Phys 503+508: HOMEWORK ASSIGNMENT No (2)

Tuesday March 4th 2014

DUE DATE: Wednesday March 19th 2014.

Assignments handed in late will not receive a full mark.

QUESTION (1): DIAGRAMS for $\phi^3(x)$ THEORY

You are familiar from the notes with $\phi^4(x)$ theory. Consider now a scalar field theory where the Lagrangian density is

$$L(\Phi) = \frac{1}{2} [\partial_{\mu} \phi(x) \partial^{\mu} \phi(x) - m^2 \phi^2(x)] - \frac{g_o}{3!} \phi^3(x)$$
(1)

(i) Write down the Feynman rules for this theory. Then give expressions for the generating functional $\mathcal{Z}[J]$, the generating functional W[J], and the connected correlator $\mathcal{G}_2(x, x')$ for this theory.

(ii) Calculate, starting from the expression for $\mathcal{G}_2(x, x')$ you have given above, the terms in $\mathcal{G}_2(x, x')$ up to order g_o^2 . Draw the diagrams corresponding to each term in this, and show how they correspond to the Feynman rules you have given.

QUESTION (2): COUPLED SCALAR FIELDS

This problem will help you to understand functionals better, and the expansions they generate.

(i) Define the Gaussian functional $F[\phi]$ and the quadratic shift operator Q_2 by

$$F[\phi] = e^{\frac{i}{\hbar} \int dx_1 \int dx_2 \frac{1}{2} [\phi(x_1) \Delta_F(x_1, x_2) \phi(x_2)] + \int dx J(x) \phi(x)}$$
$$\hat{Q}_2[\phi] = e^{\frac{i}{\hbar} \int dx \int dx' \frac{1}{2} \frac{\delta}{\delta \phi(x)} K(x, x') \frac{\delta}{\delta \phi(x')}}$$
(2)

and now derive an expression for $\hat{Q}_2 F[\phi]$ (see eqtns. (76)-(78) of the notes on functionals).

(ii) Now let's consider a pair of free scalar fields $\chi(x)$ and $\phi(x)$, with masses M_o and m_o respectively, coupled by a term $-\lambda_o \phi^2(x) \chi(x)$ in the Lagrangian density. If $\phi(x)$ is coupled to an external current J(x), we know that in the semi-classical or 'loop-free' limit, the generating functional $\mathcal{Z}[J]$ for the ϕ -field after the χ -field has been integrated out is

$$\mathcal{Z}[J] = e^{\frac{i}{\hbar} \int dx \int dx' \frac{1}{2} \frac{\delta}{\delta\psi(x)} \Delta_F^{\chi}(x,x') \frac{\delta}{\delta\psi(x')}} \tilde{\mathcal{Z}}^o_{\psi}[J] |_{\psi=0}$$
(3)

where $\tilde{\mathcal{Z}}_{\psi}^{o}[J]$ takes the form of the free field generating functional $\mathcal{Z}_{o}[J]$ except now, in place of the usual free field propagator $\Delta_{F}(x, x')$, we have a propagator $\tilde{\Delta}(x, x'|\psi)$ satisfying the differential equation

$$\left(\partial^2 + m_o^2 + \frac{1}{2}\lambda_o\psi(x)\right)\tilde{\Delta}(x, x'|\psi) = -\delta(x - x') \tag{4}$$

(compare eqtns. (127) and (130) in the notes)).

Now derive an expression for the connected 4-point propagator $\mathcal{G}_4(x_1, x_2, x_3, x_4)$ for this system, and derive the lowest-order term (of order λ_o^2) for this connected 4-point function. Show this graphically; and then show graphs for all the terms that contribute to $\mathcal{G}_4(x_1, x_2, x_3, x_4)$ up to order λ_o^4 (no need to derive them however).

END of QUESTION SHEET 2