B.2.2. APPLICATIONS \& EXAMPLES

The spplicction of seatterm theay ore legion in physics- perticularly in partick physics (most experiments we scetterms oxperimeats) ad in sreco where scetteris is impent ant (coandersed mitter physees, sotrophyses, chemicel physies, etc..). In whot fallaws we hodly touce the swifsee of this - ow man trok is to look at a for simple but quite geveril features at scatterng off both patatial wells k potectial berriers, and then to explicitly cirenlcte these for \& ten specitic models.
B.2.2 (a) BOUND STATES, POLES, \& RESONANCES

If we dange; poteatial $V(r)$ firm s repulswe to an eitrectwe ane, then the spectrum ot the system underseess radical chage - frim exteaded stotes for a repulsive potatid, to a sum of pasitive eegy effuded stcies, and agotive eresy band stater, for an stiscctire patatiol.

Hoveve the detals depad on the dimension at the system. In fiet the following geverd resilts are true:

- In 3d, the streasth IVI at the sttricture poteatial hes to be finte betore a boind stece sppeess - thens there is scritcul strenght reguised for this.
- In 2d, an arbitrial, week sfircture potatial will gwe a bound state - the contical strengts is zero. The eevy of the bound state E_{b} is given by

$$
\begin{equation*}
E_{b} m-\epsilon_{0} \exp \left(-\epsilon_{0} / \bar{v}\right) \tag{2d}
\end{equation*}
$$

where ϵ_{0} is the evegy sccle determised by the spatid extect of the well (vis the uncotenty panande); and so we see that the evegy of the bound stoce is exponedilly small in \bar{V}.

- In Id, the cricitel streagth is agem zero, but nov we have

$$
\begin{equation*}
E_{b} n-\epsilon_{0}\left(\bar{V} / \epsilon_{0}\right)^{n} \tag{ld}
\end{equation*}
$$

where the exponent n is typically: 2. Thmo in id the bound stote ceesy is a pover of \bar{V}.
Whower is the dimasion, it is clear thed the scattern functions and the S-matrix will have to hive sone sast of siggoler behanour as a function of ceesy (or of k^{2}) at the critical ewosy.

I crill not athempt here to give a geeel disconsion for arbitrcay poteaticts, which is the sact of thins that misthencticions do. The arsument for s finte crictal strensth V_{c} in $3 d$ Wcos slicaly given stave (ct estn ($\left.3 / 5\right)$), ad cansish in showng that in 3d, the kanctic evesyl swyed exceeds $|\bar{V}|$ foa smell \bar{V}. The Id and 2d. coses seed; closer loaks, since the Boin sporomemction fols there.
2.d Bound States. Suppase we heve a potedied V(r), sned that $V(r) \rightarrow 0$ for $r>d_{0}$, and $V(r)<0$ for $r<d_{0}$. We swame s trpicel streath V, ie we sosime tho

$$
\begin{equation*}
\int d^{2}-V(r)=2 \int_{0}^{\infty} r d r V(r)=-\bar{V} d_{0}^{2} \tag{328}
\end{equation*}
$$

140
The aud Schrodinger efta is then, for this $l=0$ band state:

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 n}\left(\frac{1}{r} \partial_{r} \sim \partial_{r}\right)+\left(V_{(r)}-E\right)\right] \psi(r)=0 \tag{329}
\end{equation*}
$$

Now since we slecidy lenov that $|\bar{V}| \gg$, we ca drop E from this egths in the
 region where the potedid is important. Thur we wish to match the solters between the for repine, where $r>d_{0}^{2}$, and the. regime inside the paterticl well.

In the regime for from the piteitud well we salve (329) uh $V(r)=0$. This hes to be a Hansel function of imyinury comment (the momentum in the
Dd. Green function of (263) is now. $K=c k$), offer called *MoMDondd function - one has

$$
\begin{equation*}
K_{\mu}(z)=\frac{\pi}{2} e^{i \frac{\pi}{2}(\mu+1)} H_{\mu}^{+}(i z) \tag{330}
\end{equation*}
$$

and the solution for the Green function for negate envoy, gererelising (263), is

$$
\begin{equation*}
G_{0}\left(r-r^{\prime} ; E\right) \xrightarrow{E<0} \frac{2 m}{\hbar^{2}}-\frac{1}{2 \pi} K_{0}\left(\bar{k}\left|r-r^{\prime}\right|\right) \tag{331}
\end{equation*}
$$

\therefore Wide has the asymptotic properties

$$
\begin{aligned}
\left.G_{0}(r, E) \xrightarrow[E<\theta]{ } \begin{array}{ll}
\frac{2 m}{\hbar^{2}} \frac{-1}{(8 \pi k r)^{1 / 2} e^{-k r}} & (k r \gg 1) \\
\frac{2 m}{\hbar^{2}} \frac{1}{2 \pi} \ln \left(\frac{C_{1} k r}{2}\right) & (k r \ll 1)
\end{array}\right\}(2 d) \quad \text { (332)}
\end{aligned}
$$

(compere (264)), where at conses :

$$
\begin{equation*}
\tilde{k}^{2}=\frac{2 m}{\hbar^{2}}|E| \tag{333}
\end{equation*}
$$

whet $E<0$.
We now see that there cire. 2 length sades in the problem; the scale $l_{\hat{k}}=1 / K$, and $d_{0} ;$ and l_{k} is exponeritidly loper then d_{0}.

Suppose we now integrate the schrodinger gte in to e leyte scale so which is antoine the potaticd. Bunt still mid lase thin $1 / \mathrm{K}$. so that we ca ignore the term EF in the integration. Then we have

$$
\begin{equation*}
\frac{\hbar^{2}}{2 n}=\left.\partial w\right|_{r i r_{0}}=\frac{1}{r_{i}} \int_{0}^{1} d r V(r)=\frac{1}{2 r_{i}} \bar{V} d_{0}^{2} \tag{334}
\end{equation*}
$$

and if nov meld derretwen et s distance $Z d_{0}$, we got, using the behaviors at the solution. n (332) outside the potential, the i

$$
\begin{equation*}
\frac{\hbar^{2}}{2 m} \frac{1}{d_{0} \ln \bar{k} d_{0}} \sim \frac{i}{d_{0}} \int_{0}^{d_{0}} r d r V(r) \sim \bar{V} d_{0} \tag{325}
\end{equation*}
$$

so that we haves solution for $E_{6}=-t^{2} \kappa^{2} / 2 m$ given by

$$
\begin{align*}
& E_{b} \sim \frac{\hbar^{2}}{m d_{0}^{2}} \exp \left\{-\frac{\hbar^{2}}{m} \frac{1}{\int r d r|V(r)|}\right\} \tag{336}\\
& \sim-\epsilon_{0} \exp \left\{-\epsilon_{0} / \mid \overline{|V|}\right\}
\end{align*}
$$

We will see; in disconsis examples, hew this wanks out in precise. Note haw extremely slave the wae-finetion deesys with r outside the potestid well- the pectide speeds virtually all its tine for from the well.

1-d Band states: We have slreily lacked at an example at 1.d bound states, in the context at the δ-function and see ${ }^{2}$ potential wells.(pp.93-97). Thus' I' ill be bret here. The Schrodinger efta is

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} d_{x}^{2}+(V(x) t E)\right) \psi(x)=0 \tag{337}
\end{equation*}
$$

Outside the well, the ware function has the form: $\psi(x)$ a $e^{-\hat{k} x}$
fallows terms the sue kind of development as shore, we get a. matching. egtn of form

$$
\begin{equation*}
\frac{\hbar^{2}}{2 n} k,-\int_{-\infty}^{\infty} d x V(x) \tag{339}
\end{equation*}
$$

so the the bound state every is:

$$
\left.\begin{array}{rl}
E_{b} & =-\frac{m}{2 \hbar^{2}}\left[\int d x V(x)\right]^{2} \tag{340}\\
& =-\bar{V}^{2} / \epsilon_{9}
\end{array}\right\}
$$

in line with efta (32y).
ANALYTICITY of SCATTERING FNS: Now let's consider hov both the scotterng
 S-amatrix. It is useful to begin by considering the simple lad case, to give us i feeling for hov things work, before discussing the gene at case. We recall (cf eqtas. $(2 y 2)$ - $(2 y 6)$; and (300)) that we ca wite the. S-motion in ind in the

142
simple form

$$
\begin{equation*}
S_{k}=\frac{k-1 g_{k}}{k+1 g_{k}}=\frac{1+i+a \delta_{k}}{1-i+\cos \delta_{k}} \tag{341}
\end{equation*}
$$

For the simple δ-function potaticil, the ghee shit is: \quad ts $\delta_{k} \rightarrow-90 / k$
Now consider how this function behoves when we have poteatid well, for the $\delta-f_{n}$ potaticl. Watery it iss.
and

$$
\left.\begin{array}{l}
S_{k}=\frac{k-2 g_{0}}{k+i g_{0}} \\
S_{k}=\frac{k+i g_{0} \mid}{k-i\left|g_{0}\right|}=\frac{k+i\left(\frac{2 m}{\hbar^{2}}\right)^{k} \bar{k}}{k-i\left(\frac{2 m}{\hbar^{2}}\right)^{1 / 2} \bar{k}} \quad\left(g_{0}<0\right)
\end{array}\right\}
$$

We cen che write this as a function of elegy E; then we have

$$
\begin{align*}
& S(E)=\frac{\sqrt{E}-i\left(x^{2} / 2 m\right)^{1 / 2} g_{0}}{\sqrt{E}+i\left(k^{2} / 2\right)^{3 / 2} g_{0}} \\
& \left.S(E)=\frac{\sqrt{E}+i\left(\hbar^{2} / 2 n\right)^{2}\left|g_{0}\right|}{\sqrt{E}-i\left(\hbar^{2} / 2 m\right)^{*}\left|g_{0}\right|}=\frac{\sqrt{E}+i k}{\sqrt{E}-i k} \quad\left(g_{0}<0\right)\right\} \tag{344}
\end{align*}
$$

Looking at (343), we see thad the is a simple pole in the S-mcax os $k=$ algol, which sisids the exstace of the bound stree. If we let $k \rightarrow 0$, we so see that $S_{k} \rightarrow-1$; we come to this below.

Lookers at (3sh), we see that not only dos \sqrt{E} hare e pole at ic (also: signtyy the bound state), Int do E hes s brine d cut - this component to the contianum of posithec easy states.

These ore simple examples of an interesting gavel ferine of the scattering function, una, the then piripesties or determed, es s function of energy E or momentum $k=\left(2 n E / \hbar^{2}\right)^{1 / 2}$, by the singularities (poles, brand cuts) of these function in the complex ' E (or k) planes. This is of conte obvious, since we know we ce devin mise complex function in the complex plane - but it is interesting and important to see where there poles and bruce cots acre, and hov they then determine the behavior of $G(E), S(E)$, $T(E), K(E)$, etc.

To see how this wacke tets consider gain the Green fundim operator $\hat{G}(E)$, which we wite now so

$$
\left.\begin{array}{rl}
\hat{G}(E) & \left.=|n\rangle \frac{1}{E-\hat{H}}<n \right\rvert\, \\
& \left.=|n\rangle\langle n| \frac{1}{E-\hat{H}}|n\rangle\langle n|=|n\rangle \frac{1}{E-E_{n}}<n \right\rvert\,
\end{array}\right\}
$$

whee the sties $|n\rangle$ we now the exact espanties of the full Hownitomes \hat{H}, and we use the summation correction, summm over $|n\rangle$. It the follows thy s : function
of the complex every E, wo must have for an syatlong problem the kind of andytic structure shawn in the diagram below. The Green fundion "hes suable poles for

BOUND STATES | COMPLEX |
| :---: |
| E-PLANE | every one of the eqgentates $|n\rangle$, at energies $E=E_{n}$. These dinge into a continuum of "free" stater (ia, deloculsed states extending out to infinite range), plain a finite set at discrete modes: correspandirns to band states.

The continuum at poles conespondiss to the positive very arterded states cen le treated as a breach cut - it is econ to see that the magnitude of the brand cat $A(E)$, at pasituc every E, is refitted to the densely at poles N(E) (ic., the density of states) by

$$
\begin{equation*}
N(E)=\frac{-1}{T} A(E) \tag{3+6}
\end{equation*}
$$

(the Jump in $G(E)$ on crosse through a poe is $-2 \pi i$, where n the jump in crossing the 6 rand ant is $22 A(E)$. These ie the only singulaiten at $G(E)$. It then follows this we can define s function

$$
\begin{equation*}
\tilde{G}(\epsilon)=G(\epsilon)-G(\infty) \tag{3,y}
\end{equation*}
$$

and, provided. $\tilde{G}(E)$ fils off sutticiatly foot as $|E| \rightarrow \infty$, we can write, using Cauchy's theorem, tho

$$
\left.\begin{array}{rl}
\tilde{G}(E) & =\frac{1}{2 \pi i} \oint d x \frac{\tilde{G}(z)}{E-z} \\
& \rightarrow \sum_{n \in n_{3}}^{E-E_{n}}+\frac{1}{\pi} \int_{0}^{\infty} d x \frac{g_{n} \tilde{G}(x+2 \delta)}{x-E} \tag{349}\\
& =\sum_{n \in n_{3}} \frac{1}{E-E_{n}}+\frac{1}{\pi} \int_{0}^{\infty} d x \frac{A(x)}{x-E}
\end{array}\right\}
$$

where we sum over st odes $n \in n_{0}$ (the bound stoles) x where E ca be syywhere in the complex plus, ad to go from - (348) to (349) we chare the contain shown in the figwe. If we wash to find the every depadere of $G(E)$ on the real avis, we let $E \rightarrow E+$ iS, to then derive the function $G+(E)$:

$$
\begin{equation*}
\hat{G}^{+}(E)=\underline{G}(\epsilon \rightarrow E+z \delta)=\sum_{n \in n_{B}} \frac{1}{E-E_{n}+i \delta}+\frac{1}{\pi} P \int_{0}^{W} d x \frac{A(x)}{x-E} \tag{.350}
\end{equation*}
$$

where to get (350) ve use the unmet mule that for ar function $f(z)$, vsoubher as $2 \rightarrow \infty$,

$$
\begin{equation*}
2 \pi 2 f(\pi+i \delta)=\int_{-\infty}^{\infty} d x \frac{f(x)}{x-\epsilon-i \delta}=\mathbb{P} \int d x \frac{f(x+1 \delta)}{x-\epsilon}+i \pi f(\epsilon) \tag{351}
\end{equation*}
$$

(for whit see metemexical supplements).
Fran the result in (3so) for $G^{+}(\epsilon)$ we an denver the "Kramers-Kren/g" relations for the Green function (PTO); Taking the red and inagincy posts of (350), we have

$$
\left.\begin{array}{l}
\operatorname{Re} G^{+}(E)=\sum_{n \in n_{E}} \frac{1}{E-E_{n}}+\frac{1}{\pi} \mathbb{P} \int_{0}^{\infty} d x \frac{g_{n} G^{+}(x+i \delta)}{x-E} \tag{352}\\
g_{n} G^{+}(E)=-\pi \sum_{n \in n_{B}} \delta\left(E-E_{0}\right)-\frac{1}{\pi} \mathbb{P} \int_{0}^{\infty} d x \frac{\operatorname{Re} G^{+}(x+1 \delta)}{x-E}
\end{array}\right\}
$$

Thess Kreners-Kronis reldien core wooed throaghat phases. They we actually a consedurece of causality. The fred the we ca close the canton in the spoor hisf-plue, as show, sasuncs there we no other poles in this glue. But we con prove this as follows. Since cruise cannot antecede effed, the function

$$
\begin{align*}
& G(t)=0 \quad(t<0) \tag{353}\\
& G(\epsilon)=\int_{-\infty}^{\infty} d t e^{i \epsilon t} G(t) \rightarrow \int_{0}^{\infty} d t e^{\epsilon \epsilon t} G(t) \tag{354}
\end{align*}
$$

Now urrten
for complex ϵ, we see that this findorn $G(G)$ ca have no sonuluritien for $9 m \in>0$.

It now nukes sense to define a function $G(2)$, existion on the artanded multo-obeeted complex plane as shown in the figwe below. We have typically $s 2$-chested
 structure, and is is typical in this care, posing through the brach cut on some cantor takes us from me sheet to the otter. The convection the is to assume that ane of there ohreets describes the retarded function $G^{+}(2)$, and the - the describes the adurnad function $G^{-}(2)$. This multi-sheoted structwe is ot cause recess or if we are to mike sense of $G(2)$ as s complex verichle.
We note that since the function $G(E), S(E)$, nd $T(E)$ ere all lineedy welded to ease other, they mutt all have the sane singular structure (the some is not tree of $K(E)$).

Now let un return to less shorted discussia, and mike a for obscerciion chant the behwivom of the phex shift in all of elis. It is rode lily most useful. in a first look $\$$ this, to consider the 3 l cease, where ve ca make s dee intuitive connection to the scattering lest. Canso therefore shartirimed potedicl which ca be either attractive or repulawe, and witt will be the behanaw of both the phase shift and the scattering leges in this problem, peticululy in the \lim ct $k \rightarrow 0$.

Before dom say catculdiono, le's just connicor whir the were functions wall look like around the potatial, as a function of its strength. We write the redial function as

$$
\begin{equation*}
\psi_{2}(r)=r \chi(r) \tag{355}
\end{equation*}
$$

so that.

$$
\begin{equation*}
x^{\prime \prime}(r)+\left[\frac{2 n}{\hbar^{2}}(E-V(r))-\frac{1}{r^{2}} l(l(t)] x(r)=0\right. \tag{38}
\end{equation*}
$$

and so in the vicintly of the patudicd the ware-function looks ss shown below. The ellice of a struchebre well is to pull the wwenfunction into the origen a a repulsive potation pushes it out. The form at the
 Wrote of for $E>0$, outside the potential, is

$$
\left.\begin{array}{r}
x(r) \sim \sin \left(k r+\delta_{0}(k)\right) \\
\left(r>d_{0}\right)
\end{array}\right\}
$$

(357)
wheres inside the potertict region, we have

$$
\chi(r)=\left\{\begin{array}{ll}
\sin \bar{k} r & \left(E>V_{0}>0\right) \\
\sinh \bar{k} r & \left(V_{0}>E>0\right)
\end{array}\right\}
$$

for the repulse barrie, where $V_{0}>0$,

$$
\begin{equation*}
\hat{k}=\left(\frac{2 m}{\hbar^{2}}\left|E-V_{0}\right|\right)^{\frac{1}{2}} \tag{35y}
\end{equation*}
$$

On the otter had for the potatial well, as seen us a bound stake forms, at a bound site energy $E=-E_{0}$,
we do get a band stile woe fr; outride the well we have:

$$
\begin{equation*}
\chi_{0}(r) \sim e^{-k_{0} r} \tag{360}
\end{equation*}
$$

$$
\left(K_{0}^{2}=\frac{2 m}{\hbar^{2}}\left|E_{0}\right|\right)
$$

whereas inside the potential well we have

$$
\begin{align*}
& X_{0}(r) \sim \sin (\hat{K} r) \tag{361}\\
& \hat{K}^{2} \cdots \frac{2 n}{\hbar^{2}}\left(E_{0}-V_{0}\right) \tag{362}
\end{align*}
$$

Let's now consider the situation when the bound state energy $\left|E_{0}\right|$ is very small, we., the potatisal strength $\left|V_{2}\right| \sim V_{c}$; the critical strength required in $3 d$ for a bound state to form. This leads to lots of useful relation bet wees the bond stale elegy, the scattering length, and the phase shift $\delta_{0}(k)$, in the low-eversy $(k \rightarrow 0)$ limit of the scattering, amplitude.

Let's first load e at the solution to the problem fir small k. Narmaly we would mitch the wive-fimetions (357) and (358) by looking at the logarithmic derivative $X^{\prime}(r) / X(r)$ at some distance r; but here we simply note that aten k is very smell, we hue

$$
\left.\begin{array}{rl}
\frac{\chi^{\prime}(r)}{\chi(r)}, & \overrightarrow{k r \ll 1} k \cot \delta_{0}(k) \\
& \sim-1 / a_{k}
\end{array}\right\}(3(3)
$$

where a_{k} is the intercept shown at left. Now it is actually coy to see

146
that in the $k \rightarrow 0$ limit, the gutty a_{k} is nothing but the scattering length a_{0} defined previously (at efta (290). For an we car, un c Bd,

$$
\left.\begin{array}{rl}
a_{0}=\lim _{k \rightarrow 0}\left|f_{0}(k)\right| & =\lim _{k \rightarrow 0} \frac{1}{k}\left|\frac{1}{\cot \delta_{0}(k)-i}\right| \tag{3d}\\
& =\lim _{k \rightarrow 0} a_{k}
\end{array}\right\}
$$

Thus we have s nice interpretation of the seattorng length as the intercept, for small k, of the external vere-finction with the real $4 x / 5$ (see figme on last page). Note another equavient way of defining a_{k}; from (363) we also have

$$
\begin{equation*}
\frac{d}{d k} \delta_{0}(k) \underset{\sin A k}{\rightarrow}-\frac{1}{a_{k}} \frac{\sin ^{2} \delta_{0}(k)}{k^{2}} \equiv-a_{k} \tag{3d}
\end{equation*}
$$

where we use (290) ascus. Thus a_{k} tells us the rake at change of phase shit t with k in the small k le limit.

For finite but smell k it is very common to employ a pheromenolosical form for the scattering amplitude that uses three results. One writes

$$
\begin{equation*}
g_{0}(k)=k \cot \delta_{0}(k) \sim\left(\frac{-1}{a_{0}}+\frac{1}{2} r_{0} k^{2}\right) \tag{366}
\end{equation*}
$$

where $g_{0}(\mathrm{k})$ is the function in (253): thence

$$
\left.\begin{array}{rl}
f_{0}(k) & \sim \frac{-1}{1 / a_{0}+i k-\xi r_{0} c^{2}}(\sin 4 k) \\
& \rightarrow \frac{-1}{1 a_{0}+i k} \quad(k \rightarrow 0)
\end{array}\right\}(3(7)
$$

Noil let's look at the "threshold problem", whee obtains when we ce dealing with the onset of \leqslant bound state at $V_{0} \sim-V_{c}$. We now look at the lognothmic derivative of the band state wree-fuction, and mate these at a distance r < a_{0}, nation from ow pietine on the loot pye, that for low evergien (ie, for small k or small K) the scatters lasts wall be very loge. In fut we find

$$
\begin{equation*}
\frac{x_{0}^{\prime}(r)}{x_{0}(r)} \underset{r \ll a_{0}}{\longrightarrow} \sim \hat{k} \sim 1 / a_{0} \tag{368}
\end{equation*}
$$

so that we cu also write that, for the bond state, for small k, that

$$
\begin{equation*}
\cot \delta_{0}(k)=-\tilde{k} / k=-\left(\left|E_{0}\right| / E\right)^{1 / 2}=-1 / k a_{0} \tag{369}
\end{equation*}
$$

with scoters amplitude $\quad f_{0}(k) \xrightarrow[k \rightarrow 0]{\longrightarrow} \frac{-1}{k+i k}=\frac{-a_{0}}{1+i k a_{0}}$

$$
\begin{equation*}
\therefore \text { and a scatters srose-section } \quad \sigma_{k}^{\text {Tot }} \xrightarrow{\text { small } k} \frac{4 \pi}{\hat{K}^{2}+k^{2}}=\frac{2 \pi \hbar^{2}}{m} \frac{1}{E+\left(E_{0}\right)} \tag{370}
\end{equation*}
$$

Three we reach the interesting conclusion that the appearance of the bound stale is signalled by a divergere in the scitterng criss-section as $k, E \rightarrow 0$. This is culled THRGSHOLD behaviow - it tells us that the onset of the bound state is seen in the divergence ot the law-eregy crass-sedim. We see also that is are spprasches the threshold, $\delta_{0}(k)$ his very singular behavior "

$$
\left.\begin{array}{ll}
\cot \delta_{0}(k) \underset{E \rightarrow 0}{ } \infty & \left(\left|E_{0}\right| \text { finite }\right) \\
\cot \delta_{0}(k) \underset{\left|E_{0}\right| \rightarrow 0}{\longrightarrow} 0 & \text { se } \delta_{0}(k) \rightarrow 0 \\
k \rightarrow 0 \\
(E \text { finite }) & k \delta_{0}(k) \rightarrow(2 n+1) \pi / 2
\end{array}\right\}(372)
$$

Furthermore, we notice that by mexsums the sectterng cross-section in $k \rightarrow 0$, we ca find the binding orgy:

$$
\begin{equation*}
\operatorname{Lim}_{k \rightarrow 0} \sigma_{k}^{T_{0} t}=4 \pi a_{0}^{2}=\frac{2 \pi \hbar^{2}}{m} \frac{1}{\left|E_{0}\right|} \tag{373}
\end{equation*}
$$

These remokedle results so hare their conaterpabs in 2 dimeasiano, as we will see below.

Finally, let's consider the phenomenon of RESONANCE. We slreedy sain in our discussion of the Id problem that the scattering amplitude cen have interesting behonow when some integer number of wees ca fit into the potential at a given energy (of p.96, and eats (321). This is \leq speatic ex angle of s mare general phenomenon, crising when the scattered ware interacts wite x ot ste which is bound or gussi-bound by the potential well. Analler example of the sine is shawn by the potential in the figwe. Poticles oe incident upon sn ettoctwe potential Volt (r), gwen by

(\begin{tabular}{l}

INTERACTION OF
INCOMING WAVE WITH
QUASI-BOLIND STATES
IN A POTENTIAL WELL

RESONANT SCATTERING
\end{tabular}

$$
\left.\begin{array}{rl}
V_{e f f}^{l}(r) & =\left\{\begin{array}{l}
V(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}(3 d) \\
V(r)+\frac{\hbar^{2}}{2 m} \frac{l^{2}}{r^{2}}(2 d) \\
V(x) \\
\\
=
\end{array}((374)\right.
\end{array}\right\}
$$

so that coy potential well at small r goes the form shawn. We then wish to unlike the behwsair of the scatters amplitudes $f_{l}(k)$ ad the phot shits $\delta_{l}(k)$ as the every $E_{i}=\hbar^{2} k^{2} / 2 m$ approaches the every at the potertint well. A dine to this is gwen already by the 9 ider-bainal states inside the
 11 that problem we sat that the treismossion amplitude (x here the sectherip amplitude) oscilldes \& a function of incoming cosy, : worth s pend such that, ane oscilldian occurs each tire ane posed through an "internal st che"! energy at the potation. Similes results ere found when ane looks at exrelly solvable model poteaticlo like thane in the figae. we shall see an example below. In frat ane fibs the folloung severs.

148
behaviour, so a function of the every of the incoming particle:

BEHAVIOLIR OF PHASE SHIFTS:
(a) AS FN. OF $k R_{3}$ FOR INGATE BARRIER
(b) As FN . of E, for INFINITE BARRIER
(C) NGAR a reSONANCE, for a finite Barrier
(1) If we ingine the case of en infinite potedicl burier, then the bound states inside the barrier (sassed to be s δ-shell berries of form

$$
V(r)=V_{0} \delta\left(r-R_{0}\right)
$$

(375)
whet $V_{0} \rightarrow \infty$) will ocam et wave number such the
$10 R_{0}=n \pi$
(376)

Oracle the berries, we smell have

$$
\begin{equation*}
\delta_{0}(k)=k R_{0} \tag{377}
\end{equation*}
$$

(the external waves see the δ-shell ss a hand sphere). We plot these results in Piss (a) and (b) at left.

However once we allow commuricotian between the inside α outside, by tunneling through the berries, thing become quite ditteren. The internet bound stales become metastable, with line-broadening, and in the vicinity of the every $E_{l n}$ of the n-th quass-bound state of the l-th angler momentum chanel, we have

$$
\begin{equation*}
\cot \delta_{l}(E)=\cot \delta_{l}\left(E_{n l}\right)+\frac{2}{\Gamma_{n l}}\left(E-E_{n l}\right)+O\left(E-E_{n l}\right)^{2} \tag{378}
\end{equation*}
$$

and since $\cot \delta_{l}\left(E_{n l}\right)=0$
we hove

$$
\begin{equation*}
\delta_{l}(E)=\delta_{l}^{(0)}+\tan ^{-1} \frac{\Gamma_{n l}}{2\left(E-E_{n l}\right)} \tag{379}
\end{equation*}
$$

where we have defined the linevidth:

$$
\begin{equation*}
\Gamma_{n l}=\frac{-2}{\left.\frac{d}{d E} \cot \delta_{l}(E)\right|_{E=E_{n l}}} \tag{381}
\end{equation*}
$$

and the phase shit t $\delta_{l}^{(0)}$ is the phase shift for from the resannce. These eatno ce tell D us that the phase shit changes very rapidly, over a range s lithe less then π, over s stow every rage in $M_{n l}$. where $F_{n i}$ is the line-brosderng at the quasi-bound state canned by its interaction with the plane-wwe continuum. These results ere equivleut to reruth for the S-Metrix, the soctlers function, and the scctterny crass-sedian
given by:

$$
\begin{align*}
\begin{aligned}
S_{l}(E)= & S_{2}^{(0)} \frac{E-E_{n l}-i / 2 \Gamma_{n l}}{E-E_{n l}+i / 2 \Gamma_{n l}} \\
& =S_{l}^{(0)}\left[1-\frac{i \Gamma_{n l}}{E-E_{n l}+i / 2 \Gamma_{n l}}\right] \\
S_{\text {mank }} \text { is } & S_{2}^{(0)}=e^{2 i \delta_{l}^{(0)}}
\end{aligned} \tag{382}
\end{align*}
$$

where the "boe" S-matix is
The sustery function is then, in $3 d$:

$$
\begin{equation*}
f_{l}(E)=f_{2}^{(0)}-\frac{1}{2 k} \frac{\Gamma_{n l}}{E-E_{n l}+i / 2 \Gamma_{n l}} \tag{3d}
\end{equation*}
$$

whte $f_{2}^{(0)}$ donved from $S_{1}^{(0)}$; and the scattery crass-section for $3 d$ is

$$
\begin{equation*}
\sigma_{l}(k)=\sigma_{l}^{(0)}+\frac{4 \pi}{k^{2}}(22+1) \frac{\Gamma_{n l / 4}^{2}}{\left(E-E_{n l}\right)^{2}+\Gamma_{a l}^{2} / 4} \tag{3d}
\end{equation*}
$$

One cas cesily wak ont similer results for 18 and $2 d$ probleme. The upshat is that the scetterm resonuce is sccompanied bys stop peck in the cross-section, the

In scattery experments on atrom or nuclei, sucs resaraces or the $51 / \mathrm{n}$ at gucsi-bound states. However one elso sees them whes s lang-lived composite perticle is crecled during high-coesy collisions. At ane time such resansices were viewed as s sign of unstable elematery perticles (durins the 1960 s ., in the herday of "S-mstix theasy").
B.2.2(b) EXAMPLES in 2 DIMENSIONS

There cre innumerdle excyples in toxtbooks of $3 d$ scattering, and thonsuds of pyers on the topic. Hawever in may woys 2 d excmples ere mare pedyogicedly useful, ever thangt hadly discussed.
In whd follaus we loak of the had sphere, the saft sphere (and ito limithong δ-in form); the.:"2-d delts shell "patatial, and the scatterong att as furs tube. We will thereby see axcmples at all the bebunian descriked sbava.

PARTIAL WAVE EXPANSIONS: Let's begin mith ardincy shart. cone potedids,

- portirl wave exponoion. The geverel solution to this problem wor foind sticendy in sedion $8.1,2(a)$. We have phase shits

$$
\begin{equation*}
\delta_{l}(k)=\tan ^{-1}\left\{\frac{\beta_{l}(k) J_{l}\left(k r_{0}\right)-k r_{0} J_{l}^{\prime}\left(k r_{0}\right)}{\beta_{l}(k) Y_{l}\left(k r_{0}\right)-k r_{0} Y_{l}^{\prime}\left(k r_{0}\right)}\right\} \tag{386}
\end{equation*}
$$

where the $\beta_{i}(k)$, swen by

$$
\begin{equation*}
\beta_{l}(k)=\left.\frac{r}{R_{l}(k n)} \frac{d}{d r} \dot{R}_{l}(k-)\right|_{r=r_{0}} \tag{387}
\end{equation*}
$$

150
we obtained by matching logarithmic dervivives at a distance r_{0} outside the rage of the potentis.

Let's go quickly throngs the ceases we've already seen:
(i) Hard Sphere This is the simplest case. We recall that we deal here with the potectid
with phase shits given by

$$
\left.\begin{array}{rl}
V(r) & \left.=\begin{array}{cc}
\infty & \left(r<a_{0}\right) \\
0 & \left(r>a_{0}\right)
\end{array}\right\} \\
\delta_{l}(k) & =\tan ^{-1}\left(\frac{J_{1}\left(k a_{0}\right)}{Y_{l}\left(k a_{0}\right)}\right) \tag{389}
\end{array}\right\}
$$

(ct. eptn. (12s). The high. and low-every saymptate forms of these phase shits ce just

$$
\begin{align*}
& \delta_{l}(k) \xrightarrow[k a_{0} \gg 1]{ } k a_{0}-\frac{\pi}{2}\left(l+\frac{1}{2}\right) \tag{390}\\
& \delta_{0}(k) \xrightarrow[k a_{0} \ll 1]{ } \frac{\pi}{2 \ln \left(C_{1} k a_{0} / 2\right)} \xrightarrow[k a_{0} \rightarrow 0]{ } 0 \tag{391}
\end{align*}
$$

and were we gave the huger-e phase shits in the low evesy linnet, since $\delta_{l}(k) \sim\left(k a_{0}\right)^{2 l}$ for $l \neq 0$.

The low-eresyy poperies ore quite ecol to obtvn for this problem, finn (391). One has, in the sm ill k limit, that $\delta_{0}(k) \ll 1$, so we hove

$$
\begin{equation*}
f_{0}(k) \sim\left(\frac{2}{\pi / k}\right)^{1 / 2} \frac{\pi}{2 \ln \left(c_{1} k c_{0} / 2\right)} \quad\left(k c_{0} \ll 1\right) \tag{392}
\end{equation*}
$$

ad so the scattering crass-section is jut

$$
\left.\begin{array}{rl}
\sigma_{k}^{\text {Tat }} & =2 \pi /\left.f_{0}(k)\right|^{2} \tag{393}\\
& \sim \frac{\pi^{2}}{k} \frac{1}{\left[\ln \left(C_{1} k a_{0} / 2\right)\right]^{2}}: \underset{k a_{0} \rightarrow 0}{\longrightarrow} \infty
\end{array}\right\}
$$

This we have the strikn result that ever though the phase shit fin the 2-d had sphere goes to zero in the lay-varelagth lint, nevertheless the scoters cross-section goes to infinity (ad so does the sachems amplitude $f_{0}(k)$)! The reason for this is gite simple. Even thanh the pies shit is going to $2 e r o$, the varelenth $\lambda=2 \pi / k$ of the scatty ware is going to ∞. Since the scatter length here is just (of (290), (365), end the figure on p.145):

$$
\left.\begin{array}{rl}
a_{k} \xrightarrow[k_{k,<c 1}]{ }-\frac{d}{d k} \delta_{0}(k)=\frac{1}{k} \delta_{0}(k) & =\sigma_{k}^{\tau_{01}} / 2 \pi \tag{384}\\
& =\frac{\pi}{2 k} \frac{1}{\left[\ln \left(c, k a_{0} / 2\right)\right]^{2}}
\end{array}\right\}
$$

at goes to ∞ rather foot. Far $\sigma_{k}^{\text {tot }}$ to renin finite so $k \rightarrow 0$, wo would have resumed the $\delta_{0}(k) \sim O(k)$ in the lons-werclegts limit. This does not hyper becence; is we hone seen, in $2 d$ the potertiol is not a smith perturbation
in the lay-wrelast limit, and in fat the log form in (391) comes from the same foin in the loy-wevelength leet of the ad Green function in (264) and (332).

One can also derive, from (390), the shat-wevelegte behswour of the scatter amplitude ad crois-scotion. However this tum out to be mebtencticculy quite convex, so we will eschar it here.
(11) Delta-function Potential : Here we wall consider both the repulsive and the attredive case, ie, we canoider

$$
\begin{equation*}
V(r)=\lim _{a_{0} \rightarrow 0} \frac{V_{0}}{\pi a_{0}^{2}} \theta\left(\delta_{0}^{2}+r^{2}\right)=V_{0} \delta(r) \tag{395}
\end{equation*}
$$

with V_{0} hang, ether sign.
Cowider ting the repulsive cere. Now, from egtn (13y), we know that we have

$$
\begin{equation*}
\delta_{0}(k)=\tan ^{-1}\left(\frac{\pi}{2} \frac{1}{\ln \left(C_{1} k d_{0} / 2\right)}\right) \underset{d_{0} \rightarrow 0}{\longrightarrow} 0 \tag{396}
\end{equation*}
$$

Even when $\&_{0}$ is still finite but very small, it only mikes suse to consider the cos where $k d_{0} \mathrm{ec} l$. We then see that the beheviar of this system is very interesting - it is exactly the sue as the hand spae in the lang-wroleleyth limit!

This we see that we need to handle a δ-function potadial wite extreme ce in $2 d$. The naive result; that become $\delta_{0}(k)=0$, therefore the scattering crass-section is zero, is flit wrong.

Nov conser-the atincetwe problem, with $V_{0}<0$. This is a little delict de, so we de it in 2 differed ways. First, here, we redo the calculction of (336), aid then reds the calculation at the ware function k every dircetly. Then, belay, we coloalter the India directly, using the Green function.

Let's first redo the calculation of (336). The formulaic (336) is not termly trosppareat, since bath ϵ_{0} and \bar{V} direst. So let's redo the calculation speoticaly for the δ-f rn pateatid. We have to now match derivatives at the edge of the $\delta-f n .$, at a radius d_{0} (which we keep, fraise but very small). Thus we have to match $\partial_{r} \psi$ at $r=d_{0}-\epsilon$ mike $\partial_{r} \psi$ at $\hat{r}=d_{0}+\epsilon$.

To got the farmer we simply integrdei the Schrodinger eats, give by

$$
\begin{equation*}
\frac{1}{r} \partial_{r}\left(r \partial_{r}\right) \psi(r)=-\frac{2 n}{\hbar^{2}} \frac{V_{0} \theta\left(d_{0}^{2}-r^{2}\right) \psi(r)}{\pi d_{0}^{2}} \tag{397}
\end{equation*}
$$

from $r=0$ to $r=d_{0}-\epsilon$, ta get.

$$
\begin{equation*}
\left.\frac{d_{0}}{\psi\left(d_{0}\right)} \partial_{r} \psi(r)\right|_{r=d_{0}-6}=\frac{2 m}{\hbar^{2}} \int_{0}^{d_{0}-\epsilon} r d_{r} V(r)=-\frac{2 m}{\hbar^{2}} \frac{V_{0} d_{0}^{2}}{2 \pi} \tag{398}
\end{equation*}
$$

Where we assume here that $\psi(x)$ bs $\psi(r)$ in the well so that we ca jot treed it as an a constant duro the integration. Now consider the derivative jut outside the poteatid well - we then hue, sosunios thad $K_{0}^{2}=2 \mathrm{~m} / \mathrm{t}^{2}\left|E_{0}\right|$ is very small,

152
ad centanly thei $k_{0} d_{0}<1$. Then we hive

$$
\begin{equation*}
\left.\frac{1}{\psi(r)} \cdot \partial_{r} \psi_{(r)}\right|_{r=d_{0}+\epsilon}=\frac{1}{d_{0}} \frac{1}{\ln \left(C_{1} k_{0} d_{0}\right)} \tag{399}
\end{equation*}
$$

from (332). Equding (399) and (398), we. get.
wher $\quad \epsilon_{0}=4 \pi \frac{\hbar^{2}}{2 m d_{0}^{2}}=2 \pi \hbar^{2} / m d_{0}^{2}$.
Since ϵ_{0} diverses so $d_{0} \rightarrow 0$, we find that $\left|E_{0}\right|=0$ for any V_{0}.
One con certanly be suppicions of some at the minonowes here (paticulaly those lerduy to (398). Thas we shall redo this problem mare aigoonoly wimo the T-mchix metiod, below.
(iii) Delta-Shell Patatisl: This potertiel gives no a toy model for resereat sconterng in $2 d$. the potetial is:

$$
\begin{equation*}
V(r)=V_{0} \delta\left(r-d_{0}\right) \tag{401}
\end{equation*}
$$

whes we can write os linthes cue: $V(r)=\lim _{a \rightarrow 0} \frac{V_{0}}{a_{0}} \theta\left(a_{0}-2\left|r-d_{0}\right|\right)$
Thes ave have as carculiso berner at s radino d_{b}, of infante heght and infiniteomel welth thramb whice the paticles munt tumel.

To adie tho prablem, we gyan we 2 mekeds. Here we wall fund the wave-functom
 Thes bolw, wei will derve the I matox and f-fuctime direetly. usery the integil eitn for the Imdonx.

Conader the intgred ato for the toted were fundoms gra agou in real space by

$$
\left.\begin{array}{rl}
\left|\mathbb{x}^{*}(r)\right\rangle & =\phi_{k}(r)+\int d_{r}^{2} G_{0}^{+}\left(k, r^{\prime} r^{\prime}\right) V\left(r^{\prime}\right) \tilde{r}^{+}\left(r^{\prime}\right) \tag{403}\\
& =\phi_{k}(r)+\int d^{2}, V\left(r^{\prime}\right) \frac{2 m}{\hbar^{2}}-\frac{i}{4} H_{0}^{+}\left(k \mid c_{-}-c^{\prime}\right) \bar{I}^{+}\left(r^{\prime}\right)
\end{array}\right\}(2 d)
$$

A goved ettreek on gitm like this requires the theny of integrel esto, whid I Will not ossume here. Insted I will jot use a poticuler technipe ffim this theny. Suppore we we rewite the bue Green finction as an expenom ther Bessel function (thic is a speceal cioce of gtr (2ig) in put A). Is the mometion nepresection we have

$$
\begin{equation*}
\left.G_{0}^{+}(k, r-\mu)=\frac{2 m}{\hbar^{2}} \int \frac{d^{2} q}{\left((\mu)^{2}\right.} \cdot \frac{e^{i \xi \cdot(1-\cdots)}}{k^{2}-q^{2}+1 \delta} \equiv\langle r \mid k\rangle G_{0}^{+}(k)\langle k \mid n\rangle\right\rangle \tag{404}
\end{equation*}
$$

whics. we now worte in the form

$$
\left.G_{0}^{+}\left(k, \Gamma^{-\cdots}\right)=\sum_{l} g_{l}^{0}(k, r-\mu) e^{\ell l\left(\theta-\theta^{\prime}\right)} \equiv\langle r \mid l\rangle g_{l}(k, \theta-\theta)\langle l \mid r\rangle\right\rangle(l 00)
$$

We can go between theee 2 represectation by nathy the expension ot the plue wae in torm of Bessel fro, give direcely in (263)?

$$
\begin{equation*}
\langle\mu \| k\rangle=\sum_{l} i^{l} J_{l}\left(k_{k}\right) e^{i l \theta} \tag{406}
\end{equation*}
$$

from whice we find that

$$
\begin{equation*}
g_{l}^{0}(k, r \sim r)=\frac{2 m}{\hbar^{2}} \frac{1}{2 \pi} \int_{0}^{\infty} q d q \frac{J_{l}(q r) J_{1}\left(q r^{\prime}\right)}{k^{2}-q^{2}+i \delta} \tag{40y}
\end{equation*}
$$

To eidende this integnol, note it is ejer in q; so ca be exteded $t_{0} \int_{-\infty}^{\infty} d \dot{q}$. Then contow interation gives us.

$$
\begin{equation*}
g_{l}^{0}\left(k, r-r^{\prime}\right)=\frac{2 m}{\hbar^{2}} \frac{-i}{4} H_{l}^{+}\left(k r_{y}\right) J_{l}\left(k r_{c}\right) \tag{408}
\end{equation*}
$$

where $r_{>} \equiv$ greeter of $r_{y} r^{\prime}$, and r_{2} the leaser, ie

$$
\left.\begin{array}{l}
r_{3}=r \theta\left(r-r^{\prime}\right)+r^{\prime} \theta\left(r^{\prime}-r\right) \tag{409}\\
r_{2}=r^{\prime} \theta\left(r-r^{\prime}\right)+r^{\prime} \theta\left(r-r^{\prime}\right)
\end{array}\right\}
$$

and where we have done the integretim by wach $\mathcal{J}_{2}\left(q r^{\prime}\right)=\frac{1}{2}\left(H_{l}^{+}\left(q r^{\prime}\right)+H_{l}^{-}\left(g r^{\prime}\right)\right)$, and then nothr that we hare $H_{L} \pm(z) \infty e^{ \pm i z}$, so thict we ca clase the integral conton in the upper/lewer haff.plue for $H^{\ddagger}(2)$ respectively.

If we rewirte the hippmenn-Schwnger eftn in (403), by appah the ware-fro in Bessed fus, is well,.ie., writes $\phi_{k}(r)$ as in (40c), and writos

$$
\bar{\Psi}^{+}(r)=\sum_{l} z^{l} \psi_{l}(k r) e^{i l \theta}
$$

then we just have the integnd epta

$$
\left.\begin{array}{rl}
\psi_{l}(k r)= & J_{l}\left(k k^{\prime}+\int_{0}^{\infty} r^{\prime} d r^{\prime} g_{l}^{0}\left(k, r_{-} r^{\prime}\right) V\left(r^{\prime}\right) \psi_{l}(k r)\right. \tag{411}\\
= & J_{l}\left(k_{r}\right)+\int_{0}^{\infty} r^{\prime} d_{r}^{\prime} \frac{2 m}{\hbar^{2}} \frac{-2}{4} H_{l}^{+}\left(k r_{>}\right) J_{l}\left(k r_{l}\right) V\left(r^{\prime}\right) \psi_{l}(k r) \\
= & J_{l}(k r)-\frac{i m}{2 \hbar^{2}} \int_{0}^{\infty} r^{\prime} d^{\prime} r^{\prime} V\left(r^{\prime}\right) \psi_{l}\left(r^{\prime}\right)\left[\theta\left(r_{-} r^{\prime}\right) H_{l}^{+}\left(k r_{r}\right) J_{l}\left(k r^{\prime}\right)\right. \\
& \left.+\theta\left(r^{\prime}-r^{\prime}\right) H_{l}^{+}\left(k r^{\prime}\right) J_{l}(k r)\right]
\end{array}\right\}
$$

This integen equetion is still forly formideble, but nav we observe that for a potecticl

- like the Delts-shell potertinl ar the Deftr-fmetion potatil, it simplities grently, becane the delts-fas collope the entegrets x we gat alsebricic eptos.

154
Thus, for the deltr-shell pateaticl, we inmedictely see that we hove the result:

$$
\begin{equation*}
\psi_{2 k}(r)=J_{l}\left(k_{r}\right)-\frac{m}{2 \hbar^{2}} V_{0} d_{0} \psi_{l}\left(k d_{0}\right)\left[H_{l}^{+}(k r) J_{l}\left(k d_{0}\right) \theta\left(r-d_{0}\right)+H_{l}^{+}\left(k d_{0}\right) J_{2}(k r) \theta\left(d_{0}-r\right)\right] \tag{413}
\end{equation*}
$$

and if we then sot $r=d_{0}$, we get the result

$$
\begin{equation*}
\psi_{l k}\left(d_{0}\right)=\frac{J_{l}\left(k d_{0}\right)}{1+\frac{i m}{2 \hbar^{2}} V_{0} d_{0} H_{2}^{+}\left(k d_{0}\right) J_{l}\left(k d_{0}\right)} \tag{414}
\end{equation*}
$$

so that fatly we have

$$
\left.\left.\psi_{l k}(r)=J_{l}(l e r)-\frac{i m}{2 \hbar^{2}} \frac{V_{0} d_{0} J_{l}\left(k d_{0}\right)}{1+\frac{i m}{2 \hbar^{2}} V_{0} d_{0} J_{l}\left(k d_{0}\right) H_{l}\left(k d_{0}\right)}\left[H_{l}^{+}(k r) J_{l}\left(k d_{0}\right) \theta\left(r-d_{0}\right)\right]+J_{l}(k r) H_{l}^{+}\left(k d_{0}\right) \theta\left(d_{0}-r\right)\right]\right\}(k \mid s)
$$

Now this result is ven g pretty perhaps but not redly uretul until we can extract the phase shits from it. To do tho we need to relate this solution to the scattered wave solution in terms if the f-function. Lets first note thick we can write the scattered wire so

$$
\left.\begin{array}{rl}
\Psi_{\text {scat }}^{+}(r) & =\int d^{2}, G_{0}^{+}\left(k, r-r^{\prime}\right)\left\langle r^{\prime}\right| V\left|\Psi \Psi^{+}\right\rangle \\
& =\frac{2 m}{\hbar^{2}} \frac{2}{4} \int d^{2}, H_{0}^{+}\left(k \mid r^{-}\left(^{\prime}\right) V\left(r^{\prime}\right) \Psi^{+}\left(r^{\prime}\right)\right.
\end{array}\right\}
$$

(ct (303)), and that this is

$$
\left.\begin{array}{rl}
{\underset{I}{s c a t}}_{+(r)}^{k_{r r>1}} & \frac{f_{k}(\theta)}{\sqrt{r}} e^{i\left(k_{r}+\pi / 4\right)} \\
& =\left(\frac{2}{\pi k_{r}}\right)^{1 / 2} e^{i\left(k_{r}+\pi / 4\right)} \sum_{l} e^{i \delta_{l}(k) \sin \delta_{l}(k)} e^{i \ell \theta}
\end{array}\right\}
$$

from (201) and (264). To equate there, we wite the Gran f_{n}. in (416) in the separctle form giver by (405) and (408), to get

$$
\left.\begin{array}{rl}
\overline{\Psi r}_{s c a l l}^{+}(r) & =\sum_{l} \int d \theta^{\prime} \int_{r^{\prime} d r^{\prime}} \frac{2 m}{\hbar^{2}} \frac{-i}{4} H_{l}^{+}\left(k r_{>}\right) J_{l}\left(k r_{c}\right) e^{i l\left(\theta-\theta^{\prime}\right)} V\left(r^{\prime}\right) \mathcal{U}^{\prime}\left(r^{\prime}\right) \\
\underset{k r>1}{\longrightarrow}\left(\frac{2}{\pi k r}\right)^{\frac{1}{2}} e^{i(k r+\pi / 4)} \sum_{l} \frac{2 m}{\hbar^{2}} \frac{1}{4} e^{i l \theta} \int_{r^{\prime} d r^{\prime}} J_{l}\left(k r^{\prime}\right) V\left(r^{\prime}\right) \psi_{u k}\left(r^{\prime}\right)
\end{array}\right\}(4 / 8)
$$

where we use the moymptatic behaviour of $H_{l}^{+}(z)=J_{l}(z)+i Y_{l}(z)$ from (118), the definition of $\psi_{i}\left(k_{r}\right)$ from (410), and assume that rory for all important pots of the integration. Thus we find that

$$
\begin{equation*}
e^{i \delta_{l}(k)} \sin \delta_{l}(k)=\frac{2 n}{\hbar^{2}} \frac{1}{4} \int_{0}^{\infty} r d r J_{1}(k r) V(r) \psi_{z_{k}}(r) \tag{4/9}
\end{equation*}
$$

Substitution $\psi_{k}(r)$ from (41s) we then finally get that

$$
e^{i \delta_{l}(k)} \sin \delta_{l}(k)=\frac{2 m}{\hbar^{2}} \frac{-1}{4}\left[\frac{V_{0} d_{0} J_{l}^{2}\left(k d_{0}\right)}{1+\frac{i m}{2 \hbar^{2}} V_{0} d_{0} J_{l}\left(k d_{0}\right) H_{l}^{+}\left(k d_{0}\right)}\right]
$$

and tokens the imagery part of this (using $\left.H_{l}^{+}\left(k d_{0}\right)=J_{l}\left(k d_{0}\right)+i Y_{l}\left(k d_{0}\right)\right)$ we ged

$$
\begin{equation*}
\sin ^{2} \delta_{l}(k)=\frac{\frac{m}{2 \hbar^{2}} V_{0} d_{0} J_{l}^{2}\left(k d_{0}\right)}{\left[1-\frac{m}{2 \hbar^{2}} V_{0} d_{0} J_{l}\left(k d_{0}\right) Y_{l}\left(k d_{0}\right)\right]^{2}+\frac{m^{2}}{4 \hbar^{4}} V_{0}^{2} d_{0}^{2} J_{l}^{4}\left(k d_{0}\right)} \tag{4,21}
\end{equation*}
$$

and see can also write useful form for tan δ_{0}, etc.
It shard now be obvious haw one cen do the same sat of thing for δ - f n poteticial (indeed it is interesting to do this criculction again for $<$ potertid which 15 the sum of the Deltr-shell potential we just did, and the δ-fa potential at the origin).

It should also be deer that the form of (420) just results from a geometric sum which comes from the multiple scattering in both the T-matrix and the Green fr.

