Phys 503+508: HOMEWORK ASSIGNMENT No (1)

Thursday January 23rd 2014
DUE DATE: Wednesday Feb 5th 2014.
Assignments handed in late will not receive a full mark.

QUESTION (1): SIMPLE HARMONIC OSCILLATOR

Suppose we have a simple 1-d harmonic oscillator with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{m}{2}\left(\dot{x}^{2}-\Omega_{o}^{2} x^{2}\right) \tag{1}
\end{equation*}
$$

where $x(t)$ is the oscillator coordinate.
(i) Find, using any method you like, the propagator $G_{o}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t, t^{\prime}\right)$, in real spacetime, for this non-relativistic free oscillator. For the prefactor, if you use the path integral method, you can use the identity

$$
\begin{equation*}
z / \sin z=\prod_{n=1}^{\infty}\left[1-z^{2} / \pi^{2} n^{2}\right]^{-1} \tag{2}
\end{equation*}
$$

(ii) Now suppose the initial wave-function, as $t=0$, is the Gaussian wave-packet

$$
\begin{equation*}
\psi(x, t=0)=\frac{1}{(2 \pi L)^{1 / 4}} \exp \frac{i}{\hbar}\left[m u x-\frac{\hbar x^{2}}{4 i L}\right] \tag{3}
\end{equation*}
$$

Find the solution $\psi(x, t)$ for all times.

QUESTION (2): DRIVEN OSCILLATOR

Suppose now we have a simple 1-d harmonic oscillator driven by some arbitrary time-dependent force $J(t)$, with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{m}{2}\left(\dot{x}^{2}-\Omega_{o}^{2} x^{2}\right)-J(t) x \tag{4}
\end{equation*}
$$

where again $x(t)$ is the oscillator coordinate.
(i) Find the propagator $G_{o}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t, t^{\prime} \mid J(t)\right)$, a functional of the external $J(t)$. You can assume that the prefactor is the same as for the undriven oscillator - so you only have to find the classical action. The answer and hints are given in the notes - you have to derive the answer!
(ii) Find the second functional derivative of this expression with respect to $J(t)$; and then, taking the limit as $J \rightarrow 0$, find the correlator $G_{2}^{o}\left(x, x^{\prime} ; t, t^{\prime}\right)$.
(iii) Then, show that the "vacuum amplitude' $G_{o o}(t \mid J)=\langle 0| \hat{G}(t)|0\rangle_{J}$ from the ground state $|0\rangle$ of the free oscillator at time 0 , to the same state at time t, is given in the presence of the force $J(t)$ by

$$
\begin{equation*}
G_{o o}(t \mid J)=\exp \left[-\frac{i}{2 m \hbar \Omega_{o}} \int_{0}^{t} d \tau \int_{0}^{t^{\prime}} d \tau^{\prime} J(\tau) J\left(\tau^{\prime}\right) e^{i \Omega_{o}\left(\tau-\tau^{\prime}\right)}\right] \tag{5}
\end{equation*}
$$

