B.2. SCATTERING THEORY

Scettern theary is a retinad axayle of pectubidion theary, adppted to a pecticiler set of bomduy condition (incoming wares incidat on \& cedtril. potaticl). The practial importace for paticle physics experimeds, is well is collisision theay in mey-bady systems, led to : vey sophisticuted developmat of this therry in the period 193as-1960s. The pupare of this sedion is (cos) introductory-to give you a door into the subject (chout which many bools have been witter), ad (6) pedigogical. to see har the besic strudure of pertuibetwe expasian worlss.
B.2.1. BASIC FORMULATION

Scctteris theny can of conse be develped for a may-potide system, but hee, as sluys in this conse, we ve anly interested in 1- ar 2-paride systems. The scectern pablan for 2 pertides cen slvas. be redined to a 1 -patice partlen in
 of a single perticle off sane potecticl. In whot follows we firot formulde the patbom and the method is s specid cise of time-nodepedent porturction theory tems of the propestar foar the scotterng poticle. Then we look at the detstied properies of the scatterng function (which is reldsed veyy simply to the propegctur. staces.
B.2.1. (a) PROPAGATOR : PERTURBATION THEORY
A_{s} is oten the cae, the best wiy to formulate this from the Legining is using path integrel theay. We sare a Hemi.toaien of form

$$
\begin{equation*}
H=H_{0}+V(t) \tag{182}
\end{equation*}
$$

ad inuecdetaly specirive to the case $V(t)=V$. const
The time-deradat cise is dects nots loder. Now let no assime we slrudy lanow the propyder Go for the Hemiltomia Hto $_{0}$; we vat an expression for the proputior G for the foll pmblem. We have

$$
\begin{equation*}
G_{0}\left(\beta, \alpha j t, t^{\prime}\right)=\int_{\alpha}^{\beta} D x(r) e^{z / \int_{t^{\prime}}^{t} L_{0}(x, \dot{x})} \tag{184}
\end{equation*}
$$

$$
\begin{align*}
\left.\boldsymbol{G}_{\beta \alpha}(\xi V\} ; t\right) & =\int_{\alpha}^{\beta} D x(t) e^{i / \hbar \int_{t}^{k} d \tau\left(\mathcal{L}_{0}(x \dot{x})-V(x, \dot{x})\right)} \\
& =\int_{\alpha}^{\beta} D x(\tau) e^{i / \hbar \int d \tau L_{0}(x, \dot{x})} \sum_{k=0}^{\infty}(-i /)^{k} \frac{1}{k!}\left(\int_{t}^{t} d \tau V(x(\tau))\right)^{k} \tag{185}\\
& \equiv \sum_{k=0}^{\infty} \bar{\xi}_{k}^{B \alpha}(t) \tag{186}
\end{align*}
$$

One cen write an abviams integral eft, for this Green fan, by noting that
ca be wetter in the recwivive form

$$
\begin{equation*}
\bar{\zeta}_{k}^{\beta \alpha}\left(t, t^{\prime}\right)=\frac{-i}{\hbar} \int_{t^{\prime}}^{t} d r \int d y(r) G_{0}(\beta, y ; t, r) V(y(r)) \bar{\zeta}_{k=1}\left(y, \alpha ; \tau, t^{\prime}\right) \tag{188}
\end{equation*}
$$

However this is just mather way of saying that $G_{\beta a}$ satisfies the integral egtn.

$$
\begin{equation*}
\mathcal{L}^{\beta \alpha}\left(t, t^{\prime}\right)=G_{0}^{\beta \alpha}\left(t, t^{\prime}\right)-i_{\hbar} \int_{t}^{t} d \tau \int d y(\tau) G_{0}(\beta, y ; t, \tau) V(y(\tau)) G\left(y, \alpha ; \tau, t^{\prime}\right) \tag{189}
\end{equation*}
$$

This integral egtn is \& simple form of "D ysm's egtn". By the weasel thewy of Groan's function (ar at the relation between linear diftereatid este ad linear integral egtom) we ca also write this in the form

$$
\begin{equation*}
\left(j f-i \hbar \partial_{t}\right) \boldsymbol{G}\left(x x^{\prime} t t^{\prime}\right)=\left(1 t+V-i \hbar \partial_{t}\right) G\left(x x^{\prime} t t^{\prime}\right)=-i \hbar \delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \tag{190}
\end{equation*}
$$

(ct efta (215) in port A). The usefullien of the integral at form in (189) is precisely) that it car be expuded in powers of $-i V / \hbar$, and after the exposian car then be summed.

There is at iconse a well-Laram disscamedic representation of (189) : and (189), and it is useful to get to know the xe representations. The wy this dore should be filly
${ }_{\beta}^{\text {(a) } \mathscr{G}_{k}}=\frac{\left.\mathcal{E}_{0}\right\}_{\beta} \mathfrak{E}_{k-1}}{\alpha}$
$\begin{aligned} \text { (b) } \boldsymbol{G} & =\frac{G_{0}}{\beta_{\alpha}}+\frac{\left.G_{0}\right\} \boldsymbol{G}}{\beta} \alpha \\ & =-+\frac{\sigma_{0}}{\alpha}\end{aligned}$

+ etc.
IN (a) we represent the recursive eqn rating $\bar{\beta}_{k}$ to \bar{y}_{k-1} (efta (188)).

IN (6) We sHow THe DYSON EQTN (189), AND THEN IN HS EXPANDED FORM (187). THE EXTERNAL RED VGA REPRESENTS THC Function ($-2 / 4$) $v(x(T))$.
clear from the digress shown at left. If we look first at (b), we see that the Green fr. G is represected as a thicko line, whereas the bare unperturbed Green f_{n}. G_{0} is represated as s thin line. The arguments of the lines appear at each end of them. The factor assocasted, with the perturbation. which in this case is represented by an externs red line witt s circle, is just

$$
\begin{equation*}
-2 / \hbar V(y(T)) \tag{191}
\end{equation*}
$$

Then the rule to construed the integral esth is just to integrate over all internal variables in. the disgnom (which in this care means integrating over the varibles attucked to the perturbation, ie., over y and $\tau)$.

If we expand the integid eaten in a series, by terations, we simply re-derive the sum in (185).

The recurstre eqta in (188) is also easily represented diyremeticilly, in (a) at leif. Wite prachse it becomes. much earle- to work equations, a philosophy initiated by Feynman, x

120
urich wes triken to a fine ast in the "diggremmer" appioed of "t Hoaft x Veltman, in work on gange theores.

RGAL-SPACE PATH CONTRIBLHING To 3id-groer diacram $\overline{\bar{G}}_{3}$

These eqtin the sifferent form depeading on which besir finction one uses to represent G_{0} and \mathcal{G}. In real spece, for exande, one soes that the higher-arder term in G invalie repected sccthering of the free pestide of the pateaticl. At lett we see a real spacetime peth for the pwticle, in whid it seetter 3 times off the potenticl V(r). This-is then a contribution to the Brd-ander term \boldsymbol{E}_{3}.

Notice thet H_{0} ca be anythin we lice in this kand of theory. it is simply chose to be solveble.
In this cose it is convenied to ure, as a represeatcion for the Grens fas, the. ezgenstetes $|\mathrm{m}\rangle$ of G_{0} ad H_{0}, since then both of them will be diagonel. In this represectedion we ca write

$$
\begin{equation*}
G_{m m^{\prime}}\left(t t^{\prime}\right)=G_{m}^{0}\left(t t^{\prime}\right) \delta_{m m^{\prime}}-2 / \hbar \int d r G_{m}^{0}\left(t, r^{\prime}\right) V_{m m^{\prime \prime}} G_{m^{\prime \prime} m^{\prime}}\left(r, t^{\prime}\right) \tag{192}
\end{equation*}
$$

Suppose we now Fowner trestom this in time, writing

$$
\begin{equation*}
G_{m m}(\omega)=\int d t e^{i \omega t} G_{m m}(t)=\left\langle\left. m i \frac{i \hbar}{\hbar \omega-\hat{j t}} \right\rvert\, m^{\prime}\right\rangle \tag{193}
\end{equation*}
$$

Ccompere part A, eqtas (216) and (21y)). Then. Dysa-r eqtan tikes: peticululy simple form:

$$
\begin{equation*}
G_{m m^{\prime}}(w)=G_{m}^{0}(w) \delta_{m m^{\prime}}+G_{m}^{0}(w) V_{M m^{4}} G_{m^{\prime} m^{\prime}}(w) \tag{194}
\end{equation*}
$$

This is a matrix egtn in the spece of eugentas of H_{0}; the only thing thed does not malue it trivial to solve is this. Vmm' 15 in geved nan-disgoned in this baols (if it were diyaned, then the Hamiltanian H would also be excectly solveble). We shell have carse ofter to use eytno like (194).

If we write (194) in opertor form, 112

$$
\begin{equation*}
\hat{G}(w)=\hat{G}_{0}(w)+\hat{G}_{0}(w) \hat{V} \hat{G}(w) \tag{19.5}
\end{equation*}
$$

then we see that we can write, in symbolic form

$$
\begin{equation*}
\hat{G}(w)=\left[\frac{\hat{G}_{0}(w)}{\hat{1}-\hat{V} \hat{G}_{0}(w)}\right] \tag{194}
\end{equation*}
$$

where the operctars operde in the spure of eigentunction for the system (ar some abber set of complete stbes). Note that the right-hand side of (194) hes to be seen as $<$ singice opertor, ite., we ca't split it into pleces excopt in s well-defined wey like ${ }^{\text {a }}$ power series.
finc form (193) cllows to derwe s petionlerly simple form for the wavefunction. Recall. that mee we lenaw the propsgom for the system, we can
also derive the wave. function $|\psi(t)\rangle$ at time t, if ut know it at same other time t^{\prime}. Now suppose we go over to frequency spice, and insane that we have some initial ware-finction ϕ_{m} which is an eigafurction of H_{0}, le., we have

$$
\begin{equation*}
\hat{\partial} \hat{t}_{0}\left|\psi_{m}\right\rangle=\hat{t}_{0}|m\rangle=\epsilon_{m}^{0}|m\rangle \tag{195}
\end{equation*}
$$

Now we ravrite (195) in the form

$$
\begin{equation*}
\left(\hat{1}-\hat{V} \hat{G}_{0}\right) G=G_{0} \tag{196}
\end{equation*}
$$

and operate on $|m\rangle$. We then get

$$
\begin{equation*}
\left(1-\frac{\hat{V}}{\hbar \omega-\hat{H}_{0}}\right)|\psi\rangle=\left|\phi_{m}\right\rangle \tag{199}
\end{equation*}
$$

where $|\psi\rangle$ is produced by the G acting on $|m\rangle: \quad \hat{G}\left|\phi_{m}\right\rangle=|\psi\rangle$
We rewrite (197) as

$$
\begin{equation*}
|\psi\rangle=\left|\phi_{m}\right\rangle+\frac{\hat{V}}{\hbar w-\hat{H}_{0}}|\psi\rangle \tag{199}
\end{equation*}
$$

and we now see we have an integral eqte for $|\psi\rangle$, the find st che wavevector, produced by siding the potertinl \hat{V} to the angina Homiltamen λt_{0}. Note that we could hare derived this in < much simpler way, starting from the origmul Schrodinger efta

$$
\begin{equation*}
\left(\hat{H}_{0}+\hat{V}\right)|\psi\rangle=E|\psi\rangle \tag{200}
\end{equation*}
$$

If we operate in the leA of (199) with the opertar ($E-2 \hat{H}_{0}$), and use the identification $E=\hbar \omega$, then we immediately recover (200).

Now let's go buck to arr seaterms problem. We shall formulate it first in a genera why ad then go beck to the discussim in terms at propisdars. As noted already in the lost reckon B.1, we ce conconed sow with preplan where the incoming state (ie., $\left|\phi_{m}\right\rangle$ in (199)) is a plus wace, ie., \& momation egsestale, and I\% is just the free patine. Hamiltonian. We write the full wave function then in the form

$$
\langle r \mid \psi\rangle \cdot \psi(\varepsilon)=\left\{\begin{array}{l}
e^{i k \cdot c}+\frac{f_{k}(\theta)}{r} e^{i k r}(3 d) \tag{201}\\
e^{i k \cdot r}+\frac{f_{k}(\theta)}{\sqrt{r}} e^{i(k r+\pi / 4)}(2 d) \\
e^{i k x}+\cdots f_{k}^{ \pm} e^{i(k x+\pi / 2)}(1 d)
\end{array}\right\}
$$

where for simplicity we cosine ceitudly syminetrae patectiol (athermase the 3 d scotten

122
function would be a function $f_{11}(\theta, \phi)$ of 2 andes). The "collision" betwen the potide and the potertial is dastic, so the scetters function is then a fuction only of $|k|=k$, whee k is the incomes ware-vectar, and the scetterm ande θ. In the I-d case the scstims amplimde ca only depeed on whotkr $\theta=0, \pi$, ie., forwul secthm (f^{+}, int $\theta=0$) or bedicuad scottern $\left(10, f^{-}\right.$, is $\left.\theta=\pi\right)$. Since for the free pothce $E=\hbar^{2} / 2^{\prime} / 2 n$, we car dso write $f=f(E, \theta)$.

The genued theny of scatterng reldes $f_{k}(\theta)$ to bath the Grea fimeation in (1044) (ar to its equredent in ss memection represeatdion, the so-celled "S-mstrix"), and to relcted function such as the T-matirx ad K-matix. It alro colculdes the outgang ware-fucedion ad cumplete solution $\psi(r)$, and, becane we hame a ceatrally symmetric potatiod, it gives usoful results for all theac functian in term at phose shits at the were functions. In dorng stl this \& mumber af physically usetnl function ore detimed, sued as the sectteriss lente and secterns croso-section. Finclly, sectionng theony provies a uretul and intellectuclly interesting stuly at the curlytic properties it these functions, which ve complex voricbles deperdins on sn eresy ω which is geverised to the complex plue.
\because Obviondy scatterns thery is jnot s special cese of the developmeat summevied in (194) and (199), with "speeid set of bamidery canditions. These cee summerised ie the "Lippmann-Schwiger" eitn, written tian (199) is

$$
\begin{equation*}
\left|\psi^{ \pm}\right\rangle=\left|\phi_{n}\right\rangle+\frac{\hat{V}}{E-\hat{H}_{0} \pm i \delta}\left|\psi^{ \pm}\right\rangle \tag{202}
\end{equation*}
$$

or in real spice represatcion, for d dimesions,

$$
\begin{equation*}
\left\langle r \mid \psi^{ \pm}\right\rangle=\left\langle r \mid \phi_{i n}\right\rangle+\int d^{d} r^{\prime} G_{0}^{ \pm}\left(r-r^{\prime}\right)\left\langle\underline{r}^{\prime}\right| V\left|\psi^{ \pm}\right\rangle \tag{203}
\end{equation*}
$$

Where the " \pm " sigaity the perticules bombery condition speropricte to "retoded "(ontgois) ir "adveraed" (ingans) seattered waves; the mamectunn space form it (203) is

$$
\begin{equation*}
\psi_{\underline{k}}^{ \pm}=\phi_{\underline{k}}^{\prime \prime \prime}+G_{0}^{ \pm}\left(k_{k}\right) \sum_{k^{\prime}} V_{\underline{k k} k^{\prime}} \psi_{k^{\prime}}^{ \pm} \tag{2,4}
\end{equation*}
$$

We can see thio the form choren for $\hat{G}_{0} \pm$ does eaturee the cancet boundery canditions in several vays. One is simply to calculde the real spsee form for $G_{0}^{ \pm}(5$, vi); it is given by

$$
\begin{equation*}
G_{0}^{ \pm}\left(r, r^{\prime}, E\right)=\langle\tilde{E}| \frac{1}{E-\lambda^{\prime} 6 \pm 1 \delta}\left|r^{\prime}\right\rangle=\sum \mathcal{E} \frac{e^{i k^{\prime}\left(k^{\prime} \cdot r\right)}}{E-\hbar^{2} k^{\prime 2} / 2 m \pm 2 \delta} \tag{205}
\end{equation*}
$$

This Fanier trestorn cen be dane in $1-d, 2-d$ ar $3-d$; let's do it for $3 d$, were we ged

$$
\begin{align*}
G_{0}^{ \pm}\left(r, r^{\prime} ; E\right) & =\frac{2 m}{\hbar^{2}} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \frac{e^{\left.2 k^{\prime} \cdot(r-r)\right)}}{k^{2}-k^{\prime 2} \pm 1 \delta} \\
& =\frac{m}{4 \pi^{3 \hbar^{2}}} \int_{0}^{2 \pi} d \phi \int_{-1}^{1} d \mu \int_{0}^{\infty} k^{\prime 2} d k^{\prime} \frac{e^{2 k} \mu\left|r-r^{\prime}\right|}{k^{2}-k^{\prime 2} \pm 1 \delta} \tag{206}\\
& =\frac{i m}{4 \pi^{2} \hbar^{2}} \frac{1}{\left|r-r^{\prime}\right|} \int_{-\infty}^{\infty} d k^{\prime} e^{2 k^{\prime}\left|r-r^{\prime}\right|}\left[\frac{1}{k^{\prime}-(k \pm \downarrow \delta)}+\frac{1}{k^{\prime}+(k \pm 1 \delta)}\right] \\
& =-\frac{2 m}{\hbar^{2}} \frac{1}{4 \pi} \frac{e^{7 i k\left|r-r^{\prime}\right|}}{\left|r-r^{\prime}\right|}
\end{align*}
$$

from whir vo see the reaped result, vie, thad $G_{0}^{ \pm}\left(r, r^{\prime} ; E\right)$ represents a wave either berm scatted out from r^{\prime} to r, or sectored in from r to r^{\prime}.

Another wig to see the some result is to 90 aver to s time-diperded picture, ald ingines suntenng on the potedicd $V\left(C_{5}\right)$ to its value ot time t from zero at time $t \rightarrow \pm \infty$, using. the deuce of s muthpicer $e^{ \pm} \delta t$. This gives the sone result.

We now obsove that we hive socially doused the form in (201) for the Sd scefineren solution, prided we thee $k \cdot(r-r) \gg 1$, ad bose that $\mid r-r) \ggg 0$ wee do is the case at the setters patutial (wo will define this more precisely lItter on). Then we ca write

$$
\begin{equation*}
e^{ \pm i k^{\prime} \cdot\left(r \cdot r^{\prime}\right)} \sim e^{ \pm 2 k^{\prime} r} e^{\mp i k^{\prime} \cdot r^{\prime}} \tag{0}
\end{equation*}
$$

and in the $3 d$ case we hive, from (208), and using
$\left\langle r \mid \phi_{n}\right\rangle=\langle\Gamma / k\rangle \quad(208)$ the result thad

$$
\begin{equation*}
\left\langle r \mid \psi_{k}^{+}\right\rangle \rightarrow \underset{r>e_{0}}{ }\langle r \mid k\rangle+\frac{f\left(k^{\prime} / k\right)}{r_{r}} e^{i k r} \tag{3.4}
\end{equation*}
$$

7
whee

$$
\begin{equation*}
f\left(k^{\prime}, k\right)=-\frac{2 m}{\hbar^{2}} \pi^{2}\left\langle k^{\prime}\right| V\left|\psi_{k}^{+}\right\rangle \tag{Bd}
\end{equation*}
$$

Quite really, we see that in d dimesims:

$$
\begin{equation*}
\left.\frac{f\left(k_{k}^{\prime} k\right)}{r^{d / 2}-1}=\frac{f_{k}(\theta)}{r^{d / 2}-1}=e^{-i k r} \int \alpha^{d}\right) G_{0}^{+}\left(r-r^{\prime}\right)\left\langle r^{\prime}\right| V\left|\psi_{k}^{+}\right\rangle \tag{2/2}
\end{equation*}
$$

Nov e eaton lice (194), (199.), cued (203) ce internet estop in which the solution sprees on both sides ot the equation. It is gives formally by iteration of these gte to. infinite order- from way at these forms we ca see that our dimessamen expmin pronate is the operon

$$
\begin{equation*}
\hat{\lambda}(2)=\hat{V} G_{0}(z)=\frac{\hat{V}}{z-\hat{\lambda}_{0}} \tag{2/3}
\end{equation*}
$$

ad we see the the foam il expain is of cense jut the diyrammic expcomen:

$$
\begin{equation*}
\hat{G}(z)=\hat{G}_{0}(z) \sum_{n=0}^{\infty} \hat{\lambda}_{(z)}^{n} \tag{2/4}
\end{equation*}
$$

The study of sue interne gators wis cooed our t by Schmidt, Fredholm, Newman, k Voters n the early - mud lgth century, and hes bee employed in greet detail in mocker sections they. Hoe we will just tend on it, in "the next section. Notice that the lowest
 one her

$$
\begin{equation*}
: \quad \frac{f_{k}(\theta)}{r^{d / 2-1}} e^{i k r} \xrightarrow[B_{0} r n]{ } \frac{\hat{V}}{E-\hat{H}_{0}+i \delta}\left|\phi_{k}^{i n}\right\rangle=\int d^{d} r^{\prime} G_{0}^{+}\left(r-r^{\prime}\right)\left\langle r^{\prime}\right| V|k\rangle \tag{2/5}
\end{equation*}
$$

124
where in the integret esta we simitly substhmee $\left|\psi_{k}^{ \pm}\right\rangle \rightarrow\left|\phi_{k}^{ \pm}\right\rangle$on the rised-hend side. This is ecaly worked out sance $\left|\phi_{k}\right\rangle$ is jont s plue vere. Thiso, e., in 3d we hove

$$
\begin{equation*}
f_{k}^{B o r n}(\theta)=-\frac{2 m}{\hbar^{2}} \frac{1}{4 \pi}\left\langle k^{\prime}\right| V|\underline{k}\rangle=-\frac{2 m}{\hbar^{2}} \frac{1}{4 \pi} \int d^{3} r^{\prime} e^{2\left(l-k^{\prime}\right) r^{\prime}} V\left(r^{\prime}\right) \tag{3d}
\end{equation*}
$$

which for a centolly symmetric potatial gives

$$
\begin{equation*}
f_{k}^{B_{0} \sin (\theta)}=-\frac{2 m}{\hbar^{2}} \frac{1}{\| k-k^{\prime} \mid} \int_{0}^{\infty} r d r V(r) \sin \left(\left|k-k^{\prime}\right| r\right) \tag{3d}
\end{equation*}
$$

One can wak out stailu resitts in id and $2 d$
B.2.1. (b) SCATTERING FUNCTIONS : It is usech to defno a set of function

 fins stedes es

$$
\begin{equation*}
\hat{S}_{f_{i}}=\lim _{t \rightarrow \infty} \lim _{t \rightarrow-\infty}\left\langle\psi_{f}(t)\right| \hat{G}\left(t, t^{\prime}\right)\left|\psi_{i}(t)\right\rangle \tag{2,18}
\end{equation*}
$$

 plue wive comis into the scthlas potectu1, ad the find stote plae wire learm it. We then dofine the T-matrox, intolly by the equthon

$$
\begin{equation*}
\hat{V}\left|\bar{x}_{k}^{+}\right\rangle=\hat{T}\left|\phi_{k}\right\rangle \tag{219}
\end{equation*}
$$

$$
\begin{equation*}
\hat{T}\left|\phi_{k}\right\rangle=\left[\hat{V}+\hat{V} \frac{1}{E-\hat{H}_{0}+\delta} \hat{T}\right]\left|\phi_{k}\right\rangle \tag{202}
\end{equation*}
$$

or, muntalys on the left sem with $\left\langle\phi_{k}\right|$, we god

$$
\begin{equation*}
T_{k_{k}}=V_{k^{\prime k}}+V_{k k^{\prime}}=G_{0}^{+}\left(k^{\prime \prime}\right) T_{k^{\prime \prime} k} \tag{221}
\end{equation*}
$$

If we now contano the every E. tw to the compla plane, we hue the gevert

$$
\begin{equation*}
\hat{T}(z)=\hat{V}+\frac{\hat{V}}{z-\hat{A}_{0}} \hat{T}(z)=\hat{V}+\hat{V} G_{0}(z) \hat{T}_{(z)} \tag{222}
\end{equation*}
$$

This reault a mare or less obviers diroramaticully. If we iterce the expasim at left or in (222), ad compore witt the iteruted expenion for $\boldsymbol{G}(2)$,
which is given by continumers (igs) to the complax aemy plue:

$$
\left.\begin{array}{rl}
\dot{G}(2) & =\hat{G}_{0}(2)+\hat{G}_{0}(2) \hat{V} G(2) \\
& =\hat{G}_{0}(2)+\hat{G}_{0}(2) \hat{T}(2) \hat{G}_{0}(2)
\end{array}\right\}
$$

shoi 2nd foum 15 obviass from the diynos, on by opother in (222) on the kelt whth V^{-1}, and on the cybe ints $G_{0}(2)$.

Another opertor relosed to this ane is the "K-matrx", ar renctuce marix, which is detinat ally on the ewasy hell (ia, for $z \rightarrow$ reet w):

$$
\hat{K}(\epsilon)=\hat{V}+\hat{V} \hat{\mathbb{P}} \frac{1}{E-\hat{H}_{0}} K(E)
$$

whee $\hat{\mathbb{P}}$ reters to the 'prripal put: This is detised for the sperction of interathon by

$$
\begin{equation*}
\int_{-\infty}^{\infty} d E \hat{\mathbb{P}} \frac{1}{E-x} f(\epsilon) \equiv \lim _{\epsilon \rightarrow 0} \int_{-\infty}^{x-\epsilon} d \epsilon+\int_{x \rightarrow \epsilon}^{\infty} d E\left(\frac{f(\epsilon)}{E-x}\right) \tag{225}
\end{equation*}
$$

Now cavsicter the reltion beemeen these finction. We hare

$$
\left|\Psi^{+}\right\rangle=\hat{S}\left|\phi_{k}\right\rangle \mid
$$

by defuntion of \hat{S}; and also thes which follows becase $\hat{S} \times \hat{G}$ cre untroy.

$$
\begin{equation*}
|S|^{2}=1 \tag{227}
\end{equation*}
$$

Now sumpae we compue the time-reteded ad advised sothas to the Lupme-Schmos eptn, note thet we con wate in melosy to (199) or (202), tho

$$
\begin{equation*}
\left\langle\Psi^{-}\right|=\left\langle\phi_{k}\right|+\left\langle\Psi^{-}\right| \frac{V}{E-\hat{H}_{\sigma}-18} \tag{228}
\end{equation*}
$$

 momeatum k^{\prime}, k; respectinedy),

$$
\left.\begin{array}{rl}
\left\langle\phi_{k^{\prime}} \mid \psi_{k}^{+}\right\rangle & =\left\langle\phi_{k^{\prime}} \mid \phi_{k}\right\rangle+\left[\frac{1}{E-\hat{H}_{0}+i \delta}-\frac{1}{E-\hat{H}_{0}-i \delta}\right]\left\langle\phi_{k^{\prime}}\right| v\left|\psi_{k}^{+}\right\rangle \\
& =\delta_{k k^{\prime}}-2 \pi i \delta\left(E-\hat{H}_{0}\right)\left\langle\phi_{k^{\prime}}\right| v\left|\psi_{k}^{+}\right\rangle
\end{array}\right\}(22 \pi)
$$

whid is the sue es syes that

$$
\begin{equation*}
\hat{S}(E)=1-2 \pi i \delta\left(E-\hat{H}_{0}\right) \hat{T}(E) \tag{230}
\end{equation*}
$$

In the sue vy we con show

$$
\begin{equation*}
\frac{1-\hat{S}(\delta)}{1+\hat{S}(\sigma)}=2 \pi \delta\left(E-\hat{H}_{0}\right) K(E) \tag{231}
\end{equation*}
$$

126
Nov we would hike to relde these gmentines to the secttero fundion flke. Hovers the detiols of this depeal on how may dimecoion we cee works in, so we will ikt do this for difteres dimesions in tnm.

Betave donn this it is nseful to discuas the wy in wich one ca expand all these function in the sporepride egectunction at the Hsmittaican operatian. This is crucral when one wads to do prictical celculations

PARTIAL WAVE EXPANSIONS: To expent the vorons function in term of these ergentmetion, we fint need to
know whe they we. We s/so wish to know the form ot the Green finction for the wave equctian. The resitts cre es follows.

3 dimenoians: If we deat uth s catielly symmetric potentid, then we ca expal in teom it the complete set at eigeatinetions it the free-puticle Sclrodingor egta, ie. We ca unite expuran ot the form (tor centrat potectis):

$$
\begin{equation*}
\Psi(n, \theta, \phi)=\sum_{l m} c_{l n} R_{l}(n) Y_{l n}(\theta, \phi) \tag{232}
\end{equation*}
$$

wher

$$
\begin{equation*}
Y_{l m}(\theta, \phi)=(-1)^{m}\left(\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}\right)^{\frac{1}{2}} e^{l m \phi} \mathcal{P}_{l}^{m}(\theta) \tag{233}
\end{equation*}
$$

wher

$$
\begin{equation*}
P_{l}^{m}(\theta)=\frac{(-1)^{m+l}}{2^{l} l!} \frac{(l+\operatorname{lm} \mid)!}{(l-|m|)!} \sin ^{-\ln \mid} \theta\left(\frac{d}{d \cos \theta}\right)^{l-\ln \mid} \sin ^{2 l} \theta \tag{234}
\end{equation*}
$$

is the associded Lesestre polynonnu; and the reaid finction ces be expanded is

$$
\left.\begin{array}{rl}
\beta_{l}(r) & =a_{l} J_{l}(r)+b_{l} n_{l}(r) \\
J_{l}(r) & =\left(\frac{\pi}{2 r}\right)^{\frac{1}{2}} J_{l+1 / 2}(r) \tag{2k}\\
n_{l}(r) & =\left(\frac{\pi}{2 r}\right)^{\frac{1}{2}} Y_{l+1 / 2}(r)
\end{array}\right\}
$$

where
ere sphereat Bessel finctions. The propetions of all thse finction, and ther wee in 3-d rections problems, ve disconsed in wy good book on QO.M. We have dready celculcted the Green finction for the 3-d free pertide (see (20c)): we reitercte the result here

$$
\begin{align*}
G_{0}^{ \pm}(k ; E) & =\frac{1}{E-\hbar^{2} k^{2} / 2 m \pm 1 \delta} \\
G_{0}^{ \pm}\left(r, r^{\prime} ; G\right) & =\sum_{k,} e^{c k^{\prime} \cdot(r \cdot r \cdot)} G_{k}(E) \tag{3d}\\
& =-\frac{2 m}{\hbar^{2}} \frac{1}{4 \pi} \frac{e^{\mp i k\left|r-r^{\prime}\right|}}{|r-r+|}
\end{align*}
$$

To analyee the secteros problem we need to know haw to expand both the plone Whe form $e^{i k \cdot c}$ and the secthered wwe, in the anocta (201), in termot these fwetion. Let us choose the incoming wae to be aloos the $\hat{\imath}$-direction, so $e^{\text {ck.r. }} \rightarrow e^{\text {ckz. }}$.

Then ve can do the expersen- it trims our to be

$$
\begin{equation*}
e^{i k z}=e^{i k r \cos \theta}=\sum_{l=0}^{\infty}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \tag{3d}
\end{equation*}
$$

whicl is a spead cexe ot $\quad e^{i k \cdot r}=4 \times \sum_{e_{m}} i^{\ell} j_{l}\left(k_{r}\right) Y_{l n}^{*}(\hat{k}) Y_{l_{m}}(\hat{r})$
obtroed by spplys the additien thearem

$$
\begin{equation*}
P_{l}\left(\hat{k}_{0} \hat{k}^{\prime}\right)=\frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}(\underline{k}) Y_{l m}^{+}\left(k^{\prime}\right) \tag{3d}
\end{equation*}
$$

where $\hat{k}, \hat{k}^{\prime}$ ore nut vectoos, and $k \cdot k^{\prime}=\cos \theta_{k k^{\prime}}$. The soympotice beherwous at the function $e^{* k 2}$ as just

$$
\begin{equation*}
e^{i k_{2}} \underset{k r \gg 1}{\longrightarrow} \frac{1}{k r} \sum_{l=0}^{\pi} i^{l}(2 l+1) P_{l}(\cos \theta) \sin (k r-\pi l / 2) \tag{2,2}
\end{equation*}
$$

Now let us consese the soymptotic behrviov here mith that of the sosunnd solution in (232) ad (235), which must hine the fom

$$
\begin{equation*}
\underline{I}^{+}(r, \theta) \xrightarrow[k_{r} \rightarrow 1]{\longrightarrow} \sum_{l} A_{l}(2 l+1) i_{l}^{l} P_{l}(\cos \theta) \frac{1}{k_{r}} \sin \left(k_{r}+\frac{\pi l}{2}+\delta_{l}\right) \tag{248}
\end{equation*}
$$

 If we nov courcere mth (2011), we see thet

$$
\begin{equation*}
\frac{f_{k}(\theta)}{r} e^{i k M}=\underline{Y}(r, \theta)-e^{i k_{2}} \tag{244}
\end{equation*}
$$

which fixes $A_{l}=e^{i \delta_{l}}$. and swes the result

$$
\begin{equation*}
f_{k}(\theta)=\frac{1}{2 i k} \sum_{l \rightarrow 0}^{\infty}(2 l+1)\left(e^{2 i \delta_{l}(k)}-1\right) P_{l}(\cos \theta) \tag{245}
\end{equation*}
$$

which we wate es

$$
f_{l}(\theta)=\sum_{l}(2 l+1) f_{l}(k) P_{l}(\cos \theta)
$$

where

$$
\begin{align*}
& f_{l}=\frac{1}{2 k}\left(S_{l}(k)-1\right) \tag{2,y}\\
& S_{l}(k)=e^{2 i \delta_{l}(k)}
\end{align*}
$$

To see whit this mens. noter that the orvisul ancomis pluce wer solustion gan be writtes

$$
\begin{equation*}
\left.e^{i k 2} \prod_{k r \sim 1} \sum_{l=0}^{\infty} \frac{1}{2 k_{r}}(2 l+1) P_{l} \cos \theta\right)\left[e^{i k r}-e^{-i(k r-\pi l)}\right] \tag{248}
\end{equation*}
$$

wheres the find solutim

$$
\begin{equation*}
\left.\boldsymbol{I r}^{+}(, \theta)\right)_{k \rightarrow 21} \sum_{e \cdot 0}^{\infty} \frac{1}{2 i k r}(2 e+1) P_{e}(\cos \theta)\left[S_{l}(k) e^{c k r}-e^{-c(k r \cdot \pi l)}\right] \tag{249}
\end{equation*}
$$

128
Thu we see thad the income plane wac is a single superposition ot retarded ad advanced waves, phise-sisted by $l \pi / 2$ in the l-th agates component; and that the only effect of the restorer is to mittraly the outgoing ware (retained ware) by the unitary operctar S_{l} (in the l-th sunda chanel).

From this we see that S_{l} is just the l-th assuler component of the S-matrix we make this precise below. All this S_{l} does a "rotate" the ware finctim in Hilbert space (the outgoing port).

It is uscepal to wite a fer other identities for the $f_{l}(k)$. We have

50

$$
\begin{align*}
& f_{l}(k)=\frac{1}{k} e^{i \delta_{l}(k)} \sin \delta_{l}(k) \tag{250}\\
& g_{m} f_{l}(k)=\frac{1}{k} \sin ^{2} \delta_{l}(k)=k\left|f_{l}(k)\right|^{2} \tag{251}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{gn}\left(1 / f_{l}(k)\right)=-k \tag{282}
\end{equation*}
$$

Mariner
so are ca usefully wite

$$
\left.\begin{array}{l}
f_{l}(k)=\frac{1}{g_{l}(k)-i k} \tag{253}\\
g_{l}(k)=k \cot \delta_{l}(k)
\end{array}\right\}
$$

where $g_{e}(k)$ is real. We so notice the $(2 \pi 1)$ is just:

$$
\begin{equation*}
2 i \ln f_{l}(k)=\left(f_{l}(k)-f_{l}^{*}(k)\right)=2 c k f_{l}(k) f_{l}^{*}(k) \tag{254}
\end{equation*}
$$

These relocian make it convenient to plat the functions
(a)

(b)

The common wats of plotting $S_{l}(k)$ AND $k f_{l}(k)$.

$$
\begin{equation*}
S_{l}(k)=1+2 \operatorname{c} f_{l}(k) \tag{25s}
\end{equation*}
$$

and $f_{l}(k)$ in an Argued diagram. the 2 mast useful ones we shown of left. In the first we simply plat $S_{l}(k)$, which is a unit vector at as cole $2 \delta_{l}(k)$ from the red <xis. see plat (s) at leA.

In the ad plat (b) et lett we shaw the function $k f_{l}(k)$.

One cur claro define the real function

$$
\left.\begin{array}{rl}
K_{l}(k) & =-\tan \delta_{l}(k) \\
& =-k / g_{l}(k)
\end{array}\right\}
$$

(256)

We notice that $K_{l}(k)$ is singulo whenever $\delta_{l}(k)$ pass thrash a phase $(2 n+1) \pi / 2$. and we shat see /dater tic signiticuce of this result. The functions $K_{2}(k)$, and the operator $\hat{K}(E)$ in (231), are sometimes referred to as the "Reaction matrix": on the "Reiction operator".

2 dimensions: The protist vale expansion is s.litle simpler an $2 d$, but it hes the same bessie structure io the $3 d$ expsnosan. We have alrecely sea. this kind of expeneen ion section (pp la 4-110). We ca wite the solution to Schodingeri gt, in the form

$$
\begin{align*}
I(r, \theta) & =\sum R_{l}(r) x_{l}(\theta) \\
& x_{l}(\theta)=\frac{1}{\sqrt{2 \pi}} e^{\ell \theta} \tag{258}
\end{align*}
$$

whee
and we expat $R_{l}(n)$ in the fam.

$$
\begin{equation*}
R_{l}(n)=a_{l} J_{l}\left(k_{r}\right)+b_{l} Y_{l}\left(k_{r}\right) \tag{257}
\end{equation*}
$$

The 2-d Green function for thees problem is move difficult to get then the Bd form; we hare

$$
\begin{align*}
G_{0}^{+}\left(r, r^{\prime} ; E\right) & =\frac{2 m}{k^{2}} \int \frac{\alpha^{2} k^{\prime}}{(2 \pi)^{2}} \frac{e^{i k^{\prime} \cdot\left(m-r^{\prime}\right)}}{k^{2}-\left(k^{\prime}\right)^{2}+1 \delta} \tag{260}\\
& =\frac{2 m}{\hbar^{2}} \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \int \frac{k^{\prime} d k^{\prime}}{2 \pi} \cdot \frac{e^{i k^{\prime}\left|r-r^{\prime}\right| \cos \theta}}{k^{2}-\left(k^{\prime}\right)^{2}+\delta}
\end{align*}
$$

and then, it we do the θ-integral find, using: $\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{2 \alpha \cos \theta}=J_{0}(\alpha)$ (261) and then usn the identity: $\left.\quad \begin{array}{rl}\int \frac{x d x}{x^{2}-k^{2}} J_{v}(a x) J_{\nu}(b x) & =\frac{a \pi}{2} J_{2}(a k) H_{2}^{+}(b k) \\ (b>a ; \operatorname{Rev} \geqslant-1)\end{array}\right\}$ (we get. talks $a \rightarrow 0$, that.

$$
\left.\begin{array}{l}
G_{0}^{+}(r, r ; E)=\frac{-i m}{2 \hbar^{2}} H_{0}^{+}\left(k \mid r-r^{\prime}\right) \tag{2d}\\
G_{0}^{+}(k, E)=\frac{1}{E-\hbar^{2} k^{2} / 2 m+1 \delta}
\end{array}\right\}
$$

which, incident ply, hoo the follow's asymptatic properties:

$$
\left.\begin{array}{rl}
G_{0}^{+}(r, E) & \xrightarrow{k r>1} \tag{2d}\\
& \xrightarrow{-2 m}\left(\frac{2}{2 \hbar^{2}}\left(\frac{k r}{\pi k}\right)^{1 / 4} e^{i(k r-\pi / 4)}\right. \\
& \frac{m}{\pi \hbar^{2}}\left[\ln \left(\frac{C_{1} k r}{2}\right)-i \pi / 2\right]
\end{array}\right\}
$$

If we: now assume an incoming wave $e^{i k x}=e^{i k r \cos \theta}$, then we cen resolve this as

$$
\left.\begin{array}{rl}
e^{i k x} & \sum_{l i-\infty}^{\infty} i^{l} J_{l}\left(k_{r}\right) e^{i l \theta} \\
& \xrightarrow{\mid c \rightarrow \infty} \tag{265}\\
& \left(\frac{2}{\pi k r}\right)^{1 /} \sum_{l} i^{l} e^{i l \theta} \cos \left(k r-\frac{\pi}{2}\left(l+y_{2}\right)\right)
\end{array}\right\}
$$

130
We now go throgh the fondics rontine, funilier from the $3 d$ method and from our work on $2 d$ secttering pablems betove, ad assme solution for the outgoing Ware-function at the form in (259), whicd hes the asymptotie form

$$
\begin{equation*}
\text { II }(r, \theta) \xrightarrow[k r \infty 1]{ }\left(\frac{2}{\pi k n}\right)^{1 / 2} \sum_{l} A_{l} i^{l} e^{i l \theta} \cos \left(k r-\pi / 2(l+\pi / 2)+\delta_{l}\right) \tag{266}
\end{equation*}
$$

and again we find, by matos solution, that $A_{l}=e^{i \delta l}$, ad tha sow

$$
f_{k}(\theta)=\left\{\begin{array}{l}
-i\left(\frac{1}{2 \pi k}\right)^{1 / 2} \sum_{l}\left(e^{2 i \delta_{l}(k)}-1\right) e^{i l \theta} \tag{267}\\
\left(\frac{2}{\pi k}\right)^{1 / 2} \sum_{l} e^{i \delta_{l}(k)} \sin \delta_{l}(k) e^{i l \theta}
\end{array}\right\}=\sum_{l} f_{l}(k) e^{i l \theta}
$$

so that

$$
\begin{align*}
& S_{l}(k)=1+2 i\left(\frac{\pi k}{2}\right)^{\frac{2}{2}} f_{l}(k) \tag{26y}\\
& f_{l}(k)=\left(\frac{2}{\pi k}\right)^{1 / 2} e^{i \delta_{l}(k)} \sin \delta_{i}(k)=\left(\frac{2}{\pi k}\right)^{1 / 2} \frac{1}{\cot \delta_{l}(k)-i} \tag{269}
\end{align*}
$$

and

I dimenspon: This cuse is cother trinel, but we give the results all the seme. All salution and scettions finetios depeed only on weves moving eather farruad or bidewends. One hes sestles solution of form

$$
\begin{equation*}
\psi(x)=\sum_{ \pm} a_{ \pm} e^{ \pm i k x} \tag{270}
\end{equation*}
$$

and the Green function is fonnd to be

$$
\left.\begin{array}{rl}
G_{0}^{+}\left(x-x^{\prime} ; E\right) & =\sum_{k^{\prime}} e^{i k^{\prime}\left(x-x^{\prime}\right)} G_{k^{\prime}}^{0}(E) \tag{271}\\
& =-\frac{i m}{\hbar^{2} k} e^{i k\left|x-x^{\prime}\right|}
\end{array}\right\}
$$

Nov, wher ve compre secticiad, wiss and incomes wass, we simply compoer $e^{\text {ikx }}$ with a scotlered wae $e^{z(k x+\delta)}$. We then wirte:

$$
\begin{equation*}
S_{k}: 1+2 \imath f_{k}=\frac{k-i g_{k}}{k+i g_{k}}=e^{2 i \delta_{k}} \tag{272}
\end{equation*}
$$

$$
\begin{equation*}
\text { so tho } f_{k} \cdot \frac{i g_{k}}{g_{k}-i k}=e^{2 \delta_{k}} \sin \delta_{k}=\frac{1}{\cot \delta_{k}-i} \tag{278}
\end{equation*}
$$

$$
\begin{equation*}
g_{k}=-k \tan \delta_{k} \tag{274}
\end{equation*}
$$

NB: compore pe 93-96, where we otudied s δ-fn potentisl. For thd ceac, we see that $g_{k} \rightarrow g_{0}$ for a potatial burrer, ie.

If

$$
\begin{equation*}
V(x)=V_{0} \delta(x)=\frac{\hbar^{2}}{m} g_{0} \Rightarrow g_{k} \rightarrow g_{0} \tag{275}
\end{equation*}
$$

and $\quad \delta_{k} \rightarrow-\tan ^{-1}(90 / k)$

SCATIERING CROSS-SECTION : In an g real experiment in potide phisice, one is interested in the toted scattering probability. Since $f_{k}(\theta)$ is the amplitudes of the outgoing wave, it then follows that

$$
\sigma_{k}^{\text {Tot }}= \begin{cases}\int d \Omega_{\theta} \sigma_{k}(\theta) & (3 d) \\ \int d \theta \sigma_{k}(\theta) & (2 d)\end{cases}
$$

where $\sigma_{k}(\theta)$ (senctines culled the "ditterentid secterng coors-sectian", and written as $d \sigma / d \Omega$ or $d \sigma / d \theta)$ is just

$$
\begin{equation*}
\sigma_{k}(\theta)=\left|f_{k}(\theta)\right|^{2} \tag{278}
\end{equation*}
$$

If we wite: $\quad \sigma_{k}^{\text {Tot }}=\sum_{\ell} \sigma_{l}(k)$
Then we have

$$
\sigma_{l}(k)=\left\{\begin{array}{l}
4 \pi(2 l+1)\left|f_{l}(k)\right|^{2} \tag{array}\\
2 \pi\left|f_{l}(k)\right|^{2} \\
\left|f_{k}\right|^{2}
\end{array}\right.
$$

where

$$
\left.\begin{array}{ll}
\left|f_{l}(k)\right|^{2}=\frac{1}{k^{2}} \sin ^{2} \delta_{l}(k) & (3 d) \tag{281}\\
\left|f_{l}(k)\right|^{2}=\frac{2}{\pi k} \sin ^{2} \delta_{l}(k) & (2 d) \\
\left|f_{k}\right|^{2}=\sin ^{2} \delta_{k} & (1 d)
\end{array}\right\}
$$

Native that for /-d systems we can renurte this as

$$
\begin{equation*}
\left|f_{k}\right|^{2}=\frac{g_{k}^{2}}{k^{2}+g_{k}^{2}} \tag{1d}
\end{equation*}
$$

$$
(282)
$$

Thus we summuise these results for the total cross-section.

$$
\boldsymbol{\sigma}_{k}^{T_{0} t}=\left\{\begin{array}{cc}
4 \pi / k^{2} \sum_{l}(2 e+1) \sin ^{2} \delta_{l}(k) & (3 d) \\
\frac{4}{k} \sum_{l} \sin ^{2} \delta_{l}(k) & (2 d) \\
\sin ^{2} \delta_{k} & (1 d)
\end{array}\right\}
$$

\therefore Nor consider the quantity $\operatorname{Im}_{m} f_{k}(\theta)$, for $\theta \rightarrow 0$; this is the imaginary pot of the forward scithering amplitude. We' have

$$
\begin{aligned}
& \text { In }_{m} f_{k}(\theta \rightarrow 0)=\left\{\begin{array}{cc}
1 / k \sum_{l}(2 l+1) \sin ^{2} \delta_{l}(k) & \text { (3d)} \\
(2 / \pi k)^{1 / 2} \sum_{l} \sin ^{2} \delta_{l}(k) & (2 d) \\
\sin ^{2} \delta_{k} & (1 d)
\end{array}\right\} \text { (284)}
\end{aligned}
$$

from which we see that

$$
\sigma_{k}^{\operatorname{Tot}} / g_{m} f_{k}(\theta \rightarrow 0)=\left\{\begin{array}{c}
\frac{4 \pi}{K} \tag{array}\\
(8 \pi / k)^{1 / 2} \\
1
\end{array}\right.
$$

(285)

This result, that $\sigma_{k}^{\text {Tat }}$ is proportional to $g_{n} f_{k}(\theta \rightarrow 0)$ is known is the OPTICAL THEORGM. We see that since σ_{k} Tot is proportion d to a sum over $\left|f_{2}\right|^{2}$, and so is $g_{m} f_{k}(\theta)$, then the red reason for the result is that

$$
\begin{equation*}
\text { In } f_{l}(k) \quad \propto \quad\left|f_{l}(k)\right|^{2} \tag{286}
\end{equation*}
$$

(.. in any dimesisan - in flat we have

$$
\vartheta_{m} f_{l}(k) /\left|f_{l}(k)\right|^{2}=\alpha_{k}=\left\{\begin{array}{ll}
k & (3 d) \\
(\pi k / 2)^{1 / 2} & (2 d) \\
1 & (1 d)
\end{array}\right\}(284)
$$

where we wite

$$
S_{l}(k)=e^{2 L \delta_{l}(k)}=1+2 \imath \alpha_{k} f_{l}(k)
$$

for ar dimension. Sincere $\left|\Psi_{l}(k)\right|=1$ becance of the conservation of probcbilly, It is clew the the optical theorem do his to do witt this sone conservation lar - we will prove this l ceder on.

Findly, we note the ides ot the "scetterng length". Let us consider the very lang wowelagis limit for scatters, when $k \rightarrow 0$. Then it is clean that in $2 d x$ is $3 d$, asl the $l=0$ channel will contribute to the scatters. this is obvious both physicdly and from the form of the rodin cots.

So now consider the soctterio crass section in the list. - we cen write it es

$$
\begin{equation*}
\sigma_{k}^{\text {Tot }} \xrightarrow{k \rightarrow 0} \sigma_{i=0}(k)=\Omega_{d}\left|f_{0}(k)\right|^{2} \tag{289}
\end{equation*}
$$

where Ω_{d}. is the "solid angle" for a hypersphere in d dimensions, $1 e \Omega_{d}=4 \pi$ in $3 d$, $\Omega_{d}=2 \pi \mathrm{in} 2 d$, end $\Omega_{d}=1$ in $/ d$.

It is the conventional to dative the "SCATTERING LENGTH" in $3 d$ problems, so that $\sigma_{k}^{\text {Tot }} \rightarrow 4 \rightarrow 0$ 的 ${ }^{2}$. Here we shall generalize this and wite

$$
\left.\begin{array}{l}
\sigma_{k}^{\text {Tot }} \xrightarrow[k \rightarrow 0]{\longrightarrow} \Omega_{d} a_{0}^{2} \\
a=\left|f_{0}(k)\right| \tag{290}
\end{array}\right\}
$$

Note that only in 3 dimensions is as actudly a leyte!

RELATIONS between SCATTERING FUNCTIONS: To complete the formal appoctoro for catenleting scotteron amplitudes, phase shafts a cross-sections, etc, we need to determine the connections between functions like S the propositus G and the potential \hat{V}, and the functions Hie $f_{k k}$ ', $\delta_{l}(k)$, eta, which er defined by the caste in (aa).

Here I give s list of these relations. There is no sewed gegeemat in the literate about how these should be written, for 2 reasons, wa.
(1) Many authors do not inclucle the factor $\left(2 \mathrm{~m} / \mathrm{h}^{2}\right)$ which uppers when one converts integrals to dimessionlen form (compue, eg., eqtans (14) or (238) in this section B)
(ii) In any fowler truntovm there ce fectare of $(2 \pi)^{d}$ (where d is the space dimension) flostion around, and it is a mither of convention there one puts these.

With this in mind, we can give the relationships between the volans gnutitien in ane specific convention. We can do this by station from the detraction of the Tomothix in (219), which we wite as:

$$
\begin{equation*}
T_{k k^{\prime}} \equiv\left\langle\phi_{k}\right| \hat{T}\left|\phi_{k^{\prime}}\right\rangle=\left\langle\phi_{k}\right| \hat{U}\left|\bar{\Psi}_{k^{\prime}}^{+}\right\rangle=\langle\underline{k} \mid \underline{v}\rangle\langle\tilde{\sim}| \hat{U} \bar{w}^{+}|\underline{\imath}\rangle\left\langle\underline{r} \mid \underline{k^{\prime}}\right\rangle \tag{29i}
\end{equation*}
$$

(e.,

$$
\begin{equation*}
T_{k k^{\prime}} \cdot \int d^{d} r e^{i\left(k+k_{s}^{\prime}\right) \cdot \underline{I}} V(r) \bar{\Psi}^{+}(r) \tag{292}
\end{equation*}
$$

and then use ow expressions for $I^{t}(r)$ whence we have obtained in temp of the f function $f_{k<c^{\prime}}$. Alternatively, we on stout from the defiren equation for the S-metrix in term of the T-matrix (egtn. (230)), and compose it with the expressions (288) ad (287) which relate the suppler camponats of S to those of the f-function. The letter why is quider. Let us define

$$
\left.\begin{array}{l}
T_{k}(\theta)=\left\{\begin{array}{lc}
\sum_{l}(2 l+1) t_{l}(k) P_{l}(\cos \theta) & (3 d) \\
\sum_{l} t_{l}(k) \cos (l \theta) & (2 d) \\
T_{k} & t_{k}
\end{array}\right)(1 d)
\end{array}\right\}
$$

in analogy with ow definition of the $f_{l}(1 c)$. It then follows, by company (230) with (257) and (288), that

$$
\pi \delta\left(E-\hat{H}_{0}\right) f_{l}(k)=-\alpha_{l} f_{l}(k)=\left\{\begin{array}{l}
-k f_{l}(k) \tag{294}\\
-(\pi k / 2)^{1 / 2} f_{l}(k) \\
-f_{l}
\end{array}\right.
$$

How we write the relctimohip between Tee, and $f_{k k}$, depends on haw we handle the $\delta\left(E-\dot{H}_{0}\right)$ term when we go to momentum spice, how we inchonde the $(24)^{d}$ terms, and whether we include the factor $2 m / \hbar^{2}$.

In ahd follews we will do it ane wey, ad ane thici conveation from here on. A werning - the litercture is vey contuisang!
T What we will do is calculde the relctiontip betrien the f-function at the matrox elemeneds Tuke at the $F_{\text {- }}$ noture, computed on the enersy shell. The ressults are incticly corfuang becomes this $F_{m o t r x}$ is not the some is the fuxtion $\hat{T}(E) \delta\left(E-H_{0}\right)$ which we have slreedy dhransed.

Relation between $f_{k \text { ce, }}$ and $T_{\text {eks' }}$ ' Letf compute thas for the coses of 1,2 , and 3 dimesions. The technigne is the sare in all 3 canes:

1 dimessen: We want to campue the expresion fow the scettenad wise cJonlied ussio the sactions equution, with that for the sare scottered ware in terme at the f-finction. First, the "Temoths gundion'

$$
\left.\begin{array}{rl}
\psi^{+}(x) & =e^{i / x}+\int d x^{\prime} G_{0}^{+}\left(x-x^{\prime}\right)\left\langle x^{\prime}\right| V\left|\psi^{\psi}\right\rangle \\
& =e^{i / x x}+\psi_{\operatorname{sch} \psi}^{+}(x)
\end{array}\right\}
$$

wher the scatioed wase is, wing (271), given by

$$
\left.\begin{array}{rl}
\psi_{s c d}(x) & =\frac{2 n}{\hbar^{2}} \frac{-i}{2 k} e^{i k x} \int d x^{\prime} e^{-k k^{\prime} x^{\prime}} V\left(x^{\prime}\right) \psi^{*}\left(x^{\prime}\right) \tag{296}\\
& =\frac{2 n}{\hbar^{2}} \frac{-i}{2 k} e^{i k x}\left\langle k^{\prime}\right| V\left|\psi^{\psi}\right\rangle \\
& =\frac{2 m}{\hbar^{2}} \frac{i}{2 k} T_{k k^{\prime}} e^{i k x}
\end{array}\right\} \text { (1d) }
$$

This is to be compoed with the scettead wwe desoibed by the f-function, which from (aol) is

$$
\begin{equation*}
\psi_{s c 4 f}(x)=f_{k l v}, e^{i(k x+\pi / 2)} \tag{ld}
\end{equation*}
$$

ad so we get

$$
\begin{equation*}
f_{k k} \cdot \frac{-2 m}{\hbar^{2}} \frac{1}{2 k} T_{k k} \tag{2R7}
\end{equation*}
$$

Note that we ca compue ther with the resint in (273), wa, weivite $g=k-k$ ', ad

$$
\begin{equation*}
f_{k k^{\prime}}=\frac{i g_{q}}{g_{q}-i q}=\frac{-g_{q}}{q} \frac{1}{1+i g_{q} / q}=-\frac{g_{9}}{q} \sum_{n=0}^{\infty}\left(-\frac{i g_{q}}{q}\right)^{n} \tag{ld}
\end{equation*}
$$

so the

$$
\begin{equation*}
T_{k k^{\prime}}=\frac{\hbar^{2}}{m} g_{q} \frac{1}{1+i g_{q} / q} \tag{1d}
\end{equation*}
$$

For the δ fon potetid $V_{0} \delta(x)=\frac{\hbar^{2}}{m} g_{0} \delta(x)$, so the $g_{9}=g_{0}$, we haco

$$
\begin{equation*}
T_{k k^{\prime}} \rightarrow V_{0} \frac{1}{1+i m_{\hbar^{2}} V_{0} / q} \quad\left(V_{k k^{\bullet}} \rightarrow V_{0}\right) \tag{301}
\end{equation*}
$$

2 dimensions: We now have

$$
\begin{equation*}
\left.\psi^{+}(r)=e^{i k x}+\int d^{2}\right\rangle G_{0}^{+}\left(r c^{+}\right)\left\langle r^{-}\right| V\left|\psi^{+}\right\rangle \tag{ad}
\end{equation*}
$$

so that, using (263) and (264), we have

$$
\left.\begin{array}{rl}
\psi_{s c o 4}(r) & =\frac{2 m}{\hbar^{2}} \frac{-i}{4} \int d^{2}, H_{0}^{+}\left(k^{\prime} \mid r+r-1\right) V\left(r^{\prime}\right) \psi\left(r^{\prime}\right) \\
\xrightarrow[k r \rightarrow 1]{ } & -\frac{2 m}{\hbar^{2}} \frac{1}{2}\left(\frac{1}{2 \pi k}\right)^{\prime 2} \frac{e^{2(k r+\pi / 4)}}{\sqrt{r}} \int d^{2} r^{\prime} e^{\left.-i k r^{\prime}\right)} V\left(r^{\prime}\right) \psi^{+}\left(r^{\prime}\right) \tag{304}
\end{array}\right\}
$$

so that, compass with (2ai), we got $f_{k k}$, $=-\frac{2 m}{\hbar^{2}} \frac{1}{2(2 \pi k)^{1 / 2}} T_{k k}$,

3 dimensions: We now have

$$
\begin{equation*}
\psi^{+}(r)=e^{i k z}+\int d^{3} r^{\prime} G_{0}^{+}\left(r-r^{\prime}\right)\left\langle r^{\prime}\right| V\left|\psi^{+}\right\rangle \tag{Bd}
\end{equation*}
$$

so this, using (238), we hare

$$
\left.\begin{array}{rl}
\psi_{s c c k}(r) & =-\frac{2 m}{\hbar^{2}} \int d^{3} r^{\prime}, \frac{e^{i k\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|}\left\langle r^{\prime}\right| v\left|\psi^{*}\right\rangle \tag{Bd}\\
\underset{k r \gg 1}{ }-\frac{2 m}{\hbar^{2}} \frac{1}{4 \pi} T_{k k}, \frac{e^{2 k r}}{r}
\end{array}\right\}
$$

and company with (al), we get

$$
\begin{equation*}
f_{k k^{\prime}}=-\frac{2 m}{\hbar^{2}} \frac{1}{4 \pi} T_{k k^{\prime}} \tag{3.8}
\end{equation*}
$$

Nov we native that these relation look quite differed from thane in (294), which relate the partial wave components $f_{l}(k)$ to $t_{2}(k)$. This is became the $t_{i}(k)$ oe adially motax elemeds between verogy egeistetes, pasted of momentum eigesteces; and we need to trasform between the twi bees. "Became we er cunning ont of time I will not derive the results in (294) here.

BORN APPROXIMATION: Let us now look at whet happens when we develop the integned egta for $T_{\text {kl }}$ is a power series in Vicki. The integral equation is most easily develop in $k-5 p a c e$. As we sew in (2zi), wo en write

$$
\left.\begin{array}{rl}
T_{k k^{\prime}} & =V_{k k^{\prime}}+\sum_{k^{\prime \prime}} V_{k k^{\prime \prime}} G_{0}^{+}\left(k^{\prime \prime}\right) T_{k k^{\prime}} \\
& =V_{k k^{\prime}}+\sum_{k_{k}} V_{k k_{1}} G_{0}^{+}\left(k_{4}\right) V_{k, k^{\prime}}+\sum_{k_{1} k_{2}} V_{k k_{1}} G_{0}^{+}\left(k_{1}\right) V_{k_{1} k_{2}} G_{0}^{+}\left(k_{2}\right) V_{k_{2} k^{\prime}}+\cdots \tag{309}
\end{array}\right\}
$$

We cen sliso wate this serees in a red spice represention, via,

$$
T_{k k}=\int d_{r}^{D} e^{i\left(k-k_{1}^{\prime}\right) \cdot r_{1}} V\left(r_{1}\right)+\int d r_{1}^{p} \int d_{r_{2}}^{p} e^{r\left(k_{1} r_{-}-r_{2} r_{2}\right)} V\left(r_{2} G_{0}^{+}\left(r_{1}-r_{2}\right) V\left(r_{2}\right)+\ldots(310)\right.
$$

Nour the lst term in this expwem is cilled the Born appravemation- it is jist the 1-time scatters at the potatid, gives by

$$
\begin{equation*}
T_{k k^{r}}^{B o r v}=V_{k k}=\int d^{D} r e^{c\left(k-k^{\prime}\right) \cdot r} V(r) \tag{34}
\end{equation*}
$$

It is uscofir to wath out apphect formules for thene in varono dimasions. As stredy noted, in 3d we ca wrote

$$
\begin{align*}
& V_{k k \prime}=\frac{4 \pi}{k k-k \mid l} \int_{0}^{\infty} r d r V(r) \sin \left(k k-k^{\prime} \mid r\right) \tag{3d}\\
& V_{k}(0)=\frac{2 r}{k \cos \theta / 2} \int_{0}^{\infty} r d r V(r) \sin (2 k r \sin \theta / 2) \tag{3/2}
\end{align*}
$$

whe the sccttory ayle θ is relded to $\left|k-k^{\prime}\right|$ by $\left|k-k^{\prime}\right|=2 k \sin \theta / 2$
In the sare wy ve con wite,'in 2 dinewian

$$
\begin{equation*}
V_{k k c^{\prime}}=2 \pi \int_{0}^{\infty} r d r J_{0}\left(\mid k-k^{\prime} / r\right) V(r) \tag{2d}
\end{equation*}
$$

and in $1 d$ we hure, lethrs $q=k-k^{\prime}$

$$
\begin{equation*}
V_{q}=\quad \int d x e^{c q^{x}} V(x) \tag{1d}
\end{equation*}
$$

The Boin sproxamotion scemon gurte crude, and it is. but it cen be useful undo seine circunstaces: the the pataticl $V(r)$ can be teded eo a smill pertudection. To bee form dy wer this is, we just compore the secterad wive with the incoming wave: f.

$$
\begin{equation*}
\left|\Psi_{s c \mid}\right| \ll\left|e^{k_{k} \cdot n}\right|=1 \tag{3/5}
\end{equation*}
$$

then the Born atpore. stould be valid. Evalusting the scattoed wiwe in the Bom sproxamdion, we. have, for kr >1 :

$$
\Psi_{\text {scat }}^{B_{o r n}} \rightarrow\left\{\begin{array}{lll}
\frac{2 m}{\hbar^{2}} \frac{-i}{2 k} e^{i k k} V_{k k^{\prime}} & \sim \frac{m}{\hbar^{2} k} \bar{V} d_{0} & (1 d) \tag{316}\\
\frac{2 m}{\hbar^{2}}\left(\frac{1}{8 \pi k}\right)^{\frac{1}{2}} e^{i(k r+\pi / 4)} & V_{k k} & \sim \frac{m}{\sqrt{r}} \\
\frac{2 m}{\hbar^{2} k^{1 / 2}} \bar{V} d_{0}^{3 / 2} & (2 d) \\
\frac{1}{\hbar^{2}} \frac{1}{4 \pi} e^{i k r} \frac{V_{k k}}{r} & \sim \frac{m}{\hbar^{2}} \bar{V} d_{0}^{2} & { }^{(3 d)}
\end{array}\right\}
$$

where the guatiry \vec{V} is s typied value of the potetical in the region of socee where it is signiticut, ouer s leyte sede d_{0}. - have the tetd westh of the pobenticl is given by

$$
\begin{equation*}
\int d^{D} r V(r) \sim \bar{V} d_{0}^{D} \tag{317}
\end{equation*}
$$

The resulto in (36) are very revenling: they tell us that in $3 d$, the Barn sporoximction works prouded the potectivi strength \bar{V} is sufficieatly small. In $3 d$, we ca write.

$$
\begin{equation*}
\text { If }|\bar{V}| \ll \hbar^{2} / m d_{0}^{2} E \bar{T} \Rightarrow \text { Barn sppru velid } \quad(3 d) \tag{3/8}
\end{equation*}
$$

wher we write \bar{I}-a the men kinche eargy of 8 poitlde in the valume ocarred by the potutial. uoms the uncertanty pronepla. Natice si interiestry consegnevce ot this result, via. that a wesk 3 d attractive poteatid ca sever give a bound stote, beermac the perturbetion IIseatt on the orismad ware function is small (a bound stote would necencolly invire s distartion of $\sim O(1)$ of the plune were stale st at $K, E=0$).

However in $2 d$ or $1 d$ the sthidion is very diffecate we soe thas is $k \rightarrow 0$, the Bam sppraximation must breat doun. This is bivian fram sll the resulto we liwe so fer far the functions $f_{\text {Llc }}$, and Thes, It is abvion in. Id fran the form of the f functian in (299); erey term diverses an wi $1 / q$ as $q=k-k \prime \rightarrow 0$. In $2 d$ the sitadian is a little mare campliceted, and we shall study it properly in the next sub-section.

UNITARITY \& the OPTICAL THEOREM : Findly, in ow stady at seatering theorem gnd take a mare geverd loak at it. We cen summoser all on pertial ware results, as follors (with the α_{k} detined in (28y)):

Partial wave relations

- $S_{l}(k)=e^{2 i \delta_{l}(k)}=1+2 \imath \alpha_{k} f_{l}(k)=1-2 i t_{l}(k)$

$$
\begin{aligned}
& =1+2 i e^{i \delta_{l}(k)} \sin \delta_{l}(k) \\
& 0 f_{l}(k)=\frac{1}{\alpha_{k}} e^{2 \delta_{l}(k)} \sin \delta_{l}(k)=\frac{1}{\alpha_{k}} \frac{1}{\cot \delta_{l}(k)-1} \equiv \frac{1}{g_{l}(k)-i \alpha_{k}} \\
& 0 g_{n} f_{l}(k)=\frac{1}{\alpha_{k}} \sin ^{2} \delta_{l}(k) \quad \quad g_{n} t_{l}(k)=-\sin ^{2} \delta_{l}(k) \\
& 0\left|f_{l}(k)\right|^{2}=1 / \alpha_{k}^{2} \sin ^{2} \delta_{l}(k) \quad\left|t_{l}(k)\right|^{2}=-\sin ^{2} \delta_{l}(k) \\
& 0 t_{l}(k)=-\alpha_{k} f_{l}(k)=\frac{1}{i-\cot \delta_{l}(k)}=-e^{2 \delta_{l}(k)} \sin \delta_{l}(k) \\
& 0 K_{l}(k)=-i \frac{1-S_{l}(l)}{1+S_{l}(k)}=-\tan \delta_{l}(k)
\end{aligned}
$$

138
Fran this tible we see that the simplest form in which we cen write the optical thenrem in. the peotid were representation is just

$$
\begin{equation*}
I_{m} t_{l}(k)=\left|t_{l}(k)\right|^{2} \tag{319}
\end{equation*}
$$

whach is equivelat to (2ry). Anobtre wey to wate this is in temo ot the T-matix opectar, on the eveys shell, defined by egtn (230). We then have

$$
\begin{equation*}
g_{m} \hat{T}(E)=\pi|\hat{T}(E)|^{2} \tag{320}
\end{equation*}
$$

We note thip there nemults cre se consegueree of the relationshy betiven the $S_{t}(k)$ and the $t_{2}(k)$ (and between $\delta^{s}(E)$ in $T(E)$), and the UNITARTMy of the S-materx.

$$
\begin{equation*}
\left|\hat{S}^{\prime}(\varepsilon)\right|=\left|S_{1}(k)\right|=1 \tag{321}
\end{equation*}
$$

Now dll these relctions ve setrelly s sinple consegnecue at the conservetion of poochility, ie., ot perticle canservetion. We ces see this an voliano vyss. Note

$$
\begin{equation*}
S_{f_{i}}=\langle f| \hat{S}|\iota\rangle=\lim _{t \rightarrow \infty} \lim _{t^{\prime} \rightarrow-\infty}\left\langle\psi_{f}(t)\right| \hat{G}\left(t^{\prime} t^{\prime}\right)\left|\psi_{i}\left(t^{\prime}\right)\right\rangle \tag{322}
\end{equation*}
$$

where the inntial final steces we chasen here ta be incomms k outgon waven; ot then follows thet, becarse

$$
\begin{equation*}
\hat{G}\left(t, t^{\prime}\right)=\exp \left\{-2 / \hbar \hat{\mathcal{f}}\left(t_{2}, t_{1}\right)\right\} \tag{323}
\end{equation*}
$$

is s unitury operedr., so mast \hat{S} be. Anathe way at sceens it is by argury thet the total putide conservition is expressed by

$$
\begin{equation*}
\partial_{t}|\psi|^{2}+\nabla_{0} \underline{J}=0 \tag{324}
\end{equation*}
$$

and then celculdors the flux $\int_{\Omega} d S \partial_{t}|\psi|^{2}=\int_{\Omega} d S . J(\underline{I})$
serauk surfice for from the secttere becase at casulen mamectum canservection for a sphercully syometric scother, propobility canservation must hald for exce pertial wave. But we here dready seen previonoly (at eqtor (248) and (249)) that the only effeet of scetterns is to phese shift the ountgoin wates whth respect to incomins waves this phise shit being described by the unitcy function $S_{2}(k)$. The totd Anx ot inceming k outgoin wanen this balmice
 is no net flux threigh the surface.

