Phys 511: HOMEWORK ASSIGNMENT No (2)
 January 16th 2007

DUE DATE: Wednesday 28th February 2007.
(Please note that late assignments may not receive a full mark.)

QUESTION (1): SPIN WAVE EXPANSIONS

(i) Consider the simple Hamiltonian describing a ferromagnet on a 3-d cubic lattice, in a magnetic field, given by

$$
\begin{equation*}
\mathcal{H}=-g \mu_{B} H_{o} \sum_{j} S_{j}^{z}+\frac{1}{2} \sum_{i j} J_{i j} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \tag{1}
\end{equation*}
$$

Show that this system can be rewritten using a spin wave expansion in terms of Holstein-Primakoff boson operators, in the form

$$
\begin{equation*}
\mathcal{H}=E_{o}+\sum_{\mathbf{q}} \omega_{\mathbf{q}} b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}}+\frac{1}{2 N} \sum_{\mathbf{k}, \mathbf{q}_{1}, \mathbf{q}_{2}} \Gamma_{\mathbf{q}_{1} \mathbf{q}_{2}}^{(4)}(\mathbf{k}) b_{\mathbf{q}_{1}+\mathbf{k}}^{\dagger} b_{\mathbf{q}_{2}-\mathbf{k}}^{\dagger} b_{\mathbf{q}_{1}} b_{\mathbf{q}_{2}}+O\left(b^{6}\right) \tag{2}
\end{equation*}
$$

and derive expressions for the energies E_{o}, ω_{q}, and $\Gamma_{\mathbf{q}_{1} \mathbf{q}_{2}}^{(4)}(\mathbf{k})$.
(ii) Now consider the simple 3-d AFM system with single ion easy-plane anisotropy and exchange anisotropy, and with Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} \sum_{<i j>}\left[J_{z} S_{i}^{z} S_{j}^{z}+J_{\perp}\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)\right]+K_{z} \sum_{j}\left(S_{j}^{z}\right)^{2} \tag{3}
\end{equation*}
$$

where the notation $<i j\rangle$ refers to a sum over all pairs of nearest-neighbour lattice sites on the cube. Find the Holstein-Primakoff expansion for the spin wave spectrum for this system up to 2 nd order in magnon operators, and give an expression for the energy of the magnons.

QUESTION (2): SCHRIEFFER-WOLFF TRANSFORMATION

Suppose an impurity can be described by the simple Anderson model of form $\mathcal{H}=H_{o}+V_{o}$, where

$$
\begin{align*}
H_{o}=E_{d} d_{\sigma}^{\dagger} d_{\sigma} & +\sum_{\mathbf{k} \sigma}\left(\epsilon_{\mathbf{k}}-\mu\right) c_{\mathbf{k}, \sigma}^{\dagger} c_{\mathbf{k} \sigma}+\frac{1}{2} U_{o} n_{\sigma}^{d} n_{-\sigma}^{d} \tag{4}\\
V_{o} & =\sum_{\mathbf{k}, \sigma}\left[v_{\mathbf{k}} c_{\mathbf{k} \sigma}^{\dagger} d_{\sigma}+H . c .\right] \tag{5}
\end{align*}
$$

where μ is the chemical potential, and we consider a single d-orbital only on the impurity site.
Suppose we now make a canonical transformation of form $\mathcal{H} \rightarrow \tilde{\mathcal{H}}=e^{i S} \mathcal{H} e^{-i S}$, where the operator \hat{S} satisfies

$$
\begin{equation*}
\hat{V}_{o}+i\left[\hat{S}, \hat{H}_{o}\right]=0 \tag{6}
\end{equation*}
$$

Derive a suitable form for \hat{S} and show that it satisfies this last equation, and then derive all the terms for the new effective Hamiltonian up to $\sim O\left(v_{\mathbf{k}}^{2}\right)$, giving their expression in terms of the parameters in the original Hamiltonian.

QUESTION (3): PERTURBATION THEORY FOR SPINS

Suppose we have a spin of magnitude S in a combined easy-axis anisotropy field and a transverse term, so that the Hamiltonian is given by

$$
\begin{equation*}
\mathcal{H}_{o}=-K_{o} \hat{S}_{z}^{2}+E_{o} \hat{S}_{x}^{2} \tag{7}
\end{equation*}
$$

where $K_{o}, E_{o}>0$
(i) Find the energy levels of the problem when $E=0$
(ii) Suppose now that $E_{o}>0$, but $E_{o} / K_{o} \ll 1$. Show that if S has an integer value, then pairs of levels which have projection $S_{z}= \pm M$ are split by the transverse term, with a splitting given by perturbation theory in the parameter E_{o} / K_{o} as

$$
\begin{equation*}
\Delta_{M}^{S}=A_{M}^{S} K_{o}\left(\frac{E_{o}}{16 K_{o}}\right)^{M} \quad ; \quad A_{M}^{S}=\frac{8}{[(M-1)!]^{2}} \frac{(S+M)!}{(S-M)!} \tag{8}
\end{equation*}
$$

and find an approximate expression for the ground-state splitting Δ_{S}^{S} when $S \gg 1$.
(iii) The Hamiltonian in (ii) can be diagonalised numerically very easily. Do this for $S=20$, and plot $\ln \Delta_{S}^{S}$ as a function E_{o} / K_{o}. Compare with the answer in (ii) to see how accurate the perturbative expansion is.

