
Appendix B1: Notes on Functionals

The theory of functionals is an obvious generalization of the idea of an ordinary function.
Recall that we can have a function f(x) = f(x1, . . . , xn), such that

y = f(x1, . . . , xn) (1)

maps the set of variables {xj} to a single number y; we have a ”many-to-one” mapping.
A functional maps a set of functions φj(x) to a single number, i.e.,

y = F [φ1(x), . . . , φn(x)] (2)

with a mapping now from a space of functions to the field of real or complex numbers. Now,
we can typically represent a function φ(x) as an infinite set of numbers, either

(a) as the infinite set of numbers φ1 = φ(x1), φ2 = φ(x2), . . . , where the {xj} take all
possible values of x, or

(b) by a sum over orthonormal functions, as

φ(x) =
∑
n

φnχn(x) (3)

where
∫

dx χn(x)χm(x) = δnm, defining φ(x) by the infinite set of numbers {φn},
Thus in a well-defined sense, a functional is like a generalization of (1) to an infinite set

of variables. It is useful to give a few examples for orientation:

(i) Energy or free energy functionals in physics; for example

H[φ] =

∫
dDr

(
− ~2

2m
φ(r)∇2φ(r)

)
+

∫
dDr

∫
dDr

′
φ2(r)V (r− r′)φ2(r′) (4)

(ii) The action functional in field theory or ordinary classical mechanics:

S[q, q̇] =

∫
dt L(q, q̇; t) (classical mechanics)

S[φ] =

∫
dDxL

(
φ(x), ∂µx

)
(field theory) (5)

(iii) The propagator in quantum mechanics; one has

ψ(r, t) =

∫
dDr

′
G(r, r′; t, t′)ψ(r′, t) ≡ F [ψ] (6)

defining the wave-function ψ(r, t) as a functional of the function ψ(r′, t′) at an earlier time;
moreover we have

G(r, r′; t, t′) =

∫ q(t)=r

q(t′)=r′
Dq(τ) e

i
~
∫

dtL(q,q̇;τ) (7)
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which defines G(r, r′; t, t′) as a functional integral over the set of all paths q(τ) between the
end-points of the path integral at (r′, t′) and (r, t). Functional integrals will be defined more
generally below.

(iv) Probability theory deals with probability functionals - the generalization of ordinary
probability functions to ”processes”. Thus, the probability function P(x) describes the
”outcome” x (a number) in some random sampling. But suppose the outcome is now some
”process” φ(x), now a function of a variable x. We then deal with a functional P [φ], assigning
a probability to each possible process φ(x). Likewise, just as the expectation value A(x),
depending on the random variable x, is given by 〈A〉 =

∫
dxP(x)A(x), we have

〈A〉 =

∫
Dφ(x)P [φ]A[φ] (8)

for the expectation value of some variable A[φ(x)] depending now on a process φ(x). The
most common probability functional P [φ] is that for a ”Gaussian random process”, for which

P [φ] −→
∣∣ detK(x, x′)

∣∣1/2 e− 1
2

∫
dx

∫
dx′ φ(x)K(x−x′)φ(x′) (9)

where the determinant, discussed below, is defined by∫
Dφ(x) e−

1
2

∫
dx

∫
dx′ φ(x)K(x−x′)φ(x′) =

∣∣ detK(x, x′)
∣∣−1/2

(10)

so that we have a normalized P [φ]: ∫
Dφ(x)P [φ] = 1 (11)

In what follows we outline the theory of functionals as it applies to simple problems in
quantum mechanics, statistical mechanics, and field theory (for probability theory, see App.
B). The presentation will not be mathematically sophisticated, nor pretend to generality. In
applications to physics, the functions φ(x), q(t), etc., will often be assumed smooth.

App. B.1.1: FUNCTIONAL INTEGRATION

This will be considered as a simple generalization of ordinary integration over a finite set
of variables, in the limit as the number of variables goes to infinity. To see what is involved,
let’s consider the example of a simple Gaussian integral. In one dimension this is just

I0 =

∫ ∞
−∞

dx√
2π

e−
1
2
Kx2+Jx =

1√
K
e

1
2
J2/K (12)
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and we want to generalize this to N dimensions, and then let N → ∞, Let’s first redefine
the integration variable to get rid of the

√
2π factor, i.e., let x → x̃ = x/

√
2π, and now

consider the integral

I =

∫
dnx̃ e−

1
2

∑
ij x̃iKij x̃j+

∑
j Jj x̃j =

∫
dx̃ e−

1
2
x̃Kx̃+Jx̃ (13)

for x̃ = (x̃1, . . . , x̃N). For J = (J1, . . . , JN) = 0, this is easily done, for we simply diagonalize
K = Kij, to find

I0 =

∫
dnx̃ e−

1
2

∑
ij x̃iKij x̃j = | detKij|−1/2 (14)

If we now add back the term Jx̃ in the exponent, we see we can make the same manoeuvre
by ”completing the square”, i.e., writing (now suppressing the tilde over x̃):

S(x) =
1

2
xKx− Jx = S(x0) +

1

2
(x− x0)K(x− x0)

where x0 = JK−1 (i.e., x0
j = K−1

ij Jj ) (15)

and then redoing the Gaussian integration with x0 as the new ”origin”. Thus we get the
result

I =

∫
dx e−S(x) ≡

∫
dx e−

1
2
x̃Kx̃+Jx̃ =

1

|K|1/2
e

1
2
JK−1J (16)

Now this allows us to jump to the limit N → ∞. The determinant |K| = detKij is
well-defined when N is finite. What we will suppose is that in the limit as N → ∞, we
can still sensibly define quantities like S(x) and |K|. Whether this is possible is a subtle
mathematical question (it is certainly not possible in general!), but in physical applications,
one typically always returns back to a case where N is finite - in any such application, there
will typically be IR and UV cut-offs that make it so (and smooth all the functions concerned).
Thus we now define the functional generalization of (16), to be

I =

∫
Dx(t) e−S[x]

=

∫
Dx(t) e−

1
2

∫
dt

∫
dt′ x(t)K(t,t′)x(t′)+

∫
dt J(t)x(t) (17)

where the continuously varying parameter t is now introduced as a proxy for the index j;
the functional integral is then∫

Dx(t) = lim
N→∞

∫
dx̃ = lim

N→∞

1

(2π)N/2

N∏
j=1

∫ ∞
−∞

dx(tj) (18)

where the times tj are spaced by infinitesimal intervals, i.e., we let dt = tj+1 − tj = T/N ,
where T is the time interval involved (we now call t the ”time”).
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Then the answer we get for the functional integral is

I =

∫
Dx(t) e−S[x] =

1

| detK(t, t′)|1/2
exp

{
1

2

∫
dt

∫
dt′ J(t)K−1(t, t′)J(t′)

}
(19)

where the inverse function is defined as the obvious generalization of the inverse of a finite
matrix, i.e., ∫

dt′ K(t1, t
′)K−1(t′, t2) = δ(t1 − t2) (20)

Again, we note that objects like detK, or the integral itself, will be infinite when N →∞.
However in physical applications we will see that these infinite quantities divide out, by
normalization. This was already obvious in eqs. (9)-(11) above, where we had to divide out
the determinant; but this determinant simply normalized the probability distribution.

We also notice that there is no need to work with a specific basis when defining these
functional integrals. Just as we can make a similarity transformation in an expression like
(13) or (16), i.e., rotate to a new orthonormal basis y, where y = (y1, . . . , yN), we can rotate
in functional space (i.e., in the space of basis functions) to rewrite a functional integral.
Thus, suppose we Fourier transform x(t), such that

x(t) =

∫ ∞
−∞

dω

2π
e−iωtx(ω) (21)

Then we can Fourier transform the functional integral in the same way - we will then
have

I =

∫
Dx(ω) e−S[x] (22)

with a corresponding change in the measure in (18).

App. B.1.2: FUNCTIONAL DIFFERENTIATION

We now want to define the inverse operation to functional integration. Just as functional
integration is supposed to a generalization to a function space of ordinary integration, over
an infinite set of functions, we can see functional differentiation as an infinite-dimensional
generalization of ordinary partial differentiation for a finite set of variables. Recall that,
where differentiation is well-defined, we can write for a function f(x) of a single variable x,
that

f(x0 + δx) = f(x0) +
∞∑
n=1

1

n!

dnf(x)

dxn

∣∣∣∣
x=x0

(dx)n (23)

and for an function f(x1, . . . , xN) of N variables, we have

f(x0 + δx) ≡ f(x0
j + δxj) = f(x0) +

∞∑
n=1

1

n!

∂nf(x)

∂xα1 · · · ∂xαN

∣∣∣∣
x=x0

dxα1 · · · dxαN (24)
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Clearly these Taylor expressions don’t work around singularities, but we are only going
to discuss here cases where the functional differentials are well defined.

Now let’s consider a variation of a function φ(x); we will call this variation δφ(x). The
idea is that we start from some well-defined function φ0(x), and vary it infinitesimally, so
that

φ0(x) −→ φ0(x) + δφ(x) (25)

in the same way that, in (23) and (24) above, we let the variable x be varied, so that
x0 → x0 + δx. We now want to know how some functional F [φ] changes under the change
δφ(x). Clearly the appropriate generalization of (24) is just

δF [φ] = F [φ0 + δφ]− F [φ0]

=
∞∑
n=1

1

n!

δnF [φ]

δφ(x1) · · · δφ(xn)

∣∣∣∣
φ(x)=φ0(x)

δφ(x1) · · ·φ(xn) (26)

where if we wish to make sense of this expression by relating it back to (24), we should write
φ(x) in terms of a set of orthonormal function χn(x) (cf. eq. (3)), write the variation as

δφ(x) =
∑
n

χn(x)δφn (27)

in terms of the coefficients δφn, and then expand in powers of the δφn, just we expanded in
powers of the dxαn in (24). For the functional differentials to be well-defined, they must be
independent of which basis set χn we use for the expansion in (27).

App. B.1.2 (a) BASIC RESULTS

Let’s first establish some basic results for functional differentiation, and consider a few
examples. We have already defined the n-th functional differential in eq. (26) above, but it is
a little abstract, since we have not fixed the form of δφ(x). To do this we make a particularly
simple choice in (27), viz., we write

χn(x) → χz(x) = δ(x− z)
δφn → δφz = ε

∣∣∣∣ ie., δφ(x) = εδ(x− z) (28)

In functional language, this amounts to choosing as basis functions the infinite set of
δ-functions which pick out different values of x; the function picks out x = z. Note that in
QM, these are nothing but position eigenstates |z〉, so that

〈x|z〉 = δ(x− z) and

∫
dx〈x|z〉 = 1 (29)

Now let’s define the derivative δF/δφ(x) using this form for δφ(x). We have, under a
variation δφ(x), a change

δF [φ] = F [φ(x) + δφ(x)]− F [φ(x)] (30)
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and by definition

δF [φ] =

∫
dx′

δF [φ]

δφ(x′)
δφ(x′) (31)

Then, with the assumption that δφ(x) = εδ(x− x′), as in (28), we get

δF [φ] −→ ε

∫
dx′

δF [φ]

δφ(x′)
δ(x′ − x) = ε

δF [φ]

δφ(x)
(32)

so that we have
δF [φ(x)]

δφ(x′)
=

1

ε

(
F [φ+ εδ(x− x′)]− F [φ]

)
(33)

This result is of practical use when it comes to calculating functional derivatives, or at
least justifying results obtained by more heuristic means. We can use it derive a number of
useful results; for example

Product Rule: For some product of functionals, we have

δ

δφ(x)
{F [φ]G[φ]} = F [φ]

δG

δφ(x)
+G[φ]

δF

δφ(x)
(34)

Chain Rule : Suppose we have a functional G [F [φ]] of a functional F [φ] of the function
φ(x). Then the functional differential δG/δφ of the functional G [F [φ]] is

G [F [φ]]

δφ(x)
=

∫
dx′

δG

δφ(x′)

δF [φ(x)′]

δφ(x)
(35)

If the functional F [φ] is just an ordinary function, f
(
φ(x)

)
= f(x), then (35) reduces to

δG[f ]

δφ(x)
=

δG[f ]

δf
(
φ(x)

) df

dφ(x)
(36)

Functional Self − differentiation: The simplest functional F [φ] of φ(x) is the unit
functional F [φ] = φ(x). Then since

δφ(x) =

∫
dx′

δφ(x)

δφ(x′)
δφ(x′) and δφ(x) =

∫
dx′ δ(x− x′)δφ(x′) (37)

we have
δφ(x)

δφ(x′)
= δ(x− x′) (38)

Then, using the product rule, we have for any function f
(
φ(x)

)
that is differentiable, and

so can be written as f
(
φ(x)

)
=
∑

n fnφ
n(x), that the functional

F [φ] =

∫
dx′ f

(
φ(x′)

)
(39)
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has differential
F [φ]

φ(x)
=

f
(
φ(x)

)
φ(x)

(40)

which follows from the simple result that

δφn(x)

δφ(x′)
= nφn−1(x)δ(x− x′) (41)

derived directly from (34) and (38).
From all these general results it is then fairly straightforward to derive some more specific

results.

App. B.1.2 (b) SIMPLE EXAMPLES

In may applications we do not need to understand more than a few simple results. So in
what follows I give a few of these, with remarks on how to get them. In another section we
discuss a set of results that are crucial in quantum field theory.

(i) Derivatives of φ(x): We can imagine simple functionals involving derivatives of a
function φ(x). The simplest example is the functional

F [φ] =

∫
dx
(
φ′(x)

)n ≡ ∫
dx

(
dφ(x)

dx

)n
(42)

It is simple to then derive the result (starting as usual from (33))

δF [φ]

δφ(x)
=

∫
dx′ n

(
φ′(x′)

)n−1 dδ(x′ − x)

dx′

−−−−−−−−−−−−−−−→
integration by parts

−n d

dx′
(
φ′(x′)

)n−1

∣∣∣∣
x′=x

(43)

where in the last step we assume that φ′(x′) and its derivatives can be ignored at the end
points of the integral.

Now, by writing some arbitrary function f
(
φ′(x)

)
as a power series in φ′(x), i.e., write

f
(
φ′(x)

)
=
∑

n fn(φ′)n, we can immediately derive the result for a functional

F [φ] =

∫
dx f

(
φ′(x)

)
(44)

that
δF [φ]

δφ(x)
= − d

dx′

( df(φ′)

dφ′(x′)

)∣∣∣∣
x′=x

(45)

These results can be easily extended to encompass higher derivatives φ(n)(x) = dnφ(x)/dxn,
or to multiple integrals over functional of φ′(x), or to functionals of φ′(r), where r exists in
n-dimensional space; and so on.
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(ii) Simple exponential functionals: In many applications, ranging from physics to eco-
nomics, one has to deal with exponential functionals - the most important reason for this
being in generating functionals used in probability theory and quantum field theory. Then,
we need to look at

F (φ) = exp

{∫
dx J(x)φ(x)

}
(46)

which we write as

F [φ] =
∞∑
n=0

1

n!

(∫
dx J(x)φ(x)

)n
(47)

and then we easily find

δF [φ]

δφ(x)
= J(x) e

∫
dx J(x)φ(x) = J(x)F [φ] (48)

Notice that we can also write F [φ] as

F [J ] = e
∫

dx J(x)φ(x) (49)

i.e., J(x) and φ(x) appear symmetrically, and we have

δF [J ]

δJ(x)
= φ(x) e

∫
dx J(x)φ(x) = φ(x)F [J ] (50)

We can also consider Gaussian functionals of these variables. These are central in both
probability theory and in field theory and statistical mechanics. Thus, in quantum field
theory one deals with

F [J ] = e
i
2

∫
dx1

∫
dx2 J(x1)∆(x1,x2)J(x2) (51)

(here I have put ~ = 1), and then one easily finds that

δF [J ]

δJ(x)
= i

∫
dx′ ∆(x, x′)J(x′) e

i
2

∫
dx1

∫
dx2 J(x1)∆(x1,x2)J(x2)

= i

∫
dx′ ∆(x, x′)J(x′) F [J ] (52)

and one can continue in this vein with more complicated exponential functionals.

(iii) Functional of ”Correlator” form: Often, in classical physics (e.g., in E& M theory,
or in ordinary mechanical systems), and in quantum mechanics and quantum field theory,
or in condensed matter physics, one deals with ”response functions”, in which one looks at
some ”correlator” K(x, x′) between events at 2 different spacetime positions. One then deals
with functionals like

F [φ(z)] =

∫
dz′ K(z, z′) φ(z′) (53)
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and we already saw a simple example of this in eq. (6). It is easy to then establish that

δF [φ(z)]

δφ(x)
= K(z, x) (54)

and we easily generalize this to the functional

F [φ(z)] =

∫
dz′ K(z, z′) φn(z′) (55)

to find

δF [φ(z)]

δφ(x)
=

∫
dz′ nφn−1(z′)K(z, z′)δ(x− z′)

= nK(z, x) φn−1(x) (56)

and from this we easily find that for a function f
(
φ(z)

)
expandable as a polynomial in φ(z),

the functional

F [φ] =

∫
dz′ K(z, z′)f

(
φ(z′)

)
(57)

has derivative
δF [φ(z)]

δφ(x)
= K(z, x)

df(φ)

dφ(x)
(58)

Finally, we can consider correlators of form

F [φ] =

∫
dx1

∫
dx2 φ(x1)K(x1, x2)φ(x2) (59)

and it is clear that
δF [φ]

δφ(x)
=

∫
dx′

(
K(x, x′) +K(x′, x)

)
φ(x′) (60)

and that
δ2F [φ]

δφ(x1)δφ(x2)
= K(x1, x2) + K(x2, x1) (61)

and one may continue in this vein with higher correlators involving integrals over n different
φ-functions with different arguments {xj}.

App. B.1.3: SHIFT OPERATORS

In field theory, and also elsewhere, it is important to be apply to apply different trans-
formations to functional integrals that have come to be known as ”shift operations”, after
they were used extensively by Schwinger in his work on QED in the early 1950’s.
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The simplest kind of ”shift” or translation operation is that which generalizes the simple
Taylor expansion beyond an infinitesimal translation dx (cf. eq. (23)). Thus for an ordinary
function we have

ea0
d
dx f(x) = f(x+ a0) (62)

again by power series expansion, now in powers of a0 (as opposed to dx).
The functional generalization of this is just

Q̂1F [φ] = e
∫

dx A(x) δ
δφ(x)F [φ] = F [φ(x) + A(x)] (63)

There are various ways of demonstrating this - one of the fastest is to use the functional
generalization of the usual definition of a delta-function, viz.,

δ[f(x)− g(x)] =

∫
Dφ(x) ei

∫
dx φ(x) [f(x)−g(x)] (64)

and to write a general functional F [φ(x)] in the form of a functional power series, i.e., write:

F [φ] =
∞∑
n=0

1

n!

n∏
j=1

∫
dxj fn(x1 . . . xn)φ(x1) . . . φ(xn) (65)

which can also be written in the form

F [φ] =
∞∑
n=0

1

n!

n∏
j=1

∫
dxj

[
fn(x1 . . . xn)

(
− i δ

δJ(x1)

)
· · ·
(
− i δ

δJ(xn)

)]
ei

∫
dxφ(x)J(x)

∣∣∣
J=0

(66)
and where we note that the coefficients fn(x1 . . . xn) are just the functional derivatives of
F [φ], i.e., that

fn(x1 . . . xn) = (−i)n δnF [φ]

δφ(x1) · · · δφ(xn)

∣∣∣∣
φ=0

(67)

The formula (66) and (67) are just the functional generalizations of what is written down
in ordinary probability theory for the generating function and the moments of a probability
distribution. Notice also that the ”functional δ-function” in (64) is a special case of the
”functional Fourier transform”, viz.,

F [J ] =

∫
Dφ(x) ei

∫
dx φ(x)J(x)F [φ] (68)

which defines the characteristic functional in probability theory.
Now let’s look at some more complicated shift operators. The next one up is the

”quadratic shift operator”, which we write as

Q̂2 ≡ eiK̂φ = e
i
2

∫
dx1

∫
dx2

δ
δφ(x1)

K(x1,x2) δ
δφ(x2) (69)
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which is central in quantum field theory. Let’s apply this to the simple exponential functional
(being in mind we can write any functional using (68)); then we have

Q̂2 e
i
∫

dx φ(x)J(x) = e
i
2

∫
dx1

∫
dx2

δ
δφ(x1)

K(x1,x2) δ
δφ(x2) ei

∫
dx φ(x)J(x)

= e
−i
2

∫
dx1

∫
dx2 J(x1)K(x1,x2)J(x2) ei

∫
dx φ(x)J(x) (70)

and by using the Fourier transform we can extend this to any functional in place of this
exponential.

The quadratic shift operators plays a particular role in field theory, when it is applied
to more than one functional (representing, e.g., some n-point functional is a product of 2
functionals: let

F [φ] = G1[φ]G2[φ] (71)

Then we have

Q̂2 G1[φ] G2[φ] = e
i
2

∫
dx1

∫
dx2

δ
δφ(x1)

K(x1,x2) δ
δφ(x2) G1[φ] G2[φ] (72)

and if we work this out, we get

Q̂2 G1[φ] G2[φ] = eiK̂
φ
12

{
eiK̂

φ1
11 G1[φ] eiK̂

φ2
22 G2[φ]

}∣∣∣
φ1=φ2 = φ

(73)

where the operators are

Kφ
ij =

1

2

∫
dx

∫
dx′

δ

δφi(x)
K(x, x′)

δ

δφj(x)
(74)

and the result in (73) acquires, in field theory, a clear diagrammatic interpretation. The
operator Kφ

jj is a ”linking” operator for the field φj(x), which joins together pairs of φj-
factors (i.e., the ”φj-field”); the exponentiation then includes all possible pairings between
φj(x) and φj(x

′), repeated an arbitrary number of times between different values of x, x′, x′′,
etc., as we go to higher order in the expansion of the exponential. These are then linked in
all possible ways between the 2 different functionals G1[φ] and G2[φ] (ie., between the 2
fields φ1(x) and φ2(x′)), by the operator Kφ

12.
This can be generalized to a product F [φ] =

∏n
j=1 Gj[φ] quite easily, and all possible

linkings are then generated.
As a final example, let’s look at the action of Q̂2 on a simple Gaussian functional. We

can solve this starting from (70), or otherwise. We consider the form

Q̂2F [φ] ≡ Q̂2 e
i
2

∫
dx1

∫
dx2 φ(x1)A(x1,x2)φ(x2)+i

∫
dx J(x)φ(x)

= e
i
2

∫
dx1

∫
dx2

δ
δφ(x1)

K(x1,x2) δ
δφ(x2)

[
e
i
2

∫
dx1

∫
dx2 φ(x1)A(x1,x2)φ(x2)+i

∫
dx J(x)φ(x)

]
(75)

If we work this out, we get a key result, viz.,

Q̂2F [φ] = Ωo exp

{
i

2

∫
dx1

∫
dx2[

φ(x)Gφφ(x, x′)φ(x′) + 2φ(x)GφJ(x, x′)J(x′) − J(x)GJJ(x, x′)J(x′)
]}

(76)
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where the correlators are

Gφφ(x, x′) =

(
A

1 +KA

)
xx′

GφJ(x, x′) =
(
1 +KA

)−1

xx′

GJJ(x, x′) =

(
K

1 +KA

)
xx′

(77)

and the prefactor is

Ωo = exp

{
−1

2
Tr ln(1 +KA)xx′

}
(78)

where by KA we mean the convolution of the functions K(x, x′) and A(x, x′). This a result
much used in field theory.
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