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Holes in a Quantum Antiferromagnet: New Approach and Exact Results
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It is shown that holes on the 4 and B sublattices of a spin-s antiferromagnet behave as charges *s
coupled to a gauge field a,(n), n being the local order parameter. This general formalism can be pur-
sued very far in d =1 where the finite-hole-concentration problem is described by massless fermions cou-
pled to the o model. Many exact results follow: Holes superconduct, destroy the quasi-long-range or-
der, and wipe out the © term which distinguishes between integer and half-integer models or describes

bond-strength alternation.

PACS numbers: 75.10.Jm, 11.10.Ef, 71.30.+h, 74.65.+n

Superconductivity in the Cu-O layers' gives us a good
motivation for studying antiferromagnets with holes.
Prior to doping, the layers are Mott insulators with one
spin- 5 per site and Néel order. Upon doping the order
is reduced and eventually replaced by superconductivity.
Several theorists? have attempted to describe the holes,
analytically and numerically. Here I develop the theory
of holes for a certain class of models using path integrals.
While some general consequences can be deduced in all
dimensions, in d=1, I can go much further: I present
several exact results for the problem with a finite concen-
tration of holes.

To begin with, consider a bipartite lattice of /V sites
with a spin s at each site. Let

H"JZS,"SJ' 1)
i)

be the nearest-neighbor Hamiltonian. Following Hal-
dane? let us write a path integral for Z =Trexp(—8H)
using at each site I=(4x) "'da|a)Xa|, where
© =(6,¢) lies on a unit sphere and labels the coherent
state | @) obeying

(Q'| @) =(cos s Ocos +O'+¢'“ ?sin+ Osin £ 6)% ,(2)
(als|a)=sa. 3)

The usual logic gives
M
z= 12010, .. y(r+e) | 1—eH |0y (),
i=1

4
where Q) ...y is the collective label for all Q’s at a given
time slice, e=p/M, and DQ is the normalized measure
in this discrete Euclidean space-time, with time 7;:
0= T= ﬂ

Let us first ignore H. Assuming smooth paths in 7,
Eq. (2) gives at each site

((t+e)| Q(2))=[1+iA¢sin’6/2]1%*
=eis(l—cose)A¢- (5)

The assumption of smooth paths is justified only in the
limit of large S, when the overlap of coherent states at

neighboring time slices drops rapidly as the state vectors
begin to differ. Thus the o-model derivation and the
present variant in the presence of holes are all valid only
in this large-S limit. It is, however, possible that qualita-
tive features, such as gap or no gap may be valid down to
spin- 3.

Haldane pointed out that we can write (5) in a rota-
tionally invariant way:

<n/|n)=ei.rA(n)~An’ )

where AQ =Q'— Q@ and A(Q) is the potential of a unit
monopole at the center of the sphere | @ | =1. Thus,

VoxA(Q)=a. @)

We are free to gauge transform A: A— A+VgA. The
particular choice A =[(1—co0sB©)/sinOle, reproduces
Eq. (5). The choice I will use is A = —cotOe, for which
A(a)=A(—q).

Returning to Eq. (4), with H =0 still, we get

Z=f[$n]cxp[istOp A(n,)dd(:' |,  ®

where r is the site label, and I wrote d Q@ =d Q/dz- dr.

Restoring H adds spatial coupling between the Q’s,
and eventually we get the o model as reviewed else-
where.? It is sufficient to recall that since H is antiferro-
magnetic, at least locally, we have

@) =(—1)'nr)+0(), 9

where (—1)" is the parity of site r, n is the smooth o-
model (order parameter) field, and a is the lattice spac-
ing. Thus

z= [1Dalexp [fszf()”A(n)-%(—l)r+s(H) ,

(10)
where S(H) are terms due to H, and I have used
A(@)=A(—q).

Let us now imagine we pull out the spin at site ry at
time 7|, i.e., make a hole there, and reinstate it at time
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72.

It is clear that between 7; and r> we must use a differ-
ent Hilbert space since we have one less spin. But in the
space-time path integral there is a simple way to describe
the hole: We use the same action as before but subtract
the contribution the spin would have made at r( between
7y and 1y i.e., add S = — (—1)"is [ ao(ro,7)dx to the
old action, where ap=A:9on=A-0n/0z. This is the
same as introducing a Wilson line expl—is(—1)"
x f 2a¢(ro, 7)d7] in the path integral for the ¢ model.

Other effects due to hole will be discussed shortly. But
first let us try to cast the above effect in an operator for-
malism. At each site we introduce an operator u/* which
creates a hole and yw which destroys it, demand
yl= v/n =0, {y/,y/*} =1, and that y/"y/ commutes at
different sites. The hole creation does not do anything
to the spin there and proceeds independently of it.

We describe the static holes by

Hy=Yis(—1) "y yao, an

which clearly reproduces the Wilson line if we take the
trace in the occupation number representation of .
Having checked this, we can switch to any other repre-
sentation, say a Grassmann integral over y.

To fully understand this Hj, and the present formal-
ism in general, let us consider the analogy with QED.
There, Z is a functional integral over the photon (A)
and electron (y) variables with Boltzmann weight
explS(4)+S,4(y)], where S(A4) is the Maxwell action
(= +f%) and S, () =y(@—ied)y=yDy. To evalu-
ate Z, we can fix A, do the y integral, and finally do the
A integral. In the second step we have at each 4 {gen-
erated with probability exp[S(4)1} an external field
problem in y of evaluating detD =Trexpl—pBH,(y)],
where H4(y) is the Dirac Hamiltonian of the electron
minimally coupled to the current value of 4. A term in
it, such as ey/*v/Ao, describes the coupling of the charge
to the background scalar potential A, preassigned to
that point whether or not the electron is there. In our
problem Hj(y,ao) is the analog of H4(y) while 4— n;
S(4)— S(n), the o-model action, and w(bare elec-
tron) — w(bare hole). If we evaluate Trexp(—pgH}) in
the occupation number representation, it will, by design,
do its job: Whenever wfy/=l, isy/*v/ao will kick in and
neutralize the on-site evolution isA- 9n/dt=isa,.

So far we have focused on the on-site phase factor.
Other effects due to the hole are similarly obtained by
multiplying the other terms in the o-model action by the
projection operator 1 — y/*u/=1 —:yy:—c, where :y'y:
is the normal order parameter and c is its vacuum expec-
tation value. Now :y'y: has dimension d in d spatial di-
mensions, and makes irrelevant corrections in all but the
:yTy:ao term (which we have already considered and
which is always marginal). The ¢ term renormalizes
various couplings, velocities, etc., and also leads to a
nearest-neighbor attraction between holes, reflecting the
fact that in this configuration one less bond is broken. I
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thank G. Murthy for pointing this out. We will not con-
sider this interaction further; which amounts to assuming
that a compensating NN Coulomb repulsion exists. This
point will be discussed elsewhere.

Let us return to Eq. (11) and deal with the (—1)"
term. We can, of course, say that there is one kind of
hole and that the gauge potential it sees varies very rap-
idly in space, as (—1)"ao. But it makes more sense in
the continuum to double the unit cell (as one does in the
o-model derivation) and say that there are two kinds of
holes (on the A and B sublattices) coupling with charge
*+s5 to the smooth scalar potential ao. This picture
makes sense if the hopping between sublattices is
neglected and if there is a net intrasublattice term
t44=tpp =t. Thus we are not talking about the simplest
one-band Hubbard model, but its generalization. We
will work in the low-energy sector wherein the large J
will preserve the integrity of the A-B species. In a mo-
ment we will see more justification for the assumption
that the holes move within one or the other sublattice.

Consider first a hole hopping from site 1 to site 2 in
the same sublattice. Let n; and n, be the background
field values. (Recall n and Q are equivalent within a
given sublattice.)

The correct addition to Hj, is not — ty3y,, but rather

isA-(n;—mn,

SH=—1tylye '= —ydyne®. (12)

This is because w3y, moves the hole, without touching
n, whereas at the microscopic level the electron is trans-
ported by some operator d =Y clicsr which moves the
spin coherently from site 2 to 1. Its matrix element in
that language would have been

—t{n,, hole at 2| d| hole at 1,n,)
= —(n; | ny)(hole at 2| hole at 2)
eltA mTm) s (13)

In our scheme, H, from Eq. (12) reproduces this re-
sult when applied to hole motion in the given background
n.

=1

Had we tried to move the hole from A4 to B, then in
place of Eq. (13) we would have obtained the overlap
—148{Q,4| Q). In view of Eq. (9), this number would
be nearly zero. (Remember that the overlap of two
coherent states of oppositely pointing Q’s is zero.) In
other words, the real overlap to go from A to B is the
overlap of orbital wave functions times the overlap on
spin wave functions. Given strong short-range antiferro-
magnetic correlations, the second factor strongly damps
NN hopping. It is this combined hopping element that is
considered as negligible here. All this is justifiable in the
large-S limit where the desired short-range order is as-
sured.

Returning to the main theme, the full hole Hamiltoni-
an, in terms of

a,=A-9,n, u=0,1,..., (14)
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is

Hy= [ZWL V/AiSQO—ZJWL+JWA exp [—isZa“- 6,,+H.c.] ]
r r u

15)

in obvious notation. Under the gauge transformation of
A, a, behaves as follows: a,— a,+Vr-9,n=a,+38,A
by the chain rule. The equations of motion are gauge in-
variant if at the same time y 4 3— e ¥y 4 5.

It is clear that 4 and B holes will like to be near each
other. A hole at A4 for all times t adds an oscillating
Wilson line to the path integral, which will average
e FoP , Eo being the energy of the hole. The same goes
for a hole at B. Now consider two holes. If we put an 4
and B hole close to each other (in the scale of the corre-
lation length, ), the phase factors cancel and it costs no
energy, whereas two A holes or two B holes will cost en-
ergy 2Eo. The exact forces between holes depends on
the dynamics of the a, field. However, all forces will be-
come exponentially small at large distances, as is clear in
the CP(1) language. We have the holes, the gauge field,
and the z quanta of mass m,~1/y. In the presence of
the latter, we will never see a confining potential, kR, be-
tween holes: Pair production of z quanta will eventually
make neutral “mesons” out of these holes for kR > 2m,,.
These mesons will have the spin index of the z quanta
and the fermionic nature of the holes: These are just or-
dinary electrons.

+(4— B,s— —s)

Another general remark we can make about this
gauge theory is that the field strength due to a, is [upon
employing Eqs. (7) and (14) and a lot of partial
differentiation]

fuv—__auav_ (16)

To see what this means, multiply f,, by an area ele-
ment dx,dx,. The right-hand side then tells us that the
flux enclosed is simply the area of its image on the n
sphere under the map x— n(x) defined by the back-
ground n field. [In differential geometric terms a, and
Sfuv are pull-backs of the one and two forms A and VXA
from |n| =1 to space-time, under the map x — n(x).]

Let us now pass from these general considerations,
valid in any d, to d =1, where we can do some serious
quantitative computations.

The spin chain by itself is given by an action

d,a,=n-(9,nx9,n) .

—1
Sg==Ezfdzx[(aon)2+v2(6xn)2]

i0

+ 4r

where g~1/s, v is a velocity, §=2xs for a uniform
chain, and some real number if one includes bond
strength alternation. The coefficient of i@ is the instan-
ton or winding number, W, and is just the integral of f,,
from Eq. (16). (Remember f,,= % €""f,, is scalar in

an

n-(9,nx94,n)d’x,

1+ 1 dimensions.)
Consider now the holes, ignoring for a moment the
gauge coupling. We have for the two species

Hiyoles=—t X lylv1ws+Hc. —2uyfysl+4—B.
(18)

Here y, whose statistics were deliberately left vague in
d =2, is definitely chosen to be fermionic. (If one be-
gins with hard-core bosons described by Pauli matrices
o+, one can use the Jordan-Wigner transformation to
go to v and the above H. The question of bare statistics
for y in d > 1 is under investigation.)

Now we can Fourier transform, obtaining E =2¢(u
=cosk), and fill up some number of levels by varying u.
As usual,’ we will linearize near k = + kr, obtaining two
components y; and y; of a Dirac field from a single y:

w(n) =™y, () +e™ "y (n) 19)

in terms of which, in the continuum, we get

Hholes=2tSinkrf['l/);(a-p)w+w§(a~p)wgldx , (20)

where

1 0
- |

0 —1| P=—id8/3x. 1)

If we now work out the gauge coupling, we get, not
surprisingly, just the minimal coupling. The correspond-
ing path integral is, in Euclidean space,

Z= f [Dyl[Dnle SrtSe®] (22)

where, upon rescaling x by 2¢sinkg,

Sr=f154(—8—ias)y+75(—5+ias)ysldx dr,
(23)

where @=a,y, and y, are 2x2 Euclidean y matrices.

We thus have the remarkable result that a finite hole
density corresponds to the addition of massless fermions
coupled to the o model via a gauge coupling.

Many dramatic effects follow since massless fermions
can drastically alter instanton physics.®

The first effect is that the 0 term is ineffective. The
reason is simple: It can affect only configurations with
instanton number, call it W=0. But whenever W=0, the
Atiyah-Singer Index theorem’ assures us that det(d
=+ isa) =0. This will be explained in detail elsewhere.*
Luckily in 1+ 1 dimensions we can see this another way.
Let us bosonize the fields y4 5 to ¢4 by the usual
rules:?

— gy =—1(Vo)% Friy=""24. (24)
Vr
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to obtain the action
—(Vp-)?
s=J :

+

- (V¢+)2
2

+is d’x+Sy, (25)

) 1/2
- - va v
= ] ¢ — €,0,a

where ¢+ =(¢p4+ ¢5)/v/2 and I have integrated 9,6—
by parts. Now it is clear that the 6 term can be elim-
inated by a shift in ¢ [recall Egs. (16) and (17)]. Con-
tinuing further, if we integrate out ¢ - completely, it is
clearly seen to produce a logarithmic potential between
instanton density; i.e., we get a term in the n sector given
by

= s’ ' 2 2
8S = 2j‘f,“,(x)lnh(—x | £ y)d?xd?y . (26)
T

Thus the instanton configurations are globally neutral.
All 6-dependent effects are now purged and the behav-
ior with spin-s is monotonic and effects of bond strength
alternation washed out. We expect all cases to be
translationally invariant and only exponentially correlat-
ed. (Consider even s: It is surely massive without holes,
and adding holes can only make it worse. Alternately we
can see the gauge field will be massive because of the
longitudinal coupling a,e*'9,¢ of a, to the ¢ field.
Indeed, both fields will become massive.) An important
consequence is that in the o-model sector we expect mas-
sive spin-+ particles. [In the CP(1) language the z
quanta become deconfined when the gauge field becomes
massive.] This result, which rests on Witten’s earlier
work as well as the exact S-matrix of the O(3) super-
symmetric o model,® will be discussed elsewhere.*
Although genuine off-diagonal long-range order is im-
possible in d =1, the superconducting susceptibility is

(Whwk (P yays©)~1/r, (27)

which is more singular than in the free fermion case
(1/r?). Thus the gauge interaction has produced an at-
traction between holes. [Equation (27) was obtained by
bosonizing the operators on the left-hand side. The re-
sult factorizes into two parts involving exponentials of
the fields ¢ +. Clearly, ¢+ is massless; it produces the
1/r. The field ¢ - becomes massive and gets stuck at
some value. This gets rid of the other 1/r that arises in
free fermion theory.]

To conclude, we see that even hole motion restricted to
sublattices can destroy the quasi-long-range order in
d=1 at any finite concentration. In d =2, where there is
genuine long-range order, a minimal concentration may
be needed. As we increase doping, superconductivity will
eventually be lost since we will not have enough short-
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range antiferromagnetic order to bind 4 and B holes.
These ideas in d =2 are under further investigation.

Since completing this work, I have received a paper
from Lee,'® who reaches many similar conclusions fol-
lowing up on some of Wiegmann’s ideas from Ref. 2.
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