ̂

z
i τ̂

z
j (19)
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in which distributions are assumed for the {∆j, εj}, and the bare interaction V zz
ij is assumed, at

least roughly, to have a dipolar form.

(i) Suppose the 2-level systems arise from a set of defects which move in a 2-well potential.
Suppose that the particle which is tunneling has an effective mass of 50 atomic units (ie., the mass
of 50 protons), and and it tunnels over a distance d ∼ 0.1 Angstroms. Suppose also that the small
oscillation frequency ωo in the wells is ∼ 400 GHz, and the barrier height Vo is roughly 200 K. What
roughly is the tunnel splitting ∆o?

(ii) Suppose now that both the barrier heights V and the barrier tunneling distances d are
uniformly distributed between values 200-600K and 0.1 − 0.3 Angstroms respectively, with V ∝ d
always. Find now (a) the probability distribution P (∆) of tunneling matrix elements, and (b) the
probability distribution of tunneling splittings P (E), where E2 = ∆2 + ε2, and the bias energies ε
have a Gaussian distribution P (ε), with a half-width Wo.

(iii) The low-T frequency-dependent ultrasonic attenuation α(ω) of amorphous dielectrics rises
steeply as one lowers T and then at a crossover temperature Tc is becomes T -independent. For
a given TLS in this system, the crossover is defined by ωτ−1

min = 1, where τmin is the minimum
relaxation rate when Eo ∼ kT . The phonon relaxation rate for a single two-level system with
tunneling matrix element ∆o and splitting Eo has the form

τ−1 ∼ γ2

v5

(
∆o

Eo

)2 E3
o

2πh̄4ρ
coth

(
Eo

2kT

)
(20)

where γ is the phonon-TLS coupling, v the sound velocity and ρ the density. Assuming the same
probability distribution that you found above for the tunneling splittings and tunnel matrix elements
(but now assuming that Wo is much larger than all energies of interest here, so P (E) can be assumed
flat) find (a) what is the probability distribution P (τmin) of minimum relaxation times in the system,
and (b) for a given frequency ω, what will be the crossover temperature Tc.

END OF ASSIGNMENT (3)
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