
Appendix B3: DIAGRAMS for

Non-Relativistic Systems

In what follows I do not go into any detail about the derivation of the diagram rules here,
which are different for different Lagrangian or Hamiltonian - this is done in the main notes,
when these theories are introduced.

In what follows the idea is to calculate a few diagrams in each theory, so one can see
how the calculations are done. In this Appendix we deal with non-relativistic many-body
systems, which are in some ways much more complicated to deal with than relativistic
systems, because the 3-momentum integrals are often very messy. However if we do just the
frequency integrals, the results are very illuminating.

There are a large number of different condensed matter systems of interest. On the one
hand one has ”itinerant” systems, in which mobile objects like electrons or phonons move
around - often we can assume some sort of translational invariance. Then one has localized
degrees of freedom, including static impurities as well as local spin variables, which may
be either on random sites or in a lattice array. And of course we have problems where
different fields interact, e.g., in the coupled electron-phonon system, or electrons coupled to
either static disorder or fluctuating spin variables. In this Appendix we begin with simple
homogeneous systems. The calculations and rules are exhibited here for interacting fermions,
and for coupled boson-fermion systems (like the electron-phonon system). I then go on to
discuss coupled local spin systems. The available degrees of freedom - and hence the diagram
rules and graphical calculations - depend very much on what kind of Hamiltonian one is
working with here. We cover both the Hubbard model and a lattice of localized spins, with
and without anisotropy; finally, we look at a set of 2-level systems.

One other thing covered here is the Landau-Cutkowsky rules, which allow a very simple
evaluation of the imaginary part of diagrams, which is then easily extended to cover the
whole complex plane. A more sophisticated treatment of this for relativistic systems is given
in ”Diagrammar”, by ’t Hooft and Veltman.

App. B.3.1: INTERACTING FERMIONS & PHONONS

In what follows we will look at both fermions interacting via a static interaction V (q),
with symmetrized form V̄ (q), and at fermions interacting via the coupling to simple longi-
tudinal phonons (so as to avoid a plethora of indices, we ignore both the electron spin and
the phonon polarization indices - the spin exchange effects will be taken care of by vertex
symmetrization.)

The basic diagram rules depend on whether we are doing finite T calculations in the
Matsubara formalism, or zero-T calculations in the Feynman formalism. As we will see, by
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making the appropriate analytic continuation, we can reduce any finite-T result, derived for
some correlator in the complex z-plane of energy, to a zero-T Feynman result. It is actually
simpler to start with finite-T Matsubara calculations, for then we are free to analytically
continue these however we want. Moreover, with practice they are much easier to carry out,
since we don’t have to mess around with advanced and retarded parts of fermion propagators.

App. B.3.1 (a) FINITE-T MATSUBARA RULES

We assume the following diagram rules at finite-T (and to simplify things, we let ~ = 1
when doing actual calculations.

I start off here with a set of fermions, interacting solely via the interaction Vq. Then we
have the following (NB: these are a little different from those one gets by reading off things
from the action - I have moved factors of i around for convenience.):

Rules for Fermions: In the finite-T formalism, we assign a set of Matsubara frequencies
to the fermions, given by

εn = (2n+ 1)π
1

β~
= (2n+ 1)π kT/~ (1)

so that

δ(t) =
1

β~
∑

n=even
e−iεnτ (|τ | < β~)

1

β~

∫ β~

0

dτ eiεnτ = δ(εn) (2)

The bare 1-particle fermion Green function G0(p, iεn) is then given, for a translationally
invariant system, by

Gσσ′

0 (p, iεn) =
δσσ

′

iεn − (ε0p − µ)/~
(3)

so that
Gσσ′

0 (p, τ) = e−(ε0p−µ)/~ [fpθ(−τ) + (1− fp)θ(τ)] δσσ
′

(4)

and also

Gσσ′

0 (r, r′; iεn) =
∑
j

ψj(r)ψ
∗
j (r
′)

iεn − (εj − µ)/~
δσσ

′
(5)

with the obvious extension to imaginary time τ . Here σ, σ′ are spin indices. In the last for-
mula we assume some general set of eigenstates ψj(r) of the Hamiltonian H0, with eigenvalues
ε0j ; in the translationally invariant case we just get

Gσσ′

0 (r, r′; τ) =
1

β~
∑
p

∑
n

ei[p·(r−r
′)−εnτ ] δσσ

′

iεn − (ε0p − µ)/~
(6)
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where as usual we have ∑
k

≡
∫

dDk

(2π~)D
(D dimensions) (7)

When it comes to fermion loops and integration over free internal momenta and frequency,
we have the following rules

(i) If a diagram has L fermion loops, then we have a factor (−1)L for these multiplying
the whole.

(ii) A single closed loop, as shown in the diagram below, is associated with the expression
(with a (−1) for the fermion loop):

−G0(p, iεn)eiεnδ

which ensures that

− 1

β~

∞∑
n=−∞

G0(p, iεn)eiεnδ = −fp (8)

and also ensures that the result of doing the integration for the graph shown at left, which
resolves into the direct Hartree term and the exchange Fock term as shown, is given correctly
by

1

β~
∑
n

V̄ (q)G0(p, iεn)eiεnδ =
1

β~
∑
n

[V0G0(k, iεn)− VqG0(p− q, iεn)]

= (V0fk − Vqfp−q) (9)

where V0 ≡ V (q = 0), and where the minus sign in front of Vq comes from the definition of
the symmetrized graph, to which we assign the rule shown in (10).

This summarizes the rules for the fermionic graphs.

Rules for Phonons: These rules parallel those for fermions, with a few key differences.
There is no factor phonon loops, and indeed we will not deal with them anyway. The
Matsubara frequencies are

ωm = 2mπ/~β ≡ 2mπkT/~ (bosons) (11)
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and the phonon propagator is given by

D0(q, iωm) =
1

2
~ωq

[
1

iωm − ωq

− 1

iωm + ωq

]
= −~

ω2
q

ω2
m + ω2

q

(12)

so that
D0(q, τ) = e−(ωq−µ)τ [nqθ(−τ) + (1 + nq)θ(τ)] (13)

and

D0(r, r′; τ) = −
∑
j

~ω2
q

φj(r)φ
∗
j(r
′)

ω2
m + ω2

q

(14)

and we represent these diagrammatically by the graphs shown in (15).
Finally, we introduce the interaction vertex between fermions and phonons, given by the

graph in (16).
Note that the reason for the minus sign in our convention (10) for the fermion - fermion

interaction is that we can think of it as coming from the exchange of a photon, with an
effective coupling −V (q) ∝ (iαq)

2, where αq is an electron-photon coupling.

Frequency Sums: The sum over bosons and fermions at these specific frequencies is of
course linked to the distribution functions, viz.,

fp ≡ f(εp) =
1

eβ(εp−µ) + 1
(fermions) (17)

nq ≡ n(ωq) =
1

eβ(ωq−µ) − 1
(bosons) (18)

which have simple poles at the frequencies (1) and (11). Before we calculate any specific
diagrams, we need to look in more detail at what happens when we do any kind of sum over
frequencies, as we did in eq. (9). Suppose we have to evaluate the sum

IF =
1

β~
∑
n

F(iεn) (19)
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and where F(z) is a meromorphic function, with simple poles at energies ξ = ξ0
j . The key

here is that we multiply the function F(ξ) by another function f(ξ) which has poles at
ξ = iεn, which is of course the Fermi function. We then have

1

β~
∑
n

F(iεn) =
1

2π~

∫
dξ f(ξ)F(ξ) (20)

We wish to calculate this as a contour integral. One possibility is to use the contour
shown in the top diagram. Now the key here is that the integral along the outer reaches
of C1 is zero - this follows because both f(ξ) and F(ξ) are assumed meromorphic. It then
follows that the only poles that are picked up by the contour integral

IF =
1

~

∮ C1 dξ

2πi
f(ξ)F(ξ) (21)

are the ones along the imaginary axis that enclosed by C1, i.e., the poles of the Fermi function.
Another possible contour is shown in the lower diagram. Note that this time we circle

the poles in the clockwise direction, and we exclude the poles of the Fermi function, but now
include the poles of F(ξ). Summing over the 2 contours CA2 and CB2 , we get

IF = −1

~

∮ CA2 dξ

2πi
+

∮ CB2 dξ

2πi
[f(ξ)F(ξ)] (22)

with the minus sign coming from the clockwise sense taken on the contour.
Either of these methods gives the same answer, viz., that

IF =
∑
j

RF(ξ0
j )f(ξ0

j ) =
∑
j

RF(ξ0
j )

eβξ
0
j + 1

(23)

where RF(ξ0
j ) is the residue of the function F(ξ) at its poles; thus, in the case of a mero-

morphic function of form

F(ξ) =
N∑
j=1

Aj
ξ − ξ0

j

+ φ(ξ) (24)
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we get the result

RF(ξ0
j ) = φ(ξ0

j ) +
∑
k 6=j

Ak
ξ0
j − ξ0

k

(25)

Thus, to evaluate any diagram, we can simply sum the residues of the diagram at the
poles. The same argument goes through for bosons.

Landau-Cutkowsky Graphs: Given that graphs are meromorphic functions of their
arguments, we can determine the entire graph from the pole structure, using Cauchy’s the-
orem. To see how this works, consider the two graphs shown in the figure.

The first graph is a self-energy graph, and the 2nd is a graph for the thermodynamic
potential. We can write them as (NB: ξj > 0 for particles, and ξj < 0 for holes):

Σp(ε+ iδ) =
5∏
j=1

∑
kj

∫
dξj
2π
|Γp,{kj}(ε, ξj)|2 Aj(kj, ξj)

1

f(ε)

f(ξj)

(ε−
∑

j ξj) + iδ
(26)

Φ = −SΦ

5∏
j=1

∑
kj

∫
dξj
2π

∑
p

∫
dε

2πi
|Γp,{kj}(ε, ξj)|2 Ap(ε)Aj(kj, ξj)

f(ε)fj(ξj)

(ε+
∑

j ξj)
(27)

where Aj(kj, ξj) is the 1-particle spectral function; for free particles,

A(k, ξ) → −2πδ(ε0k − ξ) (28)
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and finally, SΦ is a symmetry factor.
Now we observe that it is always easier to compute the imaginary parts of these graphs.

Thus, e.g.,

Im Σp(ε+ iδ) =
1

2i

(
Σp(ε+ iδ)− Σp(ε− iδ)

)
= −π

5∏
j=1

∑
kj

∫
dξj
2π
|Γp,{kj}(ε, ξj)|2 Aj(kj, ξj)

f(ξj)

f(ε)
δ(ε−

∑
j

ξj)

−−−−−−−−−−−−−→
free internal lines

−π
5∏
j=1

∑
kj

∫
dξj
2π
|Γp,kj

(ε0p, ε
0
kj

)|2
f(ε0kj

)

f(ε0p)
δ(ε0p −

∑
j

ε0kj
)

(30)

which is much simpler to evaluate than calculating the whole graph. In practical computa-
tions one then often calculates first the imaginary part of the graph, and then uses dispersion
relations (ie., one calculates the Hilbert transform of the imaginary part) to determine the
real part from this (for more details see the discussion of the analytic properties of propaga-
tors, in section A).

App. B.3.1 (b) COUPLED FERMIONS: EXAMPLES

To really understand graphs you have to calculate some of them. In what follows I will
determine the frequency sums for a few simple graphs involving coupled fermions. The
momentum sums are not done - they depend on the the dimensionality of the system, as
well as its detailed underlying structure, and their evaluation can be quite lengthy (you can
find details about momentum sums in the condensed matter literature).

We assume an interaction V (r), and we assume a Fourier transform V (q) for V (r). In
what follows I consider 4 examples - the first two involve a single fermion loop, the 3rd and
4th involve 2-loop diagrams. In what follows we set ~ = 1.

(i) Single Polarization Bubble: This is simply the bare propagator for a particle-hole
pair, and so it is central to the calculation of many properties. We have the diagram in the
form shown in the diagram, for which the formal expression (with ~ = 1) is

π0(q, ωm) =
∑
k

1

β

∑
n

1

iεn − ε0k
1

i(εn + ωm)− ε0k+q

(31)

where I have set µ = 0 (we will put it back at the end of the calculation).
The sum in (29) is converted to a contour integral, and we get

π0(q, ωm) =
∑
k

∮ C1 dξ

2πi

1

ξ − ε0k
1

ξ + iωm − ε0k+q

f(ξ) (32)

and the contour C1 has to be taken around the 2 poles shown. The result is then given by
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π0(q, iωm) =
∑
k

[
fk

iωm − (ε0k+q − ε0k)
+

f(ε0k+q − iωm)

−iωm + (ε0k+q − ε0k)

]
(33)

Now f(ε0k+q ± iωm) = [eβ(ε0k+q±iωm) + 1]−1 ≡ f(ε0k+q), because of (11). Thus we get

π0(q, iωm) =
∑
k

fk − fk+q

iωm − (ε0k+q − ε0k)
(34)

In books and papers you may see this written a little differently. There will be an extra
factor 2, coming from a sum over spin indices; and it is also written as

π0(q, iωm) =
∑
k

fk(1− fk+q)

[
1

iωm − (ε0k+q − ε0k)
− 1

iωm + (ε0k+q − ε0k)

]
(35)

where we have used invariance under inversion (ie., under k → −k ) of fk and ε0k, and also
swapped indices in the 2nd term. The latter form, in (33) makes it clear that we are dealing
with the product of a particle and hole excitation. If we rewrite (35) as

π0(q, iωm) = −
∑
k

fk(1− fk+q)
2(ε0k+q − ε0k)

ω2
m + (ε0k+q − ε0k)2

(36)

we see that it looks like the propagator of a boson, with energy (ε0k+q − ε0k), and frequency
iωm; but of course that is exactly what it is.

(ii) One-Loop Self-Energy graph: The simplest possible graph for the fermion self-
energy, apart from the Hartree-Fock contribution, is the one involving a single polarization
part.
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In the diagram, the calculation is generalized somewhat so as the include an effective
interaction V (q, iωm), which also depends on frequency. The simplest example of such an
interaction would be the point interaction

V (r− r′, t− t′) −→ V0δ(r− r′)δ(t− t′)
V (q, iωm) −→ V0 (37)

In any case, it is clear that we can write this contribution to the self-energy in 2 different
ways; either

Σ(p, iεn) =
1

β

∑
m

∑
q

|Vq(iωm)|2 G0

(
p− q, i(εn − ωm)

)
π0(q, iωm)

=
1

β

∑
m

∑
k,q

|Vq(iωm)|2 1

i(εn − ωm)− ε0p−q
fk − fk+q

iωm − (ε0k+q − ε0k)
(38)

or using (36), that

Σ(p, iεn) =
1

β

∑
m

∑
k,q

|Vq(iωm)|2 fk(1− fk+q)

i(εn − ωm)− ε0p−q
(ε0k+q − ε0k)

ω2
m − (ε0k+q − ε0k)2

(39)

or, on the other hand, we can write, directly from the diagram, that

Σ(p, iεn) =
1

β2

∑
m,n

∑
k,q

|Vq(iωm)|2

× 1

i(εn − ωm)− ε0p−q
1

iε` − ε0k
1

i(ε` + ωm)− ε0k+q

(40)

Starting from either (36) or (38), we do the sum over the bosonic frequency ωm, and
picking up the extra pole at iωm → ξ = ε0p−q + iεn, we get

Σp(iεn) =
∑
k,q

|Vq(ε0k+q − ε0k)|2
(fk − fk+q)

(
ε0k − fp−q − f(ε0k+q + iεn)

)
ε0p−q − (ε0k+q − ε0k)− iεn

(41)

and since f(ε+ iεn) = −n(ε), where n(ε) is the Bose function, this then becomes

Σ(p, iεn) =
∑
k,q

|Vq(ε0k+q − ε0k)|2
(fk+q − fk)

(
fp−q + n(ε0k − ε0k+q)

)
iεn −

(
ε0p−q − (ε0k+q − ε0k)

) (42)

Notice the form of this result - it tells us that the self-energy is like that of a system
coupled to some boson, with one boson emitted and re-absorbed by the fermion; the fermion
has intermediate state energy ε0p−q; and the boson energy (ε0k+q − ε0k). Thus an electron-
phonon self-energy, to lowest order, will have the same structure.
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We can also get the above result using the Landau-Cutkowsky technique. This involves
computing Im Σp(ε+ iδ) using the ”cut” across the graph, as follows:

Now, using the Landau-Cutkowsky rules, we immediately find that

Im Σp(ε+ iδ) = π

∫
dξ1

2π

∫
dξ2

2π

∫
dξ3

2π

∑
k1,k2,k3

(2π)2 δ(ε0kj − ξj)

× 1

f(ε)
f(ξ1)f(−ξ2)f(ξ3) δ(ε− ξ1 + ξ2 − ξ3) (43)

and this is just

Im Σp(ε+ iδ) = π
∑
k,q

|Vq|2
1

f(ε)
fp−q(1− fk)fp+q δ(ε

0
p + ε0k − ε0k+q − ε0p−q) (44)

and it is actually fairly straightforward to see that (44) is the imaginary part of (42), if we
continue iεn → ε+ iδ in (42).

(iii) A Two-loop Self-Energy Graph: Now let’s compute a slightly more messy self-
energy graph. This one actually brings in some new features - it is shown in the diagram,
drawn as a Feynman graph with 2 polarization bubbles, with all the momenta and frequencies
shown. Now the formal expression for this is:

Σp(iεn) =
1

β3

∑
m,n1,n2

∑
k1,k2,q

V 3
q G0

(
p− q, i(εn − ωm)

)
G0

(
k1 + q, i(En1 + ωm)

)
×G0(k1, iEn1)G0

(
k2 + q, i(En2 + ωm)

)
G0(k2, iEn2)

=
1

β

∑
m

∑
q

V 3
q G0

(
p− q, i(εn − ωm)

)
π2

0(q, iωm) (45)

where the 2nd form is obviously easier to evaluate. Writing these expressions out in full, we
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have

Σp(iεn) =
1

β3

∑
m,n1,n2

∑
k1,k2,q

V 3
q

1

i(εn − ωm)− ε0p+q

1

i(En1 + ωm)− ε0k1+q

× 1

iEn1 − ε0k1

1

i(En2 + ωm)− ε0k2+q

1

iEn2 − ε0k2

(46)

or, collapsing the polarization bubbles, we have

Σp(iεn) =
1

β

∑
m

∑
q,k1,k2

V 3
q

1

i(εn − ωm)− ε0p−q
fk1 − fk1+q

iωm − (ε0k1+q − ε0k1
)

fk2 − fk2+q

iωm − (ε0k2+q − ε0k2
)

(47)
Now at first glance, this calculation looks extremely easy, if we start from the form in

(47). However, there is a slight problem - how are we to deal with the poles of π2
0(q, iωm),

which appear to be double poles, i.e., of order 2 in a Laurent expansion?
This is where a resort to a Landau-Cutkowsky technique comes into its own. Let’s first

see how the problem manifests itself, and then show how the LC technique bypasses it.
Consider first the expression in (46). It takes a little time, but is otherwise quite straight-

forward, to do the 3 frequency sums, and get the following expression:

Σp(iεn) =
∑

k1,k2,q

V 3
q

(fk1 − fk1+q) (fk2 − fk2+q)

(ε0k1
− ε0k1+q + ε0k2

− ε0k2+q)
×

F(p,q,k1,k2; iεn)(
iεn − ε0p−q − (ε0k2+q − ε0k2

)
)(
iεn − ε0p−q − (ε0k1+q − ε0k1

)
) (48a)

where we have defined

F(p,q,k1,k2; iεn) =
(
iεn − ε0p−q − (ε0k1+q − ε0k1

)
)
n(εk2 − εk2+q)

−
(
iεn − ε0p−q − (ε0k2+q − ε0k2

)
)
n(εk1 − εk1+q)

+ (ε0k1
+ ε0k2

− ε0k1+q − ε0k2+q) fp−q (48b)

and of course (48) reduces to (47) after we do the sum over m in eq. (47).
Now in both (47) and (48) there is a problem in doing the integrals. To see this, we

look at the poles in these 2 expressions, which are shown on the next page. Consider first
the divergent term in the final energy denominator in eq. (48). We introduce a short-hand
notation, defining

Ω0
kq = ε0k+q − ε0k (49)

we then have a denominator given by

Ω0
k1q

+ Ω0
k2q

= ε0k1+q + ε0k2+q − ε0k1
− ε0k2

,

and we notice that this goes to zero precisely when energy is conserved in the series of 2
polarization loops.
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The 2nd pair of zeroes in the denominator (i.e., poles in the graph) enforce energy con-
servation in the 2 intermediate states in the graph, i.e., they enforce

iεn =

{
ε0p−q + Ω0

k1q
first bubble

ε0p−q + Ω0
k2q

second bubble

}
(50)

However we notice now that when we come to do the 3-momentum integrals, viz.,∑
k1

∑
k2

∑
q, we will have to integrate over 3 poles, all of which are on the real axis,

and that indeed these poles will overlap when energy and momentum are conserved! This
makes the contour integration very tricky to do.

Things are much easier using the Landau-Cutkowsky technique. To show its full gen-
erality, let’s first evaluate the graphs assuming we have full irreducible vertices in place of
V (q), and that the internal G2 lines are fully dressed, so that we get the graph shown in the
diagram. The internal lines thus have spectral functions A(ξj,kj), and we now evaluate the
LC graph by summing over the 2 possible cuts that exist for this graph. We get:

Im Σp(ε+ iδ) = π

5∏
j=1

∫
dξj
2π

∑
kj

A(kj, ξj)

f(ε)
I4(p, ε,k3, ξ3;k1, ξ1,k2, ξ2)

× I4(k2, ξ2,k5, ξ5;k3, ξ3,k4, ξ4) I4(k1, ξ1,k4, ξ4;k5, ξ5,p, ε)

×
[

(f2 − f3)(f1f4f−5)

ε− ξ1 − (ξ2 − ξ3) + iδ
δ(ε− ξ1 − ξ4 + ξ5) +

(f4 − f5)(f1f2f−3)

ε− ξ1 − (ξ4 − ξ5) + iδ
δ(ε− ξ1 − ξ2 + ξ3)

]
(52)

Now this result is very complicated - I wanted you to see just once how bad it can get
for a real graph, containing dressed internal lines and vertices. But suppose we now make
the assumption of free particles in the internal lines, and let the irreducible vertices be bare
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vertices, i.e., we let

A(kj, ξj) −→ A0(kj, ξj) = −2πδ(ξj − ε0kj
)

I4(1, 2; 3, 4) −→ V (q) (53)

Then the graph in (51), and the expression in (52), collapse to

Im Σp(ε+ iδ) −→ π
∑
k,k′,q

V 3
q

1

f(ε)

×

{
(fk1+q − fk1)fp−qfk2+q(1− fk2)

ε− ε0p−q − (ε0k1+q − ε0k1
) + iδ

δ(ε− ε0p−q − ε0k2+q + ε0k2
)

+
(fk2+q − fk2)fp−qfk1+q(1− fk1)

ε− ε0p−q − (ε0k2+q − ε0k2
) + iδ

δ(ε− ε0p−q − ε0k1+q + ε0k1
)

}
(54)

which can be reduced to the imaginary part of (48), with a few manipulations, once we have
analytically continued (48) down to the real axis, i.e., let

iεn −→ ε+ iδ (55)

in (48), and takes the imaginary part. Then, to get back (48), we use Cauchy’s theorem.

(iv) Two-loop contribution to Thermodynamic Potential Ω(T ): Finally, let’s
compute a graph which at T = 0 contributes to the ground state energy, and at finite T
contributes to the thermodynamic potential Ω(T ). We choose a 2-loop graph for Ω(T ), with
fermion-fermion interactions, as shown.

The formal expression for this graph, assuming bare internal lines, is then just (NB: the
factor 1/4 is a symmetry factor):

Ω(T ) =
1

4β3

∑
n1,n2,m

∑
k1,k2,q

|Vq|2G0

(
k1 + q, i(εn1 + ωm)

)
G0(k1, iεn1)

×G0

(
k2 + q, i(εn2 + ωm)

)
G0(k2, iεn2) (56)

=
1

4β

∑
m

∑
q

|Vq|2 π2
0(q, iωm) (57)

or, writing (56) explicitly,

Ω(T ) =
1

4β3

∑
n1,n2,m

∑
k1,k2,q

|Vq|2

× 1

i(εn1 + ωm)− ε0k1+q

1

iεn1 − εk1

1

i(εn2 + ωm)− ε0k2+q

1

iεn2 − εk2

(58)
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and, writing (57) explicitly, we have

Ω(T ) =
1

4β

∑
m

∑
k1,k2,q

|Vq|2
1

iωm − (ε0k1+q − ε0k1
)

1

iωm − (ε0k2+q − ε0k2
)

(59)

or, even, using (57),

Ω(T ) =
1

β

∑
m

∑
k1,k2,q

|Vq|2fk1(1− fk1+q)fk2(1− fk2+q)

×
(ε0k1+q − ε0k1

)

ω2
m + (ε0k1+q − ε0k1

)2

(ε0k2+q − ε0k2
)

ω2
m + (ε0k2+q − ε0k2

)2
(60)

in which we see the role of the Fermi ”blocking” functions fully displayed, and in which the
true bosonic form of the particle-hole pair propagator is exposed.

To vary things a little, let’s do this using the T = 0 formalism - this will show you how it
is done, and also show us a neat piece of mathematics. Recall that we can write the T = 0
fermion propagator as

G0(p, ε) =
1− fp

ε− ε0p + iδ
+

fp
ε− ε0p − iδ

(61)

so we can write yet another expression for the diagram in (56), viz.,

Ω(T ) =
∑

k1,k2,q

∫∫∫
dε1
2π

dε2
2π

dε3
2π
|Vq|2

×

[( 1− fk1+q

ε1 + ω − ε0k1+q + iδ
+

fk1+q

ε1 + ω − ε0k1+q − iδ

)( 1− fk1

ε1 − ε0k1
+ iδ

+
fk1

ε1 − ε0k1
− iδ

)
·
( 1− fk2+q

ε2 + ω − ε0k2+q + iδ
+

fk2+q

ε2 + ω − ε0k2+q − iδ

)( 1− fk2

ε2 − ε0k2
+ iδ

+
fk2

ε2 − ε0k2
− iδ

)]
(62)

where when T → 0, fk → θ(µ − ε0k). From (62) we see why it is often better to use the
finite-T Matsubara technique; there is a total of 8 poles here, if we look at the 3 energy
variables combined. The figure cheats a bit, because it shows all 8 poles, even though in any
given frequency integration only some of these will come in.

However there is a key point that comes in when we look at this. This is that, yet again,
we have the possibility of ”overlapping poles”, which causes ambiguity in how we treat the
integration (and once we also take into account the momentum integration, these become
overlapping branch cuts). Consider, e.g., integration in the ω-plane. We have 2 poles, at
ω = εk1+q − ε1 ± iδ and ω = εk2+q − ε2 ± iδ. The problem than arises when these poles
coincide, ie., when εk1+q − ε1 = εk2+q − ε2; what does one then do?
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There are 2 ways to deal with this question. One way is to use the device of displacing the
branch cuts from each other - this will be described below. The other way is much simpler, if
one is prepared to take a theorem on trust. This is the famous ”Poincare-Bertrand” theorem,
which we can describe as follows:

Consider the contour integral:

ICF =

∮
C

dξ1

∮
C

dξ2
F(ξ1, ξ2)

(ξ1 − z)(ξ2 − z)
(63)

in which we integrate over both ξ1 and ξ2 along the same contour C. At first this looks like
a rather trivial integral. However suppose that (a) we put z either on, or at an infinitesimal
distance away from, the contour C; and (b) we then ask what happens when ξ1 and ξ2 happen
to be equal to each other?

The answer is provided by the ”Poincare-Bertrand” theorem, which says that the value
of (63) is (here P denotes ”principle value”)”:

ICF(z) =

∮ C
dξ1

∮ C
dξ2 K̂z(ξ1, ξ2)F(ξ1, ξ2)

= P
∮
C

dξ1

∮
C

dξ2
F(ξ1, ξ2)

(ξ1 − z)(ξ2 − z)
− π2F(z, z) (64)

i.e., we have

K̂z(ξ1, ξ2) = P
1

(ξ1 − z)(ξ2 − z)
− π2δ(ξ1 − z)δ(ξ2 − z) (65)

a formula which we might have guessed from the usual result that∫
C

dξ
f(ξ)

ξ − z ± iδ
=

∫
C

dξ

[
P

1

ξ − z
∓ iπδ(ξ − z)

]
f(ξ) (66)
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Now the application of the Poincare-Bertrand result to an integral like (62) will be obvi-
ous. By looking at the pole structure of (62) we see that we can drop terms where all poles
in integrand of an integral (whether it be

∫
dε1,

∫
dε2, or

∫
dω) are on the same side of the

real axis. Actually to go through all the terms in (62) is rather tedious, so I will just give
the answer:

Ω(T ) = −
∑
k1,k2

∑
q

|Vq|2fk1(1− fk1+q)fk2(1− fk2+q)

×

[
P

1

ε0k1+q − ε0k1
+ ε0k2+q − ε0k2

− π2δ(ε0k1
+ ε0k2

− ε0k1+q − ε0k2+q)

]
(67)

Let us now observe that if we take the Landau-Cutkowsky results on trust, then we
could have obtained this result almost immediately. Up to now I have used these rules to
calculate the imaginary part of self-energy graphs, by using (30), which is the imaginary
part of (26). But we can also calculate the total value of a closed graph like Ω(T ), which
of course must be real, by using (27) adapted to our specific diagram. Let’s start from the
general graph shown in the diagram, which is written in terms of some general 4-point vertex
Γ4(1, 2, 3, 4) = Γ4(k1, ξ1;k2, ξ2;k3, ξ3;k4, ξ4), and fully renormalized lines, i.e., G2(kj, ξj). At
the end we shall reduce this calculation to that of the diagram in (56).

According to eq. (27), this graph is given by (here we let (p, ε)→ (k1, ξ1)):

Φ = −SΦ

4∏
j=1

∑
kj

∫
dξj
2π
|Γ4(kj, ξj)|2 A(ξj)

f(ξj)∑4
j=1 ξj

(68)

where we use the convention, as before, that for a hole line ξj is negative, and SΦ is the
symmetry factor (which for this graph is actually 1/4). We now simply substitute as follows:

A(ξj) −→ −2πδ(ε0kj
− ξj)

I4(kj, ξj) −→ V (q) (69)

and, taking account of the ”Poincare-Bertrand” lemma, and the fact that we will have
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overlapping poles when we do the integrations over k1 and k3, we get

∆Ω(T ) = −1

4

4∏
j=1

∑
kj

|Vq|2 f1f−2f3f−4

×
[

1

ε01 − ε02 + ε03 − ε04
− π2δ(ε01 − ε02 + ε03 − ε04)

]
(70)

where f1 = f(εk1) and ε1 = εk1 . If we now take account of momentum conservation, and allow
the 4 possible combinations of momenta in (70) (these being: 1, 2, 3, 4 = {k1,k1+q;k2,k2+
q; }, or {k1 + q,k1;k2 + q,k2}, or {k1,k1 + q;k2 + q,k2}, or {k1 + q,k1;k2 + q,k2}, all
just being relabelling of the graphs) then we get back in (67).

App. B.3.1 (c) COUPLED FERMIONS/SCALAR BOSONS: EXAMPLES

Things change a little bit when we include phonons in the theory. The basic diagram
rules do not change from what we have already discussed, but the details do change.

In what follows we will look at a number of standard graph for this kind of theory. This
include (i) the lowest self-energy graphs for the fermion and bosonic propagators, and (ii)
the lowest non-trivial 3-point vertex describing the fermion-boson interaction. The theory
to be discussed will be a set of spinless ......
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