Phys 503+508: HOMEWORK ASSIGNMENT No (2)

Tuesday March 4th 2014

DUE DATE: Wednesday March 19th 2014.
Assignments handed in late will not receive a full mark.

QUESTION (1): DIAGRAMS for $\phi^{3}(x)$ THEORY

You are familiar from the notes with $\phi^{4}(x)$ theory. Consider now a scalar field theory where the Lagrangian density is

$$
\begin{equation*}
L(\Phi)=\frac{1}{2}\left[\partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-m^{2} \phi^{2}(x)\right]-\frac{g_{o}}{3!} \phi^{3}(x) \tag{1}
\end{equation*}
$$

(i) Write down the Feynman rules for this theory. Then give expressions for the generating functional $\mathcal{Z}[J]$, the generating functional $W[J]$, and the connected correlator $\mathcal{G}_{2}\left(x, x^{\prime}\right)$ for this theory.
(ii) Calculate, starting from the expression for $\mathcal{G}_{2}\left(x, x^{\prime}\right)$ you have given above, the terms in $\mathcal{G}_{2}\left(x, x^{\prime}\right)$ up to order g_{o}^{2}. Draw the diagrams corresponding to each term in this, and show how they correspond to the Feynman rules you have given.

QUESTION (2): COUPLED SCALAR FIELDS

This problem will help you to understand functionals better, and the expansions they generate.
(i) Define the Gaussian functional $F[\phi]$ and the quadratic shift operator \hat{Q}_{2} by

$$
\begin{align*}
F[\phi] & =e^{\frac{i}{\hbar} \int d x_{1} \int d x_{2} \frac{1}{2}\left[\phi\left(x_{1}\right) \Delta_{F}\left(x_{1}, x_{2}\right) \phi\left(x_{2}\right)\right]+\int d x J(x) \phi(x)} \\
\hat{Q}_{2}[\phi] & =e^{\frac{i}{\hbar} \int d x \int d x^{\prime} \frac{1}{2} \frac{\delta}{\delta \phi(x)} K\left(x, x^{\prime}\right) \frac{\delta}{\delta \phi\left(x^{\prime}\right)}} \tag{2}
\end{align*}
$$

and now derive an expression for $\hat{Q}_{2} F[\phi]$ (see eqtns. (76)-(78) of the notes on functionals).
(ii) Now let's consider a pair of free scalar fields $\chi(x)$ and $\phi(x)$, with masses M_{o} and m_{o} respectively, coupled by a term $-\lambda_{o} \phi^{2}(x) \chi(x)$ in the Lagrangian density. If $\phi(x)$ is coupled to an external current $J(x)$, we know that in the semi-classical or 'loop-free' limit, the generating functional $\mathcal{Z}[J]$ for the ϕ-field after the χ-field has been integrated out is

$$
\begin{equation*}
\mathcal{Z}[J]=\left.e^{\frac{i}{\hbar} \int d x \int d x^{\prime} \frac{1}{2} \frac{\delta}{\delta \psi(x)} \Delta_{F}^{\chi}\left(x, x^{\prime}\right) \frac{\delta}{\delta \psi\left(x^{\prime}\right)}} \tilde{\mathcal{Z}}_{\psi}^{o}[J]\right|_{\psi=0} \tag{3}
\end{equation*}
$$

where $\tilde{\mathcal{Z}}_{\psi}^{o}[J]$ takes the form of the free field generating functional $\mathcal{Z}_{o}[J]$ except now, in place of the usual free field propagator $\Delta_{F}\left(x, x^{\prime}\right)$, we have a propagator $\tilde{\Delta}\left(x, x^{\prime} \mid \psi\right)$ satisfying the differential equation

$$
\begin{equation*}
\left(\partial^{2}+m_{o}^{2}+\frac{1}{2} \lambda_{o} \psi(x)\right) \tilde{\Delta}\left(x, x^{\prime} \mid \psi\right)=-\delta\left(x-x^{\prime}\right) \tag{4}
\end{equation*}
$$

(compare eqtns. (127) and (130) in the notes)).
Now derive an expression for the connected 4-point propagator $\mathcal{G}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ for this system, and derive the lowest-order term (of order λ_{o}^{2}) for this connected 4 -point function. Show this graphically; and then show graphs for all the terms that contribute to $\mathcal{G}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ up to order λ_{o}^{4} (no need to derive them however).

