Phys 511: HOMEWORK ASSIGNMENT No (1)

January 22nd 2007
DUE DATE: Monday 5th February 2007.
(Please note that late assignments may not receive a full mark.)

QUESTION (1): EXCHANGE

(i) Hund's rules: Using all 3 of Hund's rules, give the spin and orbital states of:
(a) an $\mathrm{Fe}{ }^{+3}$ ion; (b) a $C u^{+2}$ ion; (c) the $M n^{+4}$ and $M n^{+3}$ ions; and (d) the $E r^{+2}$ and Ho^{+2} ions.
(ii) Direct Hund Exchange: Consider an atom with 2 electrons, which are able to go in one of 2 orbital states $\left|\phi_{\alpha}\right\rangle$ and $\left|\phi_{\beta}\right\rangle$, so that with the 2 possible available spin states for each, one can make Slater determinants involving 4 different spin states.

Show that if we now add an interaction $U\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right)$ between the 2 electrons, then we can derive an effective Hamiltonian for the 2 spins, with an exchange interaction as well as a spin-independent Coulomb interaction; and derive the strength of this interaction.
(iii) 'Kinetic' intersite exchange: Consider a toy model for intersite exchange in which we start with a Hamiltonian

$$
\begin{equation*}
H_{t o y}=-t \sum_{\sigma}\left(c_{A, \sigma}^{\dagger} c_{B, \sigma}+H . c .\right)+\frac{U}{2} \sum_{j=A, B} \sum_{\sigma} n_{j, \sigma} n_{j,-\sigma} \tag{1}
\end{equation*}
$$

We assume 2 fermions in the problem. The 6 possible 2 -fermion states split into 3 triplet and 3 singlet states. Find the eigenfunctions and eigenenergies of this system as a function of t and U. Calculate also the probability of double occupation of one of the sites as a function of $g=U / 4 t$.
(iv) Superexchange: Suppose we have 2 TM ions with a p-orbital between them. The porbital has 2 unfilled states, whereas the relevant d-orbital on each TM ion has a single unfilled state. The effective Hamiltonian for the system is assumed to be

$$
\begin{align*}
H_{e f f} & =E_{1}^{d} d_{1 \sigma}^{\dagger} d_{1 \sigma}+E_{2}^{d} d_{2 \sigma}^{\dagger} d_{2 \sigma}+\epsilon_{p} p_{\sigma}^{\dagger} p_{\sigma} \\
& +\left(t_{1} d_{1 \sigma}^{\dagger} p_{\sigma}+t_{2} d_{2 \sigma}^{\dagger} p_{\sigma}+\text { H.c. }\right)+\frac{1}{2} \sum_{\sigma}\left(U_{1} n_{1 \sigma}^{d} n_{1,-\sigma}^{d}+U_{2} n_{2 \sigma}^{d} n_{2,-\sigma}^{d}+U_{p} n_{\sigma}^{p} n_{-\sigma}^{p}\right) \tag{2}
\end{align*}
$$

in which we see that the hopping amplitudes between the p-site and the 2 d -sites are different, as are the local d-site energies and Hubbard U's. In terms of $U_{1}, U_{2}, U_{p}, t_{1}, t_{2}$ and the charge transfer energies $\Delta_{1}=\epsilon_{p}-E_{1}^{d}$ and $\Delta_{2}=\epsilon_{p}-E_{2}^{d}$, find the superexchange coupling for this system.

QUESTION (2): DIPOLAR INTERACTIONS

Consider the dipolar interaction with spin Hamiltonian

$$
\begin{equation*}
H_{d d}=\frac{1}{2} \sum_{i \neq j} \frac{1}{r_{i j}^{3}}\left[\mathbf{m}_{i} \cdot \mathbf{m}_{j}-3 \frac{\left(\mathbf{m}_{i} \cdot \mathbf{r}_{i j}\right)\left(\mathbf{m}_{j} \cdot \mathbf{r}_{i j}\right)}{r_{i j}^{2}}\right] \tag{3}
\end{equation*}
$$

where $\mathbf{r}_{i j}$ is the radius vector between the 2 spins, which we will assume to have angular coordinates (θ, ϕ) with respect to the z-axis. We assume the moments $\mathbf{m}_{j}=-2 \mu_{B} \mathbf{S}_{j}$.
(i) Consider the problem for 2 spins only, and assume they are spin- $1 / 2$. Then this Hamiltonian can be rewritten in the basis of the 4 available spin states $|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle$. Rewrite $H_{d d}$ in this representation, in terms of the spin operators $\hat{S}_{i}^{z}, \hat{S}_{j}^{z}$ and $\hat{S}_{i}^{ \pm}, \hat{S}_{j}^{ \pm}$.
(ii) Find the eigenvalues of this Hamiltonian
(iii) Now suppose that we apply a transverse field to the problem, so that an extra term

$$
\begin{equation*}
\delta H=-\gamma H_{\perp}\left(\hat{S}_{i}^{x}+\hat{S}_{j}^{x}\right) \tag{4}
\end{equation*}
$$

is added to the problem. What are the eigenvalues of the problem now? Plot a graph of eigenvalues of this system, showing in particular the limiting behaviour when the applied field is much weaker/stronger than the dipolar interaction.

QUESTION (3): LANDAU LEVELS

Consider the Hamiltonian

$$
\begin{equation*}
H_{L L}=\frac{1}{2 m}[\mathbf{p}+e \mathbf{A}(\mathbf{r})]^{2}=\frac{1}{2 m} \pi^{2}(\mathbf{r}) \tag{5}
\end{equation*}
$$

where for an electron, e is negative, and we assume the electron is moving in the $x y$ plane, with a uniform static field $\mathbf{B}=\nabla \times \mathbf{A}$ oriented along the z-axis.
(i) find the commutation relation between $\hat{\pi}_{x}$ and $\hat{\pi}_{y}$, in terms of fundamental constants and the magnetic length $l_{o}=\sqrt{\hbar / e B}$.
(ii) Show that if we define an operator $a^{\dagger}=\frac{l_{0}}{\hbar \sqrt{2}}\left(\hat{\pi}_{x}+i \hat{\pi}_{y}\right)$, then we can rewrite the Hamiltonian in the form of a simple Harmonic oscillator system.
(iii) Write down a set of coherent states for this oscillator system, and find their overlap.

