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Some properties of coherent spin states 
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Abstract. Spin states analogous to the coherent states of the linear harmonic 
oscillator are defined and their properties discussed. They are used to discuss 
some simple problems (a single spin in a field, a spin wave, two spin 4 particles 
with Heisenberg coupling) and it is shown that their use may often give 
increased physical insight. 

1. Introduction 
The  point of this paper is to show that there exist spin states analogous to the 

'coherent' states of the harmonic oscillator. The  latter have been studied extensively 
in recent years (see for example Carruthers and Kieto 1968) and appear to be useful 
in discussing the statistical mechanics and superfluid properties of boson fluids 
(Langer 1968); they also give a convenient description of the radiation from lasers. 
It is still an open question as to whether the spin states defined here will prove useful. 
They may, at the very least, give some physical insight into problems involving spins 
and their correlations. 

2. Coherent states of the harmonic oscillator 

the one-dimensional harmonic oscillator. 

entire complex plane, and are given explicitly by 

Before defining the spin states it will be useful to look briefly at the problem of 

Jn this case the coherent states are functions of a variable il which runs over the 

exp( -3 10: i 2 )  exp(xa + ) 10 ) (2.1) - - T - 1 ' 2  

where In) is the nth energy eigenstate of the oscillator and a +  the usual creation opera- 
tor. These states form a complete set, in the sense that 

m 

where the right hand side is the unit matrix, However, they are neither normalized 
nor orthogonal, In  fact, from the definition (2.1), the overlap of two states [ Y-), Ip> is 
given by 

< P I E >  = rr- 'exp(-31ai2-~/p/2)(O/ exp(p*a) exp(ea+)jO) 

= 7-l exp(xp*-$1~.1~-~]p1~) .  (2.3) 
Of course, these states 1 x >  do not span Hilbert space in the two-dimensional Y- plane. 

+ See Note added in prooj ,  p. 323. 
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T o  see this explicitly, write x = pel@. Then 

are just a subset of the eigenfunctions of the two-dimensional harmonic oscillator. 
In  fact, a possible classification of the states of this system is by the energy E = (m i 1) 
and the angular momentum L, = 1 (1, m integers); for any given value of m, 1 can 
take the values - m, - m + 2 ... m - 2, m. The functions fn(+) are clearly the subset of 
states corresponding to 1 = m = n. 

I t  is clear that, quite generally, one can construct functions ]E) by making any 
(enumerably infinite) selection from any set of functions q5n(E,) which are orthonormal 
and complete in '4 space. Let the chosen subset be denoted by {n}, where the associa- 
tion of functions in this subset with a particular one-dimensional oscillator state is 
quite arbitrary. Now define 

IE> = C + n ( % ) I n > *  
i n )  

These sets are complete in the oscillator Hilbert space: 

\d5I'4WEl = z: nn' In>(n'I [ d 4 + n . * ( E ) + n ( S )  

= 2 :n><n/  = 1. 

(%'IF> = 2 + n * ( t ' )  + n ( E ) .  

n 

However, the states It) are not orthogonal, and cannot be, since 

{ n }  

Only if the subset {n} runs over a complete set in E space will the right hand side be 
equal to 8(E- E'). If the space 5 has two or more dimensions the subset is certainly 
not complete. 

The states IE) are not normalized, but it may happen that the set {rz> can be 
chosen so that 

< E l 0  = 2 l + n ( E ) I 2  
n 

is a constant. For example, in the case of the coherent states of the harmonic oscillator, 
the normalized wavefunctions in the set tnl  are 

and so 
m -2n 1 

(2.10) 

I n  practice it does not appear to matter whether or not the states do normalize to a 
c0nstant.t 

7 I t  is of course equally possible to choose the states Ig)  to  be normalized and put in a 
weighting factor in the left hand side of the completeness relation (2.7). This is in fact the 
alternative we shall choose in the next section. 
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To conclude this section, we emphasize that the point of introducing states such 
as I{) is that, being complete, they can be used perfectly well in the evaluation of such 
quantities as the partition function of the harmonic oscillator problem : 

2 = 2 (nle-"In) = d{(gle-"lg). 
n I 

Such states lg) may well be better starting functions in 'perturbation' expansions 
of Z than the original oscillator states In). For more details of applications and tricks 
in evaluating Z, see Carruthers and Nieto (1968) and Langer (1968). 

3. Analogous spin states 
We consider a single particle of spin S. Define the ground state 10) as the state 

such that s,lO) = 0), where 3, is the operator of the x component of spin. Then 
the operator 3- = 5-i,'!?y creates spin deviations. In  fact we have 

where Ip)  is the eigenstate of 3, such that 

where p runs over the complex plane and N is a normalization factor. We have 

and hence the normalized state is 
1-4 = ( I +  IP12)-SexP(CLS-);O). (3.5) 

The overlap integral between two states I A),  Ip> is 

and so 

The  states Ip)  defined by (3.5) do form a complete set, although it is necessary 
to include a weight function m(lp12) 2 0 in the integral. We require 

2s 

Jd2PIP)4PlZ) (PI = c I P ) ( P l  = 1. (3.8) 
p = o  

By doing the angular integration and putting 111.1 = p, one finds 
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where 

(3.10) 

Now one seeks a form for m ( ~ )  such that I@; S )  = {p!(2S-p)! / (2S)!) .  A little 
thought shows that a suitable choice is 

2 s + 1  1 
m(a) = - --* (3.11) 

T 1+a2 

So, finally, the completeness relation is 

(3.12) 

This result can be obtained more neatly by transforming back from a different 
parametrization of the states, namely p = tan(8/2)ei@, which is used later on. It is 
convenient to work with p while drawing analogies with the harmonic oscillator. 
The case of the oscillator is obtained in the limit S > 1. T o  see this, write 

s- +. (ZS)%+ (3.13) 

(which is the high-spin limit of the Holstein-Primakoff transformation) and 

/L -+ x/(ZS)? (3.14) 

The normalized states 1 K ) ~ ~ ,  are then 

and so 

(3.15) 

(3.16) 

(3.17) 

which apart from normalization is precisely a coherent state of the harmonic oscillator 
(cf. equation (2.1) above). I t  is easy to show that, for example, the spin state overlap 
integrals go to the correct limit. 

We conclude this section with a remark on the completeness of the spin states. 
For consistency, we must have 

(3.18) 

where in general thef(p) is an overlap of the state 11.) on some (arbitrary) spin state. 
This relation does hold so long as f(p) is of the general form P(p)/( 1 + IpI2)', where 
P(p) is an arbitrary polynomial in p with terms up to pZs. Now, in fact, only functions 
of precisely this form can occur in calculations if one stays within the Hilbert space 
appropriate to a particle of spin S, so in all such cases (3.18) is valid. 
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4. Some typical matrix elements 
Define 

$ =  s-s, S+ = S,+iS, .  

Then we have the following relations : 

The second equality can be derived either by direct computation or by the observa- 
tion that the sum can be written in the form 

(iv) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

5. An alternative parametrization 
Let us write 

p = tan(@)ei@ 0 < 8 < x 0 < + < 2%. (5.1) 

le,$) IQ) = (cos48)2Sexp(tan(38)ei@S-}10> ( 5  4 
Then the normalized states can be written 

and the completeness relation is 

dQ 
4ir U 4ir (5.3) --j’d+d8sin8lB)<QI 2 s +  1 (2S+1)  r - lB)<Q[ = 1. 
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There is a simple geometrical construction relating p and the variables 0, #. In  
fact, if we write p = pei@ and draw the p plane as tangent plane to a sphere of unit 
diameter where the x axis meets the sphere, then the point p is the projection onto the 
p plane of the point (8, #) on the sphere from the opposite pole. Clearly 4’ = 4, 
p = tan (812). 

From equation (3.4) we find for the overlap integral between states IQ), IQ’): 

(Q’lQ) = {cos&?cos+O’+sin&?sin+9’ei(@-@’) 1 2s (5.4) 
and so 

l + n . n ’  

where n and n’  are unit vectors in the directions specified by (8, #) and (e‘, #’) 
respectively. 

Finally, we calculate the expectation values of the spin components in the state 
I Q ) .  From equations (4.2-4.7) we have 

from which we get the result for the expectation value of the spin vector 

where n is the unit vector specified by Q. 

6. The effect of changing the ground state 
At the moment we are describing spins by states of the form 

where 

and IO }  is the state such that s,lO) = SlO). Consider now making a rotation to a new 
axis of quantization x‘ and write 

1,’)’ = A’(A’);o’) 
where IO’) is the state such that S,,lO’) = SjO’) and 

A’(A’) (1 + Ih’12)-S exp(A’S’-) (6.4) 
(3‘- I s2,- isu,) .  The  problem now is to express the states 1,’)’ in terms of the 
states (p ) .  This question is relevant, for example, to a discussion of the structure of 
the density matrix (and mean values) for a pair of spins coupled by the Heisenberg 
interaction (which is invariant under rotations) and the Ising coupling (which is not), 
Explicitly, we seek the amplitude (pl A’)’ in the expansion 

Let a unitary rotation operator which carries 10) to IO)’ be denoted by 2, so that 

I O ) ’  = A ; : ) .  (6.6) 
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Then we have 

That is, one needs to evaluate 
(p*.A’)’  = <ppp’> (6.10) 

for any calculations in which this amplitude is required explicitly. But we hare 
(see Brink and Satchler 1968) 

R = exp( - i,Sz) exp( - ips,) exp( - iyS2) (6.11) 

where E, p, y are the Euler angles describing the rotation. Expressing the states 
(p], ]A’) in terms of states ( P I ,  Ip’}, we find that 

x (P*)”(h’)”’(PlRIP’). (6.12) 

Now consider the amplitude 

( p  Ipqp’ ) = (PI exp( - i 4 )  exp( - ips,) exp( - iY&) IP’ ) 
= exp(-ir(S-p)) exp(-iy(S-p’)}(pI exp(-iPs,)Jp’). (6.13) 

We shall use the explicit expression for 

(PI exP(- ia~,>lP’> = dL,S-p , (P )  
given in Brink and Satchler (1968 p. 22), namely 

((2s -p)!p!(2S -p’)!p’!)1/2 

(2 s -p - t ) ! (p ’ - t ) ! t ! ( t+p-p ’ ) !  (pIexP(-iPS,)lP’> = c (-1Y 
t 

To evaluate (pIR1 A’} we use the alternative parametrization, writing 

p tan(+O)e’@ A’  = tan($3’)e1@’. 

Then we have, after some cancellations, 

( e ,  +jRje’, 4 ’ )  = ( ~ ~ ~ + p ~ ~ ~ $ e ~ ~ ~ $ e ’ ) ~ ~ e x p { - i ( ~ + ~ ) S }  
2S! 2 s  

x p , p , = o  c C ( - V  t (2s -p  - t ) ! (p’-  t)!t!(t + p  -p’)!  
x 

x exp(ip’(4’ + Y) > * 
P-p’(tan$e>P(tan$O’)P’ exp{ - ip(y5 - E)) 

(6.15) 
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We write the sum in the form 
( - q t x P y P ’ X 2 t +  P - P ’  

(2s)! 2!,t (2s -p -  t ) ! (p‘-  t ) ! t ! ( t+p  -p’)!  
where 

(6.16) 

x = tan(80) exp{ - i(q5 - K)} y tan(i8’) exp(i(q5’+y)} z tan(#). 
(6.17) 

The limits on the sum over t are such as to ensure that no factorials shall have negative 
arguments, while p and p’ run from 0 to 2 s .  That is, 

p’ 2 t p + t  2 p‘ 2 s - p  2 t 2 0 2 s - p  2 0.  (6.18) 

W e  take the sums in the following sequence: 
(I) sum over p’ from t to p + t 

(11) sum over t from 0 to 2s-p 
(111) sum over p from 0 to 2 s .  

Sum (I): 
ytzyy + 2)” - - (6.19) Y q z P - q  P + t  y P ’ z 2 t  + P - P’ 

= ytzt 2 
,=04!(P-4)!  P !  c 

p ’ = t  (p’ - t ) ! ( t+p-p’ ) !  
Sum (11): 

(1 -yx)*S- p 

( 2 s  - p ) !  
- (6.20) 

2 s - P  ytzt c ( - U t  - 
t ! (2S  - p  - t ) !  t = o  

Sum (111): 

2s (ZS)! c x”(y+z).P(l - y z ) 2 S - P  
p 0 p ! (2s  - p )  ! 

= (1 +xy-yx+zx)’S 
= [I + tan(&?) exp(- i(+ - x ) }  tan@’) exp{i(+’-y)}- tan(&3) tan(*&) exp(i(q5’-y)} 

(6.21) + tan(+p) tan(40) exp{ - i($ - E ) } ] ~ ~ .  

So, finally: 

(e, +IR le’, q5’ ) = exp( - i d )  exp( - iyS) (cos @ cos 40 cos 
x [I + tan(@) exp(- i(# - x ) )  tan(+(?’) exp{i(#’ - y ) }  - tan(i6’) 
x exp{i(+’+y)} tan(@) + tan(+O) expi- i(+- E)} tan(-#)]2s. (6.22) 

As a simple check on this expression, take I? = 1, that is, x = ,L? = y = 0. Then we 
find 

( e ,  $le’, q 5 ’ )  = [~os+8cos.&8’+-sin+8sin~8’exp{i($’-+)}]~~ (6.23) 

in agreement with (5.4). Another property which the amplitude (QIRlsl’) must 
satisfy follows from the unitary property i?(l?+ = 2-l): 

((AIR’IB))” = (BjI?+/A) = (B l l? -1p)*  (6.24) 

Since is the rotation specified by Euler angles ( - y ,  -p,  - E), we expect 

((e,q5iff(.,13,r)le’,q5’)}* = (e’,#’lff(-y, - P ,  - E ) l 8 , 4 > .  (6.25) 

We easily check that the condition (6.25) is indeed satisfied by the expression (6.22). 



Some properties of coherent spin states 321 

7. Some simple applications 
The results obtained here with the help of the coherent-state formalism are of 

course well known; the point of doing the problems by this method is simply to 
give some extra physical insight. In  particular, the connection with the classical limit 
comes out very clearly. 

7.1. Partition function for a singIe spin in a magnetic field 

in the form 
With a suitable choice of the zero of energy, we can write the partition function 

2 s  

2 = Tr{exp( -$h)) = 2 exp( -ph) (7.1) 
p = o  

(where h = PyH; y is the particle’s magnetic moment, H the external field and 
l / k J  as usual). I t  is straightforward to verify that we can write this in the form 

is 

dQ 
4T 

z = ( 2 ~ +  1) 1 - {*(I e-h) ++(I - e-h) cos 012s 

(7.2) 

If we calculate the mean value of the operator $ (equation (4.1)) by the relation 
($} = - Z-laZ/aH, we find 

. ,  
so that in this particular case ($) can be written in the form 

where i; exp( - PYf)/Z is the density matrix and 

(7 .5 )  

In  the limits h --f 0 and h B 1 we get, respectively, ($) + S and (4) 
course we must. 

7.2. Ferromagnetic spin wave 

In  terms of the p representation we can write 

e-h, as of 

The ground state IO} of the ferromagnet hasp, = 0 for all spins i, (i = 1, 2, ... N). 

10) = JdWCL)IP)(CLIO) (7.6) 

where Ip) is shorthand for (p1, p2 ... pN) and J dA!I(p) for the expression (cf. equa- 
tion (3.2)) 
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The amplitude or 'wavefunction' of the ground state in the p representation is 

< p p  > = @dp) = nu + IPLi12)-s. * (7.8) 
i 

In  the p representation a state containing a single spin wave of wavevector I k )  is 
given by 

I k )  = 2 exp( ik .  &)IO, 0,  . . ,pi = 1 , 0 ,  ...). (7.9) 
i 

Therefore in p space we have 

That is, the amplitude of the spin-wave state in p space is 

l l Z 1 j -  112 2 e x ~ ( i k  * Ri)p?@o(p) = P ~ * @ O ( P )  (7.11) 
i 

@,(I") (2s) 

(where pk2: (2S/-V,Y C e x p ( i k .  RJp$*).  Thus, (Dk(p) is a simple algebraic 

7.3. Two spin 3 particles interacting via the Heisenberg Hamiltonian 

multiple of @&U). i 

Here we have 
~$2' = -2JS^, a $ 2 .  (7.12) 

It is straightforward to show that the diagonal elements of the density matrix 
i; EE exp( - P$),iTr(exp - PYP) are given by ( j  PJ) 

X (e2'(l ++ 111.1 + PZ 1' + Ipi 1' 1 ~ 2  1 2 )  +31pi -p2 1 2 } .  (7.13) 
lye  notice that this expression satisfies the conditions 

(i) when j = 0, 
1 

(ii) an integration over the coordinate pl of spin 1 gives 

I d W - 4  (11.1p2 IF / P I P 2  ) = +. 
Correlations between the two spins come out most clearly if we write equa- 

This in turn can be written in terms of the angular variables (01, +1) and (e2, + 2 ) .  

One finds 

(7.15) 
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where nl, n, are unit vectors in the directions specified by (el, dl) and (e2 ,  $ 2 )  

respectively. 
This shows absolutely transparently that 

(i) f o r j  > 0, that is, ferromagnetic coupling, the spins are correlated and tend 

(ii) for j < 0, that is, antiferromagnetic coupling, the spins tend to  align anti- 

(iii) the density matrix is clearly invariant under rotations as it should be (it 

In  conclusion, although the problems treated here are basically trivial, we may 
hope that there are also some nontrivial problems for which the point of view de- 
veloped here may be illuminating. 

N o t e  added in proof. This paper was completed in draft form by D Radcliffe before his death 
and was edited for publication by A. J. Leggett. 
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