SECTION B: PERTURBATIVE METHODS IN Q.M.
\qquad
\qquad z^{2}

 Scrididno
\qquad

\qquad
\qquad
\qquad
B.1. SOME EXACT RESULTS in Q.M.
\qquad
\qquad

92
for the collection of oxut remits discansed here we begin intt a fow well-hiom resutto
 dimasios (the cerred symmetiy of courre mikes them eftctively I-d pableme). We will deliay all on discussion of pioblems involing disocte system (3, 2-lerel systems),
 simple time seperilent pailens lder on.

The simplicty of theac examice belies their inportanee- thes are the station point for most of whit is done in physics, whethor quations or dosnical.
B.1.1. PARTICLE IN A POTENTIAL

In this sub-section we ded excluevely with the tise-indepedent Scirodiger egto for a siogle poritile, viz.,

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r)\right] \Psi(r)=E \psi(r) \tag{1}
\end{equation*}
$$

Which in I-d rends

$$
\left[-\frac{\hbar^{2}}{2 m} d_{x}^{2}+V(x)\right] \Psi(x)=E \Psi(x)
$$

In 2 dimeasion, for a cecterly symmetuc potetul, we seporte the weve.fil witmon

$$
\begin{equation*}
\Psi(r, \phi)=\psi(c) X(\phi) \tag{2d}
\end{equation*}
$$

so that we have, steting from the $2-d$ Schedrer eta

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 n}\left[\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{1}{r^{2}} \partial_{\phi}^{2}\right] \Psi(r)=(E-V(r)) \mathbb{\Psi}(r) . \tag{4}
\end{equation*}
$$

from whod we hwe

$$
\left.\begin{array}{l}
\left(\partial_{\phi}^{2}+\ell^{2}\right) x_{l}(\phi) \tag{s}\\
x_{l}(\phi) \sim \frac{1}{\sqrt{\pi}} e^{i l \phi}
\end{array}\right\}
$$

so that

$$
\begin{equation*}
\left[\frac{1}{r} \partial_{r}\left(r \partial_{r}\right)+\frac{2 m}{\hbar^{2}}(E-V(r))-l^{2} / r^{2}\right] \psi_{l}(r)=0 \tag{2-d}
\end{equation*}
$$

whed $15<1-d$ differtiol eqta.
In 3 dimesions, we have the seperction of veristles

$$
\left.\begin{array}{rl}
\Psi(r, \theta, \phi) & =\psi(r) Y(\theta, \phi) \\
& =\psi(r) \Theta(\gamma) X(\phi)
\end{array}\right\}(\gamma)
$$

and in astadul develonend in elemerition φM, this leads to the results

$$
\left.\begin{array}{rl}
Y(\theta, \phi) \rightarrow Y_{l m}(\theta, \phi)= & a_{m}\left(\frac{2 l+1}{4 \pi} \frac{(l-(m))!}{(l+\mid m)!)!}\right)^{1 / 2} P_{l}^{m}(\cos \theta) e^{i m \phi} \\
a_{m} & =(-1)^{n}(m>0) \tag{9}\\
& =1 \quad(m<0)
\end{array}\right\}
$$

with an associated radial equation for the function:

$$
\begin{equation*}
\left[\partial_{r}^{2}+\frac{2 n}{\hbar^{2}}\left(E-V(\omega)-\frac{l(l+1)}{r^{2}}\right] \eta_{l}(r)=0\right. \tag{3-d}
\end{equation*}
$$

whin is the $1-d$ egtn for a 3-d cestind symmotinc potential.
In term ot the salto to these eaton, we see that the gerald satin to the 2-d $\downarrow 3-d$ problems is

$$
\begin{align*}
& \mathbb{F}(r)=\sum_{l} c_{l} e^{l \ell \phi} \psi_{l}(r) \tag{array}\\
& \mathbb{W}(r)=\sum_{l m} c_{l m} Y_{l m}(\theta, \phi) r \eta_{l}(r) \tag{12}
\end{align*}
$$

ad
where the C_{l} and the $C_{l M}$ are sibitruy cocfficeics (nets the used sormstisction condition).

May other QM problem for a single pride can be redyed to Id problems it there is in apropride symmetry in the problem. Hoverer in whit follows we will stick to ceaticlly symmotuc problem, since or purpose here is primerily to deal mit methods.
B.1.1.(a) 1-d POTENTIALS: One lean < greet dead from the solution of a for simple $1-d$ problems. Ever though yourve seen at least some at these before, it is useful to have them at had, ad to sec what lessons on be learned from them.

Example 1: A δ-Function Potential: This is the simplest problem of all in Ф.M. The Schrodinger eqten (2) reads

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} d_{x}^{2}+V_{0} \delta(x)\right] \psi(x)=E \psi(x) \tag{13}
\end{equation*}
$$

cad we see that we can be denting ante either an stricetic potedul well or a repulsive lo crier. We write (14) in the form

$$
\left[\begin{array}{rl}
\left.\frac{d^{2}}{d x^{2}}+\left(\epsilon-2 g_{0} \delta(x)\right)\right] \psi(x)=0 & =\frac{2 m}{n^{2}} E \tag{14}\\
2 g_{0} & =\frac{2 m}{\hbar^{2}} V_{0}
\end{array}\right\}
$$

and see hor this carks in the 2 cases.
(a) $g_{0}<0$ (potatial well) : The sati is clearly mole up ot plur waves sway from the argingat the organ we hae

$$
\begin{equation*}
\left.\partial_{x} \psi\right|_{x=0^{+}}-\left.\partial_{x} \psi\right|_{x=0^{-}}=2 g_{0} \psi(x=0) \tag{15}
\end{equation*}
$$

which lads to \mid bound state $|0\rangle=\psi_{0}$ with enemy $E_{0} \cdot \hbar^{2} / 2 n \epsilon_{0}$, where

$$
\begin{equation*}
\epsilon_{0}=-\left|g_{0}\right|^{2} \quad \psi_{0}(x)=\left(\left|g_{0}\right| / 2\right)^{1 / 2} e^{-\left|g_{0} x\right|} \tag{16}
\end{equation*}
$$

94
All the pasitive enemy states ce found by match the boondeyy condition (is) to plane waves - we get the spectic solution by adding another boundary condition. Typically this is dose by sasuming an incoming plane wave,

$$
\psi(x)=\left\{\begin{array}{cc}
{\left[e^{i k x}-\frac{\left|g_{0}\right|}{\left|g_{0}\right|+i k} e^{-i k x}\right]} & x<0 \tag{17}\\
\frac{i k}{\left|g_{0}\right|+i k} e^{i k x} & x>0
\end{array}\right\}
$$

where

$$
\begin{equation*}
k^{2}=\epsilon_{k}=\frac{2 m}{\hbar^{2}} E=\frac{1}{\hbar^{2}} P^{2} \tag{18}
\end{equation*}
$$

This result is at cows sppropnate to a scatters problem. Throne saw to the repulse problem:
(b) $g_{0}>0$ (potential borer): Nor the problem has the some bandary solutions, taking the form condition, but there are only posture energy

$$
\psi(x)=\left\{\begin{array}{cc}
{\left[e^{i k x}-\frac{g_{0}}{g_{0}-i k} e^{-i k_{x}}\right]} & x<0 \tag{19}\\
\frac{-i k}{g_{0}-i k} e^{i / x} & x>0
\end{array}\right\}
$$

with k gwen by the some form os (18)
Thus we see that the general sots at the problem, for watery go, is just (19); with a single bound state described by (16) if $g_{0}<0$.

Lover on we shill comment on these results from the pant of near of scatters they. Led us simply commend here that

- The enstence of the band st the is inevitable - ane can shes fundy carly that any potential well in 1-d will give this
- The result in (19) chare that the boomer reflects a pert of the incident ware, end tranomito the rest. If we calculde the current devorly associded with there, Viz

$$
\begin{equation*}
\underline{f}(x)=-\frac{i \hbar}{2 m}\left(\psi^{*}(x) \nabla \psi(x)-\psi(x) \nabla \psi^{*}(x)\right) \tag{20}
\end{equation*}
$$

We find the there current densities ore (when nomslised) egret to.

$$
\begin{equation*}
\bar{J}_{R}=\frac{g_{0}^{2}}{g_{0}^{2}+k^{2}} \quad \bar{J}_{T}=\frac{k^{2}}{g_{0}^{2}+k^{2}} \tag{21}
\end{equation*}
$$

ad that their ratio 15 . $=J_{R} / J_{T}=\operatorname{ts}^{2} \theta=90^{2} / L^{2}$
wee we define $e^{i \theta}=\frac{-2 k}{90_{0}-i k}$
Notice the depadicie on $g o / k$, of al papostion at the scatted v reftected wees. We cu gat further insight into this problem by considers an adopted verso in which we choose the
δ-function potential to be the limiting case of square well/bervier potectasl. Consider the potential form

plane wave incident from the left on a rectangular barrier, at 2 energies

$$
\left.\begin{array}{rl}
V(x) & =\frac{V_{0}}{a_{0}} \theta\left(a_{0}^{2} / 4-x^{2}\right) \tag{24}\\
& \underset{a_{0} \rightarrow 0}{ } V_{0} \delta(x)
\end{array}\right\}
$$

The solution to this cu be found by matching the discontinuities in derivatives at $x= \pm a_{0} / 2$ wite and incoming plane wire - we do not go thanh the details. We sasme therefore that outside the patatial poscoer, we ca he a solution

$$
\left.\begin{array}{rl}
\psi(x) & =A_{1 n} e^{i k x}+A_{R} e^{-i k x} \tag{25}\\
& =B_{T} e^{i k x} \\
x>a_{0} / 2
\end{array}\right\}
$$

One then finds that the reflected and transmitted current densities we given by

$$
\begin{align*}
& \bar{J}_{R}=\left|\frac{A_{8}}{A_{1 m}}\right|^{2}=\frac{\frac{1}{4} \bar{V}_{0} \sin ^{2} \delta\left(K_{0}\right)}{\epsilon_{k} K_{0}^{2}+\frac{1}{4} \bar{V}_{0} \sin ^{2} \delta\left(K_{0}\right)} \tag{26}\\
& k_{0}^{2}=\frac{2 n}{\hbar^{2}}\left(E-\bar{V}_{0}\right) \\
& \epsilon_{k}=\frac{2 n}{\hbar_{2}} E \tag{27}\\
& \bar{V}_{0}=V_{0} / a_{0} \\
& \delta\left(K_{0}\right)=K_{0} G_{0} \\
& \bar{J}_{T}=\left|\frac{B_{T}}{\bar{A}_{m n}}\right|=\left\lvert\,-\bar{J}_{R}=\frac{E_{k} K_{0}^{2}}{\epsilon_{k} k_{0}^{2}+\frac{1}{4} \bar{V}_{0} \sin ^{2} \delta\left(K_{0}\right)}\right. \tag{28}
\end{align*}
$$

These results are to be modestood as follows for the tunneling case, when $E<\bar{V}_{0}$; ane apses. K_{0} is. imgincis, C.

$$
\begin{equation*}
K_{0}=i\left[\frac{2 m}{\hbar^{2}}\left(\bar{V}_{0}-E\right)\right]^{1 / 2} \quad\left(E<V_{0}\right) \tag{29}
\end{equation*}
$$

so that, eg.,

$$
\begin{equation*}
J_{R}=\frac{\frac{1}{4} \bar{V}_{0}^{2} \sinh ^{2}\left[\left(\bar{V}_{0}-E\right)^{1 / 2} a_{0}\right]}{E\left(\bar{V}_{0}-E\right)+1 / 4 \bar{V}_{0}^{2} \sinh ^{2}\left[\left(\bar{V}_{0}-E\right)^{1 / 2} a_{0}\right]} \tag{30}
\end{equation*}
$$

One can Iso work ont formulas for the care where $V_{0}<0$ (a potential well). Nov let n. the a look at thane results, which are ante interesting. Note first this the limits cue of the δ-function potential is easily foul from (30) (the only applicable result, since

96
in this liuat, $\bar{V}_{0} \rightarrow \infty$ and $a_{0} \rightarrow 0$); we gat

$$
\begin{equation*}
\bar{J}_{R} \xrightarrow[a_{0} \rightarrow 0]{\bar{V}_{0} \rightarrow \infty} \frac{1 / 4 V_{0}^{2}}{E+1 / 4 V_{0}^{2}}=\frac{g_{0}^{2}}{k^{2}+g_{0}^{2}} \tag{31}
\end{equation*}
$$

Now, for finte G_{0}, let us. look it the behowow of the reflected chvect, is : finction at the incoming every. Nate that the retlected curicat is never exectly zeso except in the very hish cueny limit, end alse et the velwen at evesy where

$$
\begin{equation*}
K_{0} \omega_{0}=n \pi \tag{32}
\end{equation*}
$$

where cohorent forward-scattorny ocerrs - this is the well-knawn optical condition
= for periteed trenomision, firot noticed by. Hoake - Neriton, in whe 17th cestruy. Wothing in pertionler hypees when $E=V_{0}$; in faet we hes, thet

$$
\begin{equation*}
\bar{J}_{2}=\frac{1 / 4 \bar{V}_{0} a_{0}}{\hbar^{2} / 2 m+\frac{1}{2} \bar{V}_{0} a_{0}} \quad\left(E=\bar{V}_{0}\right) \tag{33}
\end{equation*}
$$

The Iimit it low everyy is one of total reflection, whth a trensmissian coefficiced going to zere expanentidly fost oxe his

$$
\begin{equation*}
J_{T} \cdot 1-\bar{J} \cdot \quad \rightarrow \quad \frac{16 E\left(\bar{V}_{0}-E\right)}{\bar{V}_{0}^{2}} \exp \left\{-2 a_{0}\left(\frac{2 m}{\hbar_{0}^{2}}\left(\bar{V}_{0}-E\right)\right)^{2}\right\} \quad: \quad\left(1 G_{0} a_{0}>1\right) \tag{34}
\end{equation*}
$$

whed is joot the turneling limit.
The importuse of there sonde renntt. is the wey they gwe simple excmples of thineling, supraberier reflection, enel rescient tresmissian, in the cuse of s potestist berier.

If one works out the simple exemple at s rectagenler potecticu well, ane siso firds supra-well reflectin and fransmissian, as well as baid stater.

Obviously one cen maker loto of other simple poseath from precevise fled portions or segnerces al δ-function. ve will loals at same at these loter on.

Example 2 : 1 sect ${ }^{2}$ Potental Well : We consider this exaple, aren it it of the relctumhip to the prablon 15 , istle complicabed in form, becanes of the relctianohip to the prablan it pertucles of sunc field interacting with s soliton of thet field. The l-d Schradinger epts nov reads

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}-V_{0} \operatorname{sech}^{2}\left(x / a_{0}\right)\right] \psi(x)=E \psi(x) \tag{35}
\end{equation*}
$$

This eats can be solved by a segnece of substitutions of no fundeneath interest to us here. We rescale both $\psi(x)$ ad x, as follows; let.

Then are fuds s difterionl efta:

$$
\begin{equation*}
y(y-1) \phi^{\prime \prime}(y)+[(1-\lambda) y-1 / 2] \phi^{\prime}(y)+\left(\lambda^{2}-\delta^{2}(E)\right) \phi(y)=0 \tag{39}
\end{equation*}
$$

Which is a spend case of the hypergeanetic egta. We do not stop here to dascuns the detailed solutions, but sill lack at the results for the ersuvelmes at the bound stats sham shave. One finds the eigesenerges E_{n}, where

$$
\left.\begin{array}{rl}
\frac{2 m}{\hbar^{2}} E_{n}=\epsilon_{n} & =-(n-\lambda)^{2} \theta(\lambda-n) \\
& \equiv-\theta(\lambda-n)\left[\frac{1}{2}\left(1+\frac{8 m V_{0} a_{0}^{2}}{\hbar^{2}}\right)^{1 / 2}-\left(n+\frac{1}{2}\right)\right]^{2}
\end{array}\right\}
$$

weer the $\Theta \cdot f_{n}$ indicates that the total number at bound steen N in the well is

$$
\begin{equation*}
N=1+[\lambda] \tag{41}
\end{equation*}
$$

weer $[\lambda]$ is the longest integer lens then λ. This thee is swap s bound stole, at an every $\epsilon_{0}=-\lambda^{2}$.

If are considers the free states in this, problem and in the previous one, an inlepestors feopwe is found - they avoid the potential well. This is because then must be orthogand to the bound stdes, so $\left|\psi_{k}(x)\right|^{2}$ for s hish-erayy stole must be reduced in the region of the potential well. It is interests to work out the details if this.
B.1.1.(b) LANDAU LEVELS: A key imports example of a problem which, in c center save, reduces to a $1-\mathrm{d}$ oscillator problem, is tho of a 3-dimersianel free pertich moving in a uniform and static magnetic field. The H muittonisn is

$$
\begin{equation*}
H=\frac{1}{2 n}\left(\hat{p}+e A_{0}(\Sigma)\right)^{2} \tag{2}
\end{equation*}
$$

whens

$$
\underline{\nabla} \times A_{0}(\underline{I})=\underline{B}_{0}=\hat{z} B_{0}
$$

98
To poperty specity this problem we seed to fix the gaye. It is simplent to use the Ladan gange, viz.

$$
\begin{equation*}
A_{0}(\underline{r})=\left(-y B_{0}, 0,0\right) \tag{43}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{J_{t}}=\frac{1}{2 n}\left(\hat{p}_{x}-e B_{0} \hat{y}^{2}+\frac{1}{2 m}\left(\dot{p}_{y}^{2}+p_{2}^{2}\right)\right. \tag{44}
\end{equation*}
$$

Now sine If commutes with \mathcal{P}_{x} ad P_{z} (but not $\hat{P_{y}}$) we can wirte the engentro in the form.

$$
\psi(r)=\phi(y) e^{i\left(k_{x} x+k_{z} z\right)}
$$

were $\phi(y)$ sctisties the egtn:

$$
\begin{equation*}
\phi^{\prime \prime}(y)-\frac{2 m}{\hbar^{2}}\left[\frac{\hbar^{2} k_{2}^{2}}{2 m}+\frac{1}{2} m \omega_{c}^{2}\left(y-y_{0}\right)^{2} \cdot E\right] \phi(y)=0 \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{c}=\frac{\left|e B_{0}\right|}{m} \tag{47}
\end{equation*}
$$

1s the cyclation frequery, and

$$
\begin{equation*}
y_{0}=-\frac{\hbar k_{x}}{e b_{0}} \tag{48}
\end{equation*}
$$

is the meen y-coardiade of tre poticle. This we have a simple hamouic oselledor problem. We cen dso see this in enather wey, by muping the arisind Manitania to an oselldor. Let us detine the cononical nomeition

$$
\begin{equation*}
\hat{\pi}=\hat{p}+e \hat{A}(\tilde{r})=-i t \nabla_{r}+e A(r) \tag{49}
\end{equation*}
$$

and worte the commutatom reldians between the components as

$$
\begin{align*}
& {\left[\hat{\pi}_{x}, \hat{\pi}_{y}\right]=-\hbar_{m \omega_{c}}=-\hbar^{2} / l_{0}^{2}} \tag{sa}\\
& {\left[\pi_{z}, \pi_{y}\right]=\left[\hat{\pi}_{z}, \hat{\pi}_{x}\right]=0} \tag{1}
\end{align*}
$$

where us detine a lenth scte (the "Landon leagt") as

$$
\begin{equation*}
l_{0}=\left(\hbar /\left|e B_{0}\right|\right)^{1 / 2}=\left(\hbar / m \omega_{c}\right)^{1 / 2} \tag{52}
\end{equation*}
$$

ad we notice that the finx contared in a cincle of $\operatorname{rd} d$ uss $2^{1 / 2} l_{0}$ is juat the flux quetum $\Phi_{0}=h / e$, since

$$
\begin{equation*}
2 \pi B_{0} l_{0}^{2}=h / e=\Phi_{0} \tag{53}
\end{equation*}
$$

Now we detine ascillatir. Iedber opeechars by timg the usid lineer combunationiat the sos-cemmution operthors in (50), vis.)

$$
\left.\begin{array}{l}
a^{+}=\frac{\ell_{0}}{\hbar \sqrt{2}}\left(\hat{\pi}_{x}+i \hat{\pi}_{y}\right) \tag{54}\\
a=\frac{\ell_{0}}{\hbar \sqrt{2}}\left(\dot{\pi}_{x}-2 \hat{\pi}_{y}\right)
\end{array}\right\}
$$

so that

$$
\begin{equation*}
\left[a, a^{+}\right]=1 \tag{5s}
\end{equation*}
$$

Then the Henartonian of the system is just

$$
\begin{align*}
& H^{H}=1 t_{0}+\frac{1}{2 m} \hat{p}_{2}^{2} \tag{56}\\
& H_{0}=\frac{\hbar w_{c}}{2}\left(a a^{+}+a^{+} a\right)=\hbar w_{c}(n+1 / 2)
\end{align*}
$$

From eitcon (45) and (46), or from the mupprs to (56), we ca then write dom the eigenfunction for the system:

$$
\psi_{a k_{z}}(r)=e^{i\left(k_{x} x+k_{z} z\right)} e^{-\frac{1}{2} m \omega_{c}\left(y-y_{0}\right)^{2}} H_{n}\left(m \omega_{c} \sqrt{y-y_{0}}\right)
$$

where

$$
\begin{equation*}
H_{n}(u)=(-1)^{n} e^{u^{2}} \frac{d^{n}}{d u^{n}} \cdot e^{-u^{2}} \tag{58}
\end{equation*}
$$

is the nuts Hermite polynomial; and from (56) we see that the eigenvalues we

$$
\begin{equation*}
E_{n k_{2}}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)+\frac{\hbar^{2} k_{2}^{2}}{2 n} \tag{59}
\end{equation*}
$$

Cleanly this ergervalmo are indepadeat of the gauge. However the eigatmaction ore notad one hes a loge choice of games. Suppose we pick another such gauge- it an slugs be related to the arsmil grange by s trenstormetion involving the giadicel of 5 seder. Let the new game be $A^{\prime}(\underline{I})$. Then we have

$$
\begin{equation*}
A^{\prime}(\underline{r})=A(\underline{r})+\nabla f(r) \tag{60}
\end{equation*}
$$

and $\psi(r) \rightarrow \psi^{\prime}(r)$, where

$$
\begin{equation*}
\psi^{\prime}(r)=e^{-\dot{\Sigma}_{\hbar} e f(r)} \psi^{\prime}(r) \tag{64}
\end{equation*}
$$

In pecticulion, it is interentory to go from the Ladin game to the "symmetric game", far which

$$
\begin{equation*}
A(r)=\frac{1}{2} B_{0}(-y, x, 0) \tag{65}
\end{equation*}
$$

and the dervetion of the eigenfunction in this gauge is lett as as exercise.
Now let's get some physied feeling for thane results, and see why one rector to "Ladan levels". Notice first that from. (50) or (57), we see this the were-fis are continued to within s Landon leith (in the Laden gage, this confinement is in the y-direction only, with free motion slog \hat{x}; in the symmetire or "circular" gauge, it is catined in both directions).

Now immune that we have a set of N non-interacting fermion with chase
e, sitting either in a 2-d place or in a 3-d box, ants sides of leith L_{x}, L_{y}, and L_{z}. Igoorng the spin of these postides, we now see that the exclusion procuple in momentum space hes trenformed into an exclusion pronaple in position space (in the symmetric gouge).

Regordien of which space we count the particles in, the results must be the some - haw ever there is now a bis difference, became the energy quentiaction in (59) imposes \& severe restriction on the allowed energy states. This is paticulcaly severe in 2 dimcioios, where the $\hbar^{2} k_{2}^{2} / 2 m$ disappears.

To see how this works, let's dinge the discmosion between the 2-d and 3-d

100
ceacs, and compere the case will Laden qucotzedion to that without. Thus ow Hameltania is gwen by

MOVE: THE "LANDM CONDENSATION" OF THE THE FREE ELECTRONS, w $2-D$, ONTO TH 6 LANDAU LEVELS.
BELOW : THE CORRESPONDWG DENSITY OF STATES, A SET OF δ-Functions .
$1 \uparrow N(\epsilon)$

$$
\begin{equation*}
\text { If }=\sum_{j=1}^{N}\left(\beta_{j}+e A\left(r_{j}\right)\right)^{2} / 2 n \tag{66}
\end{equation*}
$$

and the result of the Leaden quantization is show at left in schematic form.

2 dimensions: In $2 \cdot d$, the every levels slated to the system ore just

$$
\begin{equation*}
E_{n}=\operatorname{tiv} / c(n+1 / 2) \quad(2 d) \tag{67}
\end{equation*}
$$

Now let's consider what this memo for the density of stakes. When $B_{0}=0$, the density at staten for $<2 \mathrm{~d}$ fermion system, ignoring spin, is just

$$
\begin{equation*}
N(E)=L_{x} L_{y} \int \frac{d^{2} y}{(2 \pi h)^{2}}=L_{x} L_{y} \frac{m}{(2 \pi \hbar)^{2}} \tag{68}
\end{equation*}
$$

for < system wite ares Lyly. Now der we apply s field, all states contained in an cress rang two must condase onto a siste Laden level, so shown. The result is then a density of stater

$$
\left.\begin{array}{rl}
N(E) & =L_{*} L_{y}\left(B_{0} \left\lvert\, \frac{l e \mid}{h} \sum_{n=0}^{\infty} \delta\left(E-E_{n}\right)\right.\right. \tag{69}\\
& \equiv \frac{\Phi_{\text {tot }}}{\Phi_{0}} \sum_{n=0}^{\infty} \delta\left(E-\sigma_{n}\right)
\end{array}\right\}
$$

where

$$
\begin{equation*}
\Phi_{\text {tot }}=\left|B_{0}\right| L_{k} L_{y} \tag{70}
\end{equation*}
$$

is the total fine thanh the system. This result mikes it clear that end state on a given level is assacrated with a single fins quentung as we might have expected.

3 dimensions: Ta get the density of states in $3 d$, we simply integrate aver k_{2}, wowing the dispersion relation in (59). The result is

$$
\begin{equation*}
N(E)=\frac{L_{2}}{\pi} \frac{\Phi_{t+t}}{\Phi_{0}}\left(\frac{2 m}{\hbar^{2}}\right)^{1 / 2} \sum_{n=0}^{\infty} \frac{\theta\left(E-E_{n}\right)}{\left(E-E_{n}\right)^{1 / 2}} \tag{1}
\end{equation*}
$$

LEFT : THE DENSITY OF STATES FOR 3 d ELECTRONS, FOR $B_{0}=0$ AND FINITE BO.
RIGHT: THE "LANDAU.

TUBE " CONSTRUCTION FOR ALLOWED STATES of free elgitrons in 3 Id MOmentum SPACE

The interpectetion of this result is interesting. We ere essentially adding tegocther a set of stoves, one get for cad Lads level, while is we think e of them is bern catimed to "looms at points in k-spice, then took so the eth they are confined to "tubes" in 3-dimesionat k-space, the ser of which is given by

$$
\begin{align*}
& A_{n}(k)=\int d k_{x} d k_{y} \theta\left(E_{n} k_{2}-E^{0}(k)\right) \tag{72}\\
& E^{0}(k)=\frac{\hbar^{2}}{2 n}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right) \tag{3}
\end{align*}
$$

wee

This "semiclassical" constriction wall be re-examined aider. The density of ot bes coming from each tube has the $1 / \sqrt{\varepsilon}$ form chorecterstic of a $1-$ dimevianal Fermi gs: this comes from the integration over k_{2}. We notice that as $\omega_{c} \rightarrow 0$, the result tad to the form $N(6) \propto \in E^{1 / 2}$, chincteterstic of a 3-d Fermi $g^{s s}$.

One comet leave a discussion of these densities of states, r the pictures that go with them utbout remarteng on there importance for 20 th-cetwny condensed netter physics - much at ar early understanding of coneluctors, statim in 1928, centred on there behnow in a magnetic field, seel the physics of Ladin quatizetion k Laden levels. The presence ot these levels hes s profound effect on the rr physical properties (which is completely non-clesical).

Incidentally, let us note that in fad Ladin ven not the first person to analyse or solve this problem (which he looked at in 1930). In fret in 1928 V. Folie solved the more geverl problem having the Hanaltomian.

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 m}\left(\underline{p}+e A_{0}(r)\right)^{2}+\frac{1}{2} m \Omega_{0}^{2} r^{2} \tag{74}
\end{equation*}
$$

with $\nabla \times A_{0}(\Omega)=\hat{z} B_{0}$ an before, ie.; i particle moving simultacoondy in a mynetic field and a humour 3-d potentid well. The resulting spectrum is as follows:

$$
\left.\begin{array}{c}
I t \psi_{n m p} \cdot E_{n m p} \psi_{n m p} \\
E_{n m p}=\left\{\hbar\left(\omega_{c}^{2}+\Omega_{0}^{2}\right)^{1 / 2}(2 n+|m|+1)+m \hbar \omega_{c}+\hbar \Omega_{0}(p+1 / 2)\right\} \\
n=0,1,2, \ldots \tag{76}\\
m=0, \pm 1, \pm 2, \ldots \\
p=0,1,2 \ldots
\end{array}\right\}
$$

This result has proved very useful in the study of quatum dots.
It is extremely intersection to constivat a sect of cohered states for this system, and to see what physics cen be derived from the use of the 2 l -quantized operators defined in (54) above, as well an the coherent states. The points I wish to euphemise in the following are:
(i) the wo y in which one may extract useful information about the eigenfunction s of the system, and indeed use then, without ever constructing them
(ii) the connection with the ungula momentum properties of the system.
(iii) very briefly, the connection to the quantised Hall effect.

Let us stor by detimg operstas

$$
\begin{equation*}
c_{\alpha} \div\left(\hat{r}_{\alpha}+i \frac{\hat{\pi}_{\alpha}}{m \omega_{c}}\right)=\left(\hat{\sigma}_{\alpha}+i \frac{\hat{\pi}_{\alpha}}{\left|e B_{0}\right|}\right) \tag{77}
\end{equation*}
$$ where $\alpha=x, y$.

102
The physical sigaticane of these operations is clever if we wite the problem in the symmetric gunge, ie., wits a Mcultonian

$$
\begin{equation*}
\text { If }=\frac{1}{2 m}\left[\left(\hat{P}_{x}-\frac{e B_{0}}{2} \hat{y}\right)^{2}+\left(\hat{P}_{y}+\frac{e B_{0}}{2} \hat{x}\right)^{2}\right]+\frac{P_{2}^{2}}{2 m} \tag{48}
\end{equation*}
$$

where we have used the gage

$$
\begin{equation*}
\underline{A}_{0}(r)=\frac{1}{2} \delta_{0}(-\hat{y}, \hat{x}, 0) \tag{79}
\end{equation*}
$$

If we expand this out it becomes deer that there ere 2 conserved greatities in the problem, viz

$$
\begin{align*}
& x_{0}=\hbar k_{y} /\left|e B_{0}\right| \tag{80}\\
& y_{0}=-\hbar k_{x} /\left|e B_{0}\right|
\end{align*}
$$

(the quality y_{0} was diredy given above -see (48)), which ere goths but the centre coordincerss at the comespendis conical cyclotron orbit. - We will discuss there more later. Thus the opectane \hat{C}_{x}, \hat{C}_{y} ore just the

Let no therefore go to a complex variable repreceatetion, sid define, in addition to the ladder operators a, a^{+}in (54), the sect at operations

$$
\begin{align*}
& c=\frac{1}{\ell_{0} \sqrt{2}}\left(c_{x}+i c_{y}\right) \\
& c^{+}=\frac{1}{\ell_{0} \sqrt{2}}\left(c_{x}-i c_{y}\right) \tag{81}
\end{align*}
$$

so that

$$
\begin{equation*}
\left[c, c^{+}\right]=1 \tag{82}
\end{equation*}
$$

So now we here 2 sots of apectors, the a, a^{+}and c, c^{+}aperdors. Actually the ce e very similes, is we see if we write them nav in terms of the complex variable $x+c y=2$; we have

$$
\begin{align*}
a^{+}=\frac{2}{\sqrt{2}}\left(\frac{z}{2 l_{0}}-2 l_{0} \partial_{z^{*}}\right) & \equiv \frac{i}{\sqrt{2}}\left(\bar{z}-\partial_{\bar{z}^{*}}\right) \tag{83}\\
a=\frac{-i}{\sqrt{2}}\left(\frac{z^{*}}{2 l_{0}}+2 l_{0} \partial_{z}\right) & \equiv \frac{-i}{\sqrt{2}}\left(\bar{z}^{*}+\partial_{\bar{z}}\right) \\
c^{+}=\frac{1}{\sqrt{2}}\left(\frac{z^{*}}{2 l_{0}}-2 l_{0} \partial_{z^{2}}\right) & \equiv \frac{1}{\sqrt{2}}\left(\bar{z}^{*}-\partial_{\bar{z}}\right) \tag{84}\\
c=\frac{1}{\sqrt{2}}\left(\frac{z}{2 l_{0}}+2 l_{0} \partial_{z^{*}}\right) & \equiv \frac{1}{\sqrt{2}}\left(\bar{z}+\partial_{\bar{z}^{*}}\right)
\end{align*}
$$

where we define the rescaled length

$$
\begin{equation*}
\bar{z}=z / Q l_{0}=\left(\frac{m \omega_{0}}{4 \hbar}\right)^{1 /} z \tag{85}
\end{equation*}
$$

and we recall that $\partial_{2}=\frac{1}{2}\left(\partial_{x}-2 \partial_{y}\right)$. Another intecesty why of writ un these proctor is in cylindical coocdinbtes in the z-plane notion that if we wite $z=r e^{i \theta}$, then

$$
\begin{equation*}
\partial_{x} \pm i \partial_{y}=e^{ \pm i \theta}\left(\partial_{r} \pm i / r \partial_{\theta}\right) \tag{86}
\end{equation*}
$$

We then find that

$$
\left.\left.\begin{array}{l}
\left.\begin{array}{l}
a \\
a^{+}
\end{array}\right\}=\frac{1}{\sqrt{2}} e^{\mp i(\theta+\pi / 4)}\left[\left(\bar{r}-\frac{i}{2 F} \partial_{\theta}\right) \pm \frac{1}{2} \partial_{F}\right] \tag{87}\\
c \\
c^{+}
\end{array}\right\}=\frac{1}{\sqrt{2}} e^{ \pm i \theta}\left[\left(\bar{r}+\frac{i}{2 \bar{r}} \partial_{\theta}\right) \pm \frac{1}{2} \partial_{\mu}\right],\right\}
$$

where $\bar{F}=M / 2 l_{0}$. We see that these operators act to chape the angular manedun and the redial. coordinate of the elections, in coordinetal why.

We ca think of the $a_{i} a^{+}$operators an ladder opectorn for the geuerised moments $\hat{\pi}$. and the C, C^{+}operative as those acting on the geveclised cyclotron centre coardinde at the elections. Note the they commute, ie.

$$
\begin{equation*}
[a, c]:\left[a^{+}, c\right]=\left[a^{+}, c^{+}\right]=\left[a, c^{+}\right]=0 \tag{87}
\end{equation*}
$$

Hoverer they ditter greatly in their commutation reldions with the Homoltenia-one hes

$$
\left.\begin{array}{l}
{[a, 1 t]=\hbar \omega_{c}\left[a,\left(a^{+} a+1 / 2\right)\right]=\hbar \omega_{c} a} \tag{89}\\
{[c, 1 t]=0}
\end{array}\right\}
$$

These relation tell in this the goerdus a, a^{t} move the election between Landon levels, with an evessy change of two; where the c, Ct operators lease them in the sone Landon level, moving the system between the loge number at degenerate states in cad Landman level.

We thus need both sets at operctaso to cresta/snothilche all the different states in the $2-d$ system. The "ground state"; defined by $b\left|\Psi_{00}\right\rangle=a\left|\Psi_{\infty}\right\rangle=0$, is then given by the sndogne at (A.462):

$$
\left.\begin{array}{rl}
\left|{I_{00}}\right\rangle & =\frac{1}{\sqrt{2 \pi l_{0}^{2}}} e^{-2 z^{*} / 4 l_{0}^{2}} \\
& =\frac{1}{\sqrt{2 \pi l_{0}^{2}}} e^{-\bar{z} \Sigma^{*}}
\end{array}\right\}
$$

and the other states in the lowest Laden level can be created by applying C^{+}to this vacuman st de:

$$
\left.\begin{array}{l}
\left|\Psi_{O M}\right\rangle=\left(c^{+}\right)^{m}\left|\Psi_{00}\right\rangle=\frac{\left(z^{*}\right)^{m}}{\left(2^{m} 2 \pi!_{0}^{2} m!\right)^{1 / 2}} e^{-z z^{*} / 4 b^{2}} \tag{91}\\
\hat{H}^{\left.\hat{\Psi}_{0 M}\right\rangle}=\frac{1}{2} h \omega_{c}\left|\Psi_{O M}\right\rangle \quad \forall m
\end{array}\right\}
$$

and the other stoles ore just

$$
\left.\begin{array}{l}
\left|\Psi_{n m}\right\rangle=\frac{\left(c^{+}\right)^{m}\left(a^{+}\right)^{n}}{\sqrt{n!m!}}\left|\Psi_{o 0,}\right\rangle=\frac{i^{n}\left(z-4 l_{0}^{2} \partial_{2}\right)^{n}\left(z^{+}\right)^{m}}{\left(2^{n+m} 2 \pi l_{0}^{2} n!m!\right)^{\frac{1}{2}}} \\
\hat{\nu}_{\mathscr{f}}\left|\Psi_{n m}\right\rangle=\hbar_{c}(n+1 / 2)\left|\Psi_{n m}\right\rangle
\end{array}\right\}
$$

$$
\}(22)
$$

104
wher we are

$$
\begin{array}{ll}
\bar{z}=\frac{1}{\sqrt{2}}\left(c-i a^{+}\right) & \partial_{\bar{z}}=\frac{1}{\sqrt{2}}\left(i a-c^{+}\right) \\
\bar{z}^{*}=\frac{1}{\sqrt{2}}\left(c^{+}+i a\right) & \partial_{\bar{z}^{*}}=\frac{1}{\sqrt{2}}\left(c+i a^{+}\right)
\end{array}
$$

One miy now derelap the theny in temon of thexe wive-fuwthon, colcukkhory operator
 thice using the position spice represesiciin of thexe wree-fus (whici ce hypergeanetro function).

Let's wey brectly note in parers the connedion to the FPHE. Elecetions in stion fields in $2 d$ (the sozectled $2-d$ election sow, or $2 D E G$). go at law T into - renuckible collecture stde. In the notetion we hae ber norby up to now, this stobe cu be untten so

$$
\begin{equation*}
\Psi_{\nu}^{(0)}(\{z,\})=\prod_{i<j}\left(z_{i}^{*}-z_{j}^{*}\right)^{1 / \nu} e^{-\frac{1}{\xi} E|z|^{2}} \tag{94}
\end{equation*}
$$

where we sassure (s) that the lavest Ledion level is filled up petiolly, so thd s fruction ν of the stedes in this laust leved cre occupied; and (6) thid the intersctions between the electros can be teected as short rase (in fact the kaghin wive.fin in (94) is exaet in this limett, io the ground stive for the syisten). This sotove desconses election orbitron about ead other wod sustico manectum $1 / \nu$ (end since ν is \& fruction, so is $1 / \nu$ - in the arysul Lasblin theay, ν wes eyml to $\nu=1 / p$, che P is a integer, so $1 / 2=\mathcal{P}$).

The wine function $\mathcal{J}_{\nu}^{(0)}$ in $(9 / 4)$ is the goul stace - Lasghm doe pastulded exched stotes, ot the form.

$$
\left.\begin{array}{ll}
\psi_{\nu}^{+}\left(z_{0}\right)=\prod_{l^{*}}^{N}\left(z_{l}^{*}-z_{0}^{*}\right) \Psi_{\nu}^{(0)} & \text { (hade stiste) } \tag{ss}\\
\psi_{\nu}^{-}\left(z_{0}\right)=\prod_{l^{*}}^{N}\left(\partial_{2^{*}}-\frac{z^{*}}{2 l_{0}^{2}}\right) \Psi_{\nu}^{(0)} & \text { (potide stode) }
\end{array}\right\}
$$

One cu diveler the thery of cohvert stotes here (compue (95) with etta. (0.470), they $\left.z_{0}=0\right)$. Tuese eqto describe either a paticle or hale stide, 1e, a stote in which a patice hes been adhed or romared fion the system.
B.1.2. SOME CENTRAL POTENTIALS

The full thay ot scotterm will be dest with in the neat couple of section. Here we simety introduce 2 exaples, in oder to give us sone cancede rachits. I will cassme hore

 Her we conuider 2 key excmples of such problems.
B.1.2.(a) A 2-d SCATTERING PROBLEM : We ve intereoted in
 eitn redinas to the 2-d adide gitn (6), das with 4he $2 \cdot d$ esphle hermanics in (5).

The time-indeperdent Schrodinger attn in Pd, in the form (6), is pant into stadod form by substitution the dimensionless variable $x=k_{r}$, where k is defined an betive by (18), ie $k^{2}=2 m E / \hbar^{2}$. Then we get

$$
\begin{equation*}
\left[\partial_{x}^{2}+\frac{1}{x} \partial_{x}+\left(1-l^{2} / x^{2}\right)\right] \psi_{l}(x)=\frac{2 m V(x)}{\hbar^{2}} \psi_{l}(x) \tag{96}
\end{equation*}
$$

Recall that for arbitrary real μ (ie, not necessorly integer or $/ 2$-integer), the solution to the homageneoms ditterection eft.

$$
\begin{equation*}
\left[d_{x}^{2}+\frac{1}{x} d x+\left(1-\mu^{2} / x^{2}\right)\right] y(x)=0^{x} \tag{97}
\end{equation*}
$$

is given by the Bessel functions $J_{\mu}(x)$, viz.,

$$
\begin{equation*}
y(x)=a_{1} J_{\mu}(x)+a_{2} J_{-\mu}(x) \quad(\mu \neq \text { integer }) \tag{98}
\end{equation*}
$$

However if μ is integer, 1 ., $\mu \rightarrow l$, then

$$
\begin{equation*}
y(x)=a_{1} J_{l}(x)+a_{2} Y_{l}(x) \quad(l \cdot \operatorname{int} \text { ger }) \tag{99}
\end{equation*}
$$

where $Y_{l}(x)$ is the Necinum function of l-th order." The properties of these functions are gwen in may bales; we recall here some crucial ares.

General Relations: These the the suse form for all the Bessel function, whether and kind (the $\left.Y_{\mu}(x)\right)$. The Newman for are defined in term at the Bessel for es and kind (the $\left.Y_{\mu}(x)\right)$. The Newman for are defined in term ot the Bessel fro as

$$
\left.\begin{array}{rl}
Y_{\mu}(x) & =\frac{1}{\sin \pi \mu}\left[\cos \pi \mu J_{\mu}(x)-J_{-\mu}(x)\right] \quad(\mu \neq l) \\
& =\lim _{\mu \rightarrow l} \frac{\cos \pi \mu J_{\mu}(z)-J_{-\mu}(2)}{\sin \pi \mu}=\left.\frac{1}{\pi}\left[\frac{\partial J_{\mu}(z)}{\partial \mu}-(-1) l \frac{\partial J_{-\mu}(z)}{\partial \mu}\right]\right|_{\mu \rightarrow l}(\mu=l) \tag{100}
\end{array}\right\}
$$

and both of these frs sechsty the recursion relations (let $X_{\mu}(2)$ represent $J_{\mu}(2)$ or $N_{\nu}(z)$):

$$
\left.\begin{array}{ll}
\frac{d}{d z}\left(z^{\mu} X_{\mu}(z)\right)=z^{\mu} X_{\mu-1}(z) & \frac{d}{d z}\left(z^{-\mu} X_{\mu}(z)\right)=-z^{-\mu} X_{\mu+1}(z) \tag{101}\\
X_{\mu-1}(z)+X_{\mu+1}(z)=\frac{2 \mu}{z} X_{\mu}(z) & X_{\mu-1}(z)-X_{\mu+1}(z)=2 \frac{d}{d z} X_{\mu}(z)
\end{array}\right\}
$$

One also defines Havel functions:

$$
\begin{equation*}
H_{\mu}^{ \pm}(z)=\delta_{\mu}(z) \pm 2 Y_{\mu}(z) \tag{102}
\end{equation*}
$$

* In the literature the Neuron function is sometimes written as $N_{l}(x)$

106
(note that the Hostel frs we also called Bessel fris ot the Band kind, and written as $H_{\mu}^{+}(z)=H_{\mu}^{(1)}(z)$, and $\left.H_{\mu}^{-}(z)=H_{\mu}^{(2)}(z)\right)$; ad ane cen write

$$
\begin{equation*}
H_{\mu}^{ \pm}(2)= \pm \frac{i}{\sin \mu \pi}\left[e^{7(\pi \mu} J_{\mu}(2)-J_{-\mu}(2)\right] \tag{103}
\end{equation*}
$$

All at the 4 function $J_{\mu}(z), Y_{\mu}(z)$, and $H_{\mu}^{ \pm}(z)$ satisfy the findementil Bessel eqtn, and any two of them may be used so independent soltins of it. They we otter called cylinder functions. To expand finection in terms of then, are uses the orthogonsloy reloplas. Suppose we confine owseltes to $\mu>-1$, and susie that the zeroes of $J_{\mu}(x)$ acre at $X=\alpha_{n}$. Then the erthogondinty reldion. is

$$
\begin{equation*}
\int_{0}^{1} d t J_{\mu}\left(\alpha_{n} t\right) J_{\mu}\left(\alpha_{m} t\right)=\frac{1}{2} \delta_{n M}\left[\frac{d}{d t} J_{\mu}\left(\alpha_{n}\right)\right]^{2} \tag{104}
\end{equation*}
$$

If we now wat to write the expasian
with k_{n} defined so that

$$
\left.\begin{array}{rl}
f(x) & =\sum_{n} c_{n} J_{\mu}\left(k_{n} a\right) \\
0 & <x<a
\end{array}\right\}
$$

$$
\begin{equation*}
J_{\mu}\left(k_{n} a\right)=0 \tag{106}
\end{equation*}
$$

Then we rewrite (104) as

$$
\begin{equation*}
\int_{0}^{a} x d x J_{\mu}\left(k_{n} x\right) J_{\mu}\left(k_{m} x\right)=\frac{a^{2}}{2} \delta_{n m}\left(J_{n+1}\left(k_{n} a\right)\right)^{2} \tag{107}
\end{equation*}
$$

usm the recension relation, so that

$$
\begin{equation*}
c_{n}=\frac{2}{a^{2}} \cdot \frac{\cdot \int^{a} x d x J_{\mu}\left(k_{n} x\right) f(x)}{\left(J_{\mu+1}\left(k_{n} a\right)\right)^{2}} \tag{108}
\end{equation*}
$$

Form of Bessel functions: It is useful to display there in pictorial form. We begin with the integer-ander Bessel functions. These an be calculated in voiam ways, eg., from the series expansion

$$
\begin{equation*}
J_{\mu}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \frac{1}{\Gamma(1+k+\mu)}\left(\frac{z}{2}\right)^{2 k+\mu} \tag{109}
\end{equation*}
$$

The first 3 Bessel for we sham at leA; their zeroes ore at

For intuitive porposes It is nsefid to remember thed the Bessel function sppeer in the solution to the eqtino at motion of s. Circhler membrese. If this $h e s$ radus a_{0}, thes the solts for the membrince displeent ve

$$
u(\phi, r ; t)=J_{l}(k \mu)\left\{\begin{array}{l}
\cos l \phi \tag{111}\\
\sin l \phi
\end{array}\right\} e^{i \omega t}
$$

with banolery candition

$$
\begin{equation*}
J_{l}\left(k a_{0}\right)=0 \tag{112}
\end{equation*}
$$

so that the sllaved K-valus we

$$
\begin{equation*}
k_{n}=\alpha_{n} / a_{0} \tag{113}
\end{equation*}
$$

It is interests to draw these solutions.
The Neumen function diverge at the arisin, and so for the simple problem of a free vibratimg nembrace (or for a free paticle solintion to Schiodinger's eqta) they ve not rgnined - the frot fow wer shom at left.

Hovever the momat we intridnce a potertict into the pobten, or of we change the bouden, canditions, then we need the Neumsn finctions. Consider, es., the problem of $a 2-d$ vibrating membrue which now has the ring shepe, with the membrese cartined so -thed

$$
u(\phi, r ; t)=0\left\{\begin{array}{l}
r>b \tag{114}\\
r<a
\end{array}\right.
$$

Then, since we have 2 baundores, the soltn necessorily thes the geersl form (99), le

$$
\begin{equation*}
u(\phi, r ; t)=R_{l}(r) f_{l}(\phi, t) \tag{115}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{l}(r)=a_{l} J_{l}\left(k_{r}\right)+b_{l} Y_{l}\left(k_{r}\right) \tag{116}
\end{equation*}
$$

and the bandoy condition (114) becomes

$$
\left.\begin{array}{l}
a_{l} J_{l}(k a)+b_{l} Y_{l}(k a)=0 \tag{117}\\
a_{l} J_{l}(k b)+b_{l} Y_{l}(k b)=0
\end{array}\right\}
$$

Finlly, note the soymptothe formo at the Bessel finctions:

$$
\left.\begin{array}{l}
J_{\mu}(z) \underset{z \rightarrow \infty}{\rightarrow}\left(\frac{2}{\pi z}\right)^{1 / 2} \cos \left(z-\frac{\pi \mu}{2}-\pi / 4\right)\left[1+O\left(\frac{1}{z}\right)\right] \tag{118}\\
Y_{\mu}(z) \underset{z \rightarrow \infty}{\longrightarrow}\left(\frac{2}{\pi z}\right)^{4 / 2} \sin \left(z-\frac{\pi \mu}{2}-\frac{\pi}{4}\right)\left[1+O\left(\frac{1}{z}\right)\right]
\end{array}\right\}
$$

ad the curions result that $1 / 2$-integer Baed functions redine to tigonometrice fis.

$$
\begin{array}{ll}
J_{1 / 2}(x)=\left(\frac{2}{\pi x}\right)^{1 / 2} \sin x & J_{3 / 2}(x)=(2 / \pi)^{1 / 2}[1 / x \sin x-\cos x] \tag{119}\\
J_{-1 / 2}(x)=(2 \pi x)^{\frac{1}{\pi}} \cos x & J_{-3 / 2}(x)=-(2 / \pi x)^{1 / 2}[1 / x \cos x+\sin x]
\end{array}=\text { etc... }
$$

10.8

Let us now tum to a tyricul 2.d scatterm problon, whics is somple and yet demastuctes the bssic ides. We inyne a "herd curcle potediel of form

$$
\left.V(\underline{r})=\begin{array}{cc}
0 & \left(r>a_{0}\right) \tag{1/0}\\
\infty & \left(r \leqslant a_{0}\right)
\end{array}\right\}
$$

Now this protlem is exaly solved using the methods we here just discnssed. the boundoy condition coming from (120), sosumng a soluten in the form (II6), is just

$$
\begin{equation*}
R_{l}\left(k a_{0}\right)=a_{l} J_{l}\left(k a_{0}\right)+b_{l} Y_{l}\left(k a_{0}\right)=0 \tag{12}
\end{equation*}
$$

so tho

$$
\begin{equation*}
a_{l} / b_{l}=-Y_{l}(\mathrm{ka}) / \widetilde{v}_{l}\left(\mathrm{k} a_{0}\right) \tag{122}
\end{equation*}
$$

We ca compore thir woth the patlem when there is no potectid of all - then one simply hes a sum over ordnacy Bessed fos, ica, we hwe components

$$
\begin{equation*}
R_{l}^{(0)}(k r) \quad \sim J_{l}(k r) \tag{123}
\end{equation*}
$$

Let's compere thee 2 solutaons, by lookens at ther csymptotic form. From (II6) and (122) we hme the soymptotic fonn at $R_{l}(k r)$ as

$$
\left.\begin{array}{rl}
R_{l}(k r) & \xrightarrow[r \rightarrow \infty]{ }\left(\frac{2}{\pi k r}\right)^{1 / 2}\left[a_{l} \cos \left(k r-\frac{\pi l}{2}-\frac{\pi}{4}\right)+b_{l} \sin \left(k r-\frac{\pi l}{2}-\frac{\pi}{4}\right) \rrbracket\right. \tag{124}\\
& =\left(\frac{2}{\pi k r}\right)^{\frac{1}{2}} A_{l} \cos \left(k r-\frac{\pi}{2}(l+1 / 2)+\delta_{l}\right)
\end{array}\right\}
$$

wher $A_{l}=\left(a_{l}^{2}+b_{l}^{2}\right)^{1 / 2}$, and

$$
\left.\begin{array}{rl}
\delta_{l} & =-\tan ^{-1}\left(b_{l} / a_{l}\right) \tag{125}\\
& =\tan ^{-1}\left(\frac{J_{l}\left(k_{a_{0}}\right)}{Y_{l}\left(k_{a_{0}}\right)}\right)
\end{array}\right\}
$$

As we wall see wher we do the foand theny of scottey, this phes shift hos a findemated role to olay. Notice thet we conot membisnoaly detrice the scotion fion - J-fo poteatiol asing this result, becume the integnal ander the had ande is andefmed. To do this, lets consider insted the follongy poteatial

$$
\begin{equation*}
V(r)=\bar{V}_{0} \theta\left(a_{0}^{2}-r^{2}\right)=\frac{V_{0}}{\pi a_{0}^{2}} \theta\left(a_{0}^{2}-r^{2}\right) \quad \underset{a_{0} \rightarrow 0}{\longrightarrow} V_{0} \delta(r) \tag{126}
\end{equation*}
$$

To desl with paptlens like this there is a set of studand methods, which we will cover in greeter detril in the discussion of scatterng thery, Itter on. In the preseat coec the problem is fuely essy to solve, since the bondery conditias at $r=a_{0}$ see sumple. Fint, the result, for ay velue of a_{0} :

$$
\begin{equation*}
\delta_{l}=\tan ^{-1}\left\{\frac{\beta_{l}(k, \stackrel{k}{ }) J_{l}\left(k a_{0}\right)-k a_{0} J_{l}^{\prime}\left(k a_{0}\right)}{\beta_{l}(k, \stackrel{\varepsilon}{c}) Y_{l}\left(k a_{0}\right)-k a_{0} Y_{l}^{\prime}\left(k a_{0}\right)}\right\} \tag{127}
\end{equation*}
$$

where the function $\beta_{l}(k, k)$ is

$$
\beta_{l}(k, \bar{k})=\left.\left(\frac{r}{R_{l}(k r)} \frac{d R_{l}(k r)}{d r}\right)\right|_{r=a_{0}}
$$

(128)
and one finds for this problem that, for any value of $k a_{0}$,

$$
\begin{equation*}
\beta_{l}(k, \tilde{k})=\tilde{k} a_{0} \frac{J_{l}^{\prime}\left(k a_{0}\right)}{J_{l}\left(k a_{0}\right)} \tag{129}
\end{equation*}
$$

(ii) Below burner case $\left(E<\bar{V}_{0}\right): \quad \beta_{l}(k, \tilde{k})=\tilde{k} a_{0} \frac{I_{l}^{\prime}\left(k a_{0}\right)}{I_{l}\left(k a_{0}\right)}$

Where in the usia! way we define $I_{l}(x)=(-i)^{l} J_{l}(i x)$, and
and

$$
\begin{align*}
& K^{2}=\frac{2 m}{\hbar^{2}} E \tag{132}\\
& \hat{K}^{2}=\left\{\begin{array}{ll}
\frac{2 m}{\hbar^{2}}\left(E-\bar{V}_{0}\right) & \left(E>\bar{V}_{0}\right) \\
\frac{2 m}{\hbar^{2}}\left(\bar{V}_{0}-E\right) & \left(E<\bar{V}_{0}\right)
\end{array}\right\} \tag{131}
\end{align*}
$$

In a minute I will sleeted how ane gets these results - but let's briefly look at which hoppers when we take $a_{0} \rightarrow 0$, to get the δ - f_{n} poteaticl. It $1 s$ then clear that we we only interested in the below bunco case (130), and that for any finite E we have

$$
\left.\begin{array}{l}
k a_{0} \rightarrow 0 \tag{132}\\
k a_{0}=\left(\frac{2 n}{\pi} V_{0}\right)^{\frac{1}{2}} \frac{1}{\hbar}
\end{array}\right\}\left(a_{0} \rightarrow 0\right)
$$

and so for the δ - function potential we get a result. INDERENDENT af V_{0} :

$$
\begin{equation*}
\tan \delta_{l}(k)=\frac{J_{l}\left(k a_{0}\right)}{Y_{l}\left(k a_{0}\right)} \quad \cdots\left(a_{0} \rightarrow 0\right) \tag{133}
\end{equation*}
$$

To anclyse this we need the soymptatic properties os $x \rightarrow 0$ of the Bessel functions; these are gives by

$$
\begin{equation*}
J_{l}(x) \underset{x \rightarrow 0}{ } \frac{1}{l!}\left(\frac{x}{2}\right)^{l} \tag{134}
\end{equation*}
$$

while

$$
\left.\begin{array}{ll}
Y_{l}(x) \underset{x \rightarrow 0}{\longrightarrow} \frac{1}{\pi(l-1)!}\left(\frac{2}{x}\right)^{l} & (l \neq 0) \tag{135}\\
Y_{0}(x) \underset{x \rightarrow 0}{\longrightarrow} \ln \left(c, \frac{x}{2}\right) & \ell=0
\end{array}\right\}
$$

where $\begin{aligned}\left.C_{1}=e^{\gamma} \text { and } \gamma \text { is the Enler-Mnacheront constant : } \begin{array}{rl}\gamma & =\lim _{s \rightarrow \infty}\left(\sum_{k=1}^{s} \frac{1}{k}-\ln s\right) \\ & =0.577215 . .\end{array}\right\}(136)\end{aligned}$
(thence $C_{1}=1.781012 \ldots$).
Now wo see that in the $\delta-f_{n}$ limit $a_{0} \rightarrow 0$, all of the phase shits go to zero, and in frat we have ($P_{T_{0}}$).

$$
\left.\begin{array}{ll}
\tan \delta_{l}(k)=\frac{\pi}{l}\left(\frac{k a_{0}}{2}\right)^{2 \ell} & (l \neq 0) \tag{137}\\
\tan \delta_{0}(k)=\frac{\pi}{2 \ln \left(c_{1} \frac{k a_{0}}{2}\right)} & (l=0)
\end{array}\right\}\left(a_{0} \rightarrow 0\right)
$$

Thos for finite l, the phace chits decreace vey coridly is a pover iov in $k \varepsilon_{0}$; hovever for $l=0$ we gat a rothe slow decrese, goon hle $1 / \ln \left(k a_{0}\right)$. io $k x_{0} \rightarrow 0$.
 ever thoursh the phone shit the $\delta_{0} \rightarrow 0$ in the $\delta-f_{1} \lim t$, we shill see that the scattering cross-section in the $l=0$ chunel secudly diverges as $k \rightarrow 0$. It tums out that seatterns in $2 d$ is full of sumpires.

Now let's see haw one gets there results. Firot, notice by camporm (121) and (125), wo ces wante the andul wiwe-function in the fom

$$
\begin{equation*}
R_{l}(k r) \propto\left(\cos \delta_{l}(k) J_{l}\left(k_{r}\right)-\sin \delta_{l} Y_{l}\left(k_{r}\right)\right) \tag{138}
\end{equation*}
$$

(we will get an exat expresion /der on). Now suppase we evvacte the logunthmic demective of $R_{l}(\mathrm{kr})$ at $r=a_{0}$, 1e., we calalde

$$
\begin{equation*}
\beta_{l}=\left.\left(\frac{r}{R_{l}(k r)} \frac{d}{d r} R_{l}(k r)\right)\right|_{r=\varepsilon_{0}}=k a_{0}\left[\frac{\cos \delta_{l} J_{l}^{\prime}\left(k k_{0}\right)-\sin \delta_{l} Y_{l}^{\prime}\left(k a_{0}\right)}{\cos \delta_{l} J_{l}\left(k c_{a_{0}}\right)-\sin \delta_{l} Y_{l}\left(k c_{0}\right)}\right] \tag{139}
\end{equation*}
$$

From this we cu, immedidely winte $\delta_{l}(k)$ a $<$ fanction of β_{l} in the form (127), wal At olly remess to errlunte $\beta_{l}(k)$. Now this ca be done in geverl by notions thd the logathanice derivalive muat be cantinuow, so thed

$$
\begin{equation*}
\beta_{l}\left(r=a_{0}+\epsilon\right)=\beta_{l}\left(r=a_{0}-\epsilon\right) \tag{140}
\end{equation*}
$$

But the solutions for $R_{l}(k r)$ inside the potaticl $V(r)$ in (126) are abvers - they ca only be ordncuy Beved finction $J_{e}(\mathrm{ken})$, since no function live $Y_{l}(\mathrm{ka})$ is sllared (1t diverses at the ongin). Thim we get the ressuts (129) and (130).

We shall rethrn to problem like this in the section on secthers. Let un now tum to a refter difterent kand of 2 -d scoterons problem.
B.1.2. (b) FLUX TUBES and MONOPOLES: \qquad to a wey fincos
result, ahich comod considectle disbeliaf wher frost pubbiced, since it shaved that in

 zere. This the essenticl result of Ahconou K Bohm, in 1959.

And yet in way physicsts shaid not have been surpoired. Alreedy in 1931, Dirsc had considered the problem of a chosed electron moing in the field ot a mynnetic monopole. At the trie the most strikerg, fenture of the proor wio the result thet quedizchion of the eletinc chare implied a gueatisction af monopole choge-but in retrosped one stoo sees thas these topoligicel eltects depad aly on the flux that
is enclared by a giver pets, and not on the existence at any fields on the paths themselves.

THE AHARONOU-BOHM EFFECT: We consider the set-up shown in
(a) in the Fugue below., In fact

Ahesonov Born did not even enclose their infinitesimal flux tube with "hand circle", which latter ca be used to rigorously exclude the election from the region where the infinitesimal tox tube penetrates the plane. As they shoved (and as we will see)

(b)

Two realisations of the aharonovBOHM THOUGHT EXPERIMENT. this had circle does not change the results. The mathematics involved in the AhemovBohr problem is rather tedious, so we will first recall the results for the problem show in Fig. (6) at left below. In pot A this problem Wen solved completely (if pert A, efts $(289):(295)$). In perticulor for s closed ring enclosing \& flux ϕ, we fond that the eigenfunction and eugenenegies were

$$
\left.\begin{array}{l}
\psi_{l}(\theta)=\frac{1}{\sqrt{2 \pi}} \exp \{1(l+\alpha) \theta\} \tag{141}\\
\epsilon_{l}=\frac{\hbar^{2}}{2 m}(l+\alpha)^{2}
\end{array}\right\}
$$

for $<$ ring of unit rodins, act elections of mas m corculding ciond the ing; and the porneter

$$
\begin{equation*}
\alpha=\frac{\Phi}{\Phi_{0}}=\frac{2 \pi e}{\hbar} \Phi=\frac{e}{\hbar} \oint \underline{A}, d l \tag{142}
\end{equation*}
$$

Where e is the chose of the particle, and Φ
the flux passing dom the flux tube.
Nov let's consider the setters problem shown in Fig. (a) above. We have the urial Hamiltonian
with a potent sss

$$
\begin{align*}
& \mathcal{H}=\frac{1}{2 n}(\rho+e A(\tilde{r}))^{2} \tag{143}\\
& A(\underline{r})=\hat{\theta} \Phi / 2 \pi r \equiv \Phi \frac{\hat{z} \times \hat{r}}{2 \pi r} \equiv \alpha \Phi \frac{\hat{z} \times \hat{r}}{2 \pi r}
\end{align*}
$$

representing, Anx-tube of infintesment ceding, consing fans Φ.
In the usual wy are spodes this system into radish k insular components, to gd a wave - function

$$
\begin{equation*}
\Psi(r, \theta)={\underset{Z}{l}}^{c_{l}} X_{l}(\theta) \psi_{l}(k r) \equiv \mathcal{E}_{l} c_{l} \Psi_{l}(\theta, r) \tag{144}
\end{equation*}
$$

satusty.ng the efta:

$$
\begin{equation*}
\left\{\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\left[k^{2}-\frac{1}{r^{2}}\left(i \partial_{\theta}+\alpha\right)^{2}\right]\right\} \mathbb{F}(r, \theta)=0 \tag{145}
\end{equation*}
$$

From what we hae daw ketare on Bessel fro we see that the solution ce suns of comporats of form

$$
\begin{equation*}
\Psi(\theta, r)=e^{i l \theta} J_{l \pm \alpha}(k r) \quad(r \neq 0) \tag{146}
\end{equation*}
$$

in te region astride the field. Hevover the infintesinat region inside the field ca only hae Basel for ot postiche order, so that when we match three (this calculation as properly done using a flux tube of finite radius a_{0}, and then lethe $a_{0} \rightarrow 0$), we gat only such terms -
thence we get a solution

$$
\begin{equation*}
\text { Ir }(r, \theta)=\sum_{l=-\infty}^{\infty} c_{l} e^{i l \theta} J_{l l+\alpha \mid}\left(k_{r}\right) \tag{147}
\end{equation*}
$$

To find the caetficeerts $\left\{c_{l}\right\}$ we seed to sot boundary conditions. It turns ont thad this is rather s messy problem in general, although we notice tho we ca ware down the Great function for the particle immediedely, using ($14 y$); we hare, for an infinite system

$$
\left.\begin{array}{rl}
G\left(r_{2} \theta_{2} ; r_{1} \theta_{1} ; t\right) & =\sum_{l} \Psi_{l}\left(r_{2}, \theta_{2} \mid \Psi_{l}^{\ell}\left(r_{1} \theta_{1}\right) e^{\left.-i / \epsilon_{l} \epsilon_{k}\right) t}\right. \tag{148}\\
& =\frac{1}{2 \pi} \sum_{l} \int k d l l J_{l l+\alpha \mid}\left(k_{1}\right) J_{l l+\alpha \mid}\left(k_{2}\right) e^{i\left[l\left(\theta_{2}-\theta_{1}\right)-\frac{\hbar k^{2} t}{2 n}\right.}
\end{array}\right\}
$$

since for the infinite system

$$
\begin{equation*}
\epsilon_{l}(k)=\frac{\hbar^{2} / k^{2}}{2 m} \tag{149}
\end{equation*}
$$

In their fumons papers, Ahcronav k Bohr solved the problem for a pertide incident in plane ware form, then scattered of to infinity. Since this is a nice example of s scattering problem, we summarise the result, here - we wall look at it in mare detail in the section as scattering.

$$
\begin{equation*}
F(r, \theta)=e^{i k x}+\frac{1}{\sqrt{r}} f(\theta) e^{i k r} \tag{2d}
\end{equation*}
$$

ie., a wave coming in from the left. The farm (iso) is equivalent to the specification at 4 boundary condition, which is thick s wave hes been incident on the scatterer for an infinitely long time, and so the $4 t r \rightarrow \infty$, one sums an riciledt ad scettest wave.

For the Ahsmar. Bohr preteen, ster considerable algebra, ane cen show that the scattering baodduy condition (150) awes' a set of coeffieents

$$
C_{l}=(-1)^{|l+\alpha|} \quad \text { (scattering B.C.) }
$$

and that the acid form of the solution is then, is $r \rightarrow \infty$, gwen by

$$
\begin{equation*}
\mathcal{F}(r, \theta) \backsim e^{i(k r \cos \theta+\alpha \theta)}-\frac{e^{i k r+i \pi / 4}}{\sqrt{2 \pi k r}} \sin \pi \alpha \frac{e^{i \theta / 2}}{\cos \theta / 2} \tag{152}
\end{equation*}
$$

This result shows that the effed of the flux tube is rester complicated. It canes both a Prese shift in the incoming place vire, and it gives s secttered wave whose intensity varies periodically with α, with < maximum when α is $1 / 2$-integer; and zero if α is on integer.

Acidly it twos ont that this form breaks down in the direction of forward scattering, and we shall stand this. in mane decal in the section on scattering.

It is interesting at tho point to note the way in which the Ahrouar-Bchm effect shows in in practise. From (152) ve see the one obvious elteet ot \& Aux tube will be to shit the fringes in any interterice pattern, becree of the factor $e^{2 \alpha \theta}$ in the plur voe; in fop, as distances such that $\mathrm{kr} \ll 1$, the scattered wave will badly show up in the solution (again, this is not time for forward setters). From the result for.s:ans. given. in (141), we see that this eater phase factor is nothing
lat the result of in extra castles momentum to α imported to the electron by the from tube, ever in the absence of ay wone-scattering from the vicinity of the tube. This is me of the mare froconcting caseguerces of the non-loed netwe of $A(\underline{1})$, canoed by the long-raned form $\alpha 1 / \mathrm{r}$. same very nice experiments have bees dose to show how this works in practise. Here I show inst. few. A very carly experiment looked at the contionams shift of in
 interferaci fringe, canned by s Amp enclosed in the pets ot a set ot election wives - this is shown below. Below left we see whit happens when elections are incident on a v. small mynatic ring

ABOVE: SHIFT OF INTERFERENCE FRINGES IN A 2-SLIT EXP CAUSED BY INSERTED FLUX

LEFT: IMAGE FROM ELECTRON WAVES MOVING PAST A TOROIDAL MICROMAGNET.

RIGHT : SHIFTED FRINGES OF ELECTRONS MOVING PAST AN IRON SLIVER

11.4

MAGNETIC MONOPQLE : Now lets tween to a problem which yields faxanchng results, intereotion bots for ow movestachy of the nature at dentine k mynetic charge in potiche theory, and for ow unclustading of spin. Fallanneng the remotectile eedy paper of Dirsc, we consider a magnetic monopode of strength g at the origin. The. Hamiltonian for an election is now (adding < center potential):

$$
\begin{equation*}
H f=\frac{1}{2 n}(p+e A(r))^{2}+V(r) \tag{153}
\end{equation*}
$$

where two common game choices are used (we use sphereal coordindes ($r, \theta, \phi)$):

Bots of these give a field:

$$
\begin{equation*}
b(r)=\frac{g}{4 \pi} \frac{\hat{\imath}}{r} \tag{155}
\end{equation*}
$$

Befve looking ot the solution to this problem, let's jut briefly go over Dirrcis famous result redding g and e. The cant is bcoscally very simple boxed on single -valuediess of the wave.fmection. Consider now a ensuit mede by an election of chose e around the
(a)

(b)
(a) THE DIRAC STRING
(b) area S, on THE unit sphere, ENCLOSED by C_{1}
(c) ARGA ENCLOSED ${ }^{\mathrm{By}} \mathrm{C}_{2}$.

(c)
that $S_{1}=\Omega$, and

$$
\begin{equation*}
S_{1}+S_{2}=4 \pi \tag{158}
\end{equation*}
$$

Now we ca calculde ϕ sand this curve - we gat

$$
\begin{equation*}
\phi_{2}(\Omega)=\frac{e}{\hbar} \oint_{C_{2}} A \cdot d l=\left(\frac{e}{\hbar} \int_{\Omega} B \cdot d S+\frac{e}{\hbar} g\right) \tag{159}
\end{equation*}
$$

Where we use (158); the ditferce between $\phi_{1}(C)$ and $\phi_{2}(C)$ is just the Ans integrated over the entree sphere. Esseatidly what we ce saying is that the cere enclosed by the carte is only defined modulo 4π - whether we are eiclosing S, on to compleat is a matter
of choice. Now for the phase to be well-detined, we require $\phi_{1}(\Omega)$ and $\phi_{2}(\Omega)$ to be physically equivalent, meaning they must diffs by a multiple of 2π, ie

$$
\begin{equation*}
\phi_{2}(\Omega)-\phi_{1}(\Omega)=g e / \hbar=2 \pi n \quad \text { le } g e=n h \tag{160}
\end{equation*}
$$

This is Dine's quatizction condition - just as in the Aheranaw . Bohmeltect. it comes from the detention at a phase in terms of \& line integrt S A.dl; ad the requiemed that this phase be defined modulo 20. Ultimedely this requirement will be seer to be equivalent to single-voluednens of α wisre-function.

Another interesting way to get the some result is by noticing that the vector fields $A(r)$ in (154) ce singular when $\theta \rightarrow 0$, re., slang the north pole (in both cases the vector field Ar) creculdes slang "lines of contciat latitude", with munsitude diverging at the month pale, and going to were at the south pole). Such s divergence in $A(r)$ is inext-ble, and follows from as elementary topoligical theorem (say vector field on a closed simple sur rice, of germs 0 , nut have at lecot one singularity). One ingunes \& "flux tube", called the Dirac string, coming into the monopole along the positive Z-skis, in order to understand the form $\underline{A}(\mathrm{C})$ in (154). This tube on string cures \leqslant Aux $\Phi_{D}=g$, equal to the tote Aux coming from the red monopode, 18

$$
\begin{equation*}
\Phi_{D}=g=\oint_{4 \pi} B \cdot d S \tag{161}
\end{equation*}
$$

However we now notice this we con mike s gunge franstarnction, and chape to the folloung forms for $\underline{A}(s)$:

$$
A(r)=\left\{\begin{array}{lc}
\hat{\phi} \frac{g}{4 \pi} \tan \theta / 2 & \left(\cos t_{1}-P_{0} / \infty\right) \tag{162}\\
\hat{\phi} \frac{g}{4 \pi r} \frac{1-\cos \theta}{\sin \theta} & (\text { anti-Dlarc) }
\end{array}\right\}
$$

Now the Dirac string is coming in slang the south poe (and $\underline{A}(1)$ is cinculctiong in the opposite direction).

Let's now compare the phase change sccumulded by a pals taken once around the equator, on the unit sphere. If we use the pols or Dire ganges in (154), we get

$$
\begin{equation*}
\phi_{+}(C)=\frac{e}{\hbar} \oint_{\text {equator }} A^{+} \cdot d!=e / \hbar g / 2 \tag{163}
\end{equation*}
$$

wheres it we take the sore circuit will $A^{\prime}(r)$ in (162), we get

$$
\begin{equation*}
\phi(c)=e / \hbar \oint_{\text {equates }} A^{-} \cdot d \underline{l}=-e / \hbar 9 / 2 \tag{164}
\end{equation*}
$$

Again, we argue that these 2 must be the some modulo 2π, which leads to the conclusion thad

$$
\begin{equation*}
\phi_{+}(c)-\phi_{-}(c)=e / n g=2 \pi n \tag{1/5}
\end{equation*}
$$

leading agon to (160), which we also write as:

$$
\begin{equation*}
\Phi_{D} \equiv g=n \Phi_{D} \tag{166}
\end{equation*}
$$

116
(a) the flux carved by the Dirac string mast be a multiple of Φ_{0}. Thus we crave of the conclusion this the flux carried by s magnetic manapolei "mist bes multiple of the fins quatum-ad in the form (160), that the monopole "charge" g mat be inversely proportional to the electric charge e

With these preliminieres in hand, led's nov looks ot. The Schrodinger eqta for this problem. It is useful to define the opector

$$
\begin{equation*}
\underline{J}=r \times(p+e \underline{A}(\underline{r}))+\frac{e g}{4 \pi} \hat{r} \tag{167}
\end{equation*}
$$

which tho components

$$
\begin{equation*}
\hat{J}_{ \pm}=\hat{J}_{x} \pm i J_{y}^{n}=e^{ \pm i \phi}\left\{i \hbar \cot \theta \partial_{\phi} \pm \hbar \partial_{\theta}+\frac{e s}{4 \pi} \frac{\sin \theta}{1+\cos \theta}\right\} \tag{168}
\end{equation*}
$$

where we have used the gunge $A^{\prime}(f)$ in (162), in the anta-Dirse form. We notice that the J_{α} obey the connect commutation reldion:

$$
\begin{equation*}
\left[\hat{J}_{\alpha}, \hat{J}_{\beta}\right]=t \epsilon_{\alpha \beta \gamma} \hat{J}_{\gamma} \tag{169}
\end{equation*}
$$

and \hat{J}^{2} and \hat{J}_{2} comnombe with \mathcal{H} :

$$
\begin{equation*}
\left[\hat{H}, \hat{\underline{\jmath}}^{2}\right]=\left[\mathcal{H}, J_{2}\right]=0 \tag{170}
\end{equation*}
$$

Then we ca use the "rotatio nd invorvae" (under trastarmationd geverched by J) to write the Hamiltonian ss

$$
\begin{equation*}
I t=\frac{1}{2 m}\left[P_{r}^{2}+\frac{1}{r^{2}}\left(J^{2}-\frac{e^{2} g^{2}}{(4 \pi)^{2}}\right)\right]+V(r) \tag{171}
\end{equation*}
$$

woe the edict momecturn is

$$
\begin{equation*}
P_{r}=-i \hbar \frac{1}{r} \partial_{r} r \tag{172}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{2}=\left\{-\hbar^{2}\left(\frac{1}{\sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)+\frac{1}{\sin ^{2} \theta} \partial_{\phi}^{2}\right)-\frac{2 i e g \hbar}{4 \pi(1+\cos \theta)} \partial_{\phi}+\frac{2 e^{2} g^{2}}{(4 \pi)^{2}(1+\cos \theta)}\right\} \tag{173}
\end{equation*}
$$

Note that the aperctio I " nat redly as ugaler momation - the real angular momention in the problem is

$$
\begin{equation*}
L=r \times(p+e A(r)) \tag{174}
\end{equation*}
$$

Hoverer L is not conooved, whereas J is (and this is true in the equivalent conical problem is well, at conses).
T^{2} To solve for the Honiltoniss in (171) we look for simultuean eagetenction of J^{2} ad J_{z}, and write the solution in the form

$$
\begin{equation*}
\nabla(r, \theta, \phi)=\psi(r) Y(\cos \theta) e^{i(m+\mu) \phi} \tag{17s}
\end{equation*}
$$

where we deture the dimeisionien pormeter

$$
\begin{equation*}
\mu=\frac{e g}{4 \pi \hbar}=\frac{n}{2} \tag{176}
\end{equation*}
$$

We will see thad the pander μ plays the sine role here co the parameter α in the Aheranor. Bate problem; hovers, unite the Ahconor-Bohn case, μ is quantised, toking integer or $1 / 2$-mitegor vises, in line with (160). The quantity m is defined by

$$
\begin{equation*}
\hat{J}_{2} \Psi(r, \theta, \phi)=m \Psi(\theta, r, \phi) \tag{177}
\end{equation*}
$$

ave we notice thad we mont do have

$$
\left.\begin{array}{ll}
& \hat{J}^{2} \mathbb{I}(r, \theta, \phi)=J(J+1) \mathbb{I}(r, \theta, \phi) \tag{148}\\
\text { and } & m=J, J-1, \ldots-J .
\end{array}\right\}
$$

Now, using the sepucaded form in (175), we get 5 redial efta and as efta for the angler motion, is follows (define $\left.\bar{V}(n): 2 n V(n) / \hbar^{2}\right)$:

$$
\begin{equation*}
\left\{\frac{1}{r} \partial_{r}^{2} r+\left[k^{2}-\bar{V}(r)+\frac{1}{r^{2}}\left(\mu^{2}-J(J+1)\right]\right\} \psi(r)=0\right. \tag{179}
\end{equation*}
$$

and. defining $x=\cos \theta$, we have

$$
\begin{equation*}
\left(1-x^{2}\right) Y_{(x)}^{\prime \prime}-2 x Y_{(x)}^{\prime}+\left[J(J+1)+\frac{m^{2}+2 m \mu x+\mu^{2}}{x^{2}-1}\right] Y(x)=0 \tag{180}
\end{equation*}
$$

Thus the radial eytn is in a form we we fomilion with, but the cagnicn eytn is more complictied. I will not go thanh this here (the detailed discussion can be found in peaty in the high eereny literature, going all the why bede to Dirre k Trim n the carly 1930). We wite the solution in turn of the MONOPOLE HARMONics $Y_{T m \mu}$, defined as

$$
\left.\begin{array}{l}
Y_{J m \mu}(x)=\quad C_{J m \mu}\left(1-x^{2}\right)^{m / 2}\left(\frac{1-x}{1+x}\right)^{\mu / 2}\left(\frac{d}{d x}\right)^{J+m}\left[\left(1-x^{2}\right)^{J}\left(\frac{1+x}{1-x}\right)^{\mu}\right] \\
C_{J_{m \mu}}=\frac{1}{2^{J}}\left[\frac{(J+1 / 2)(J-m)!}{(J-\mu)!(J+\mu)!(J+m)!}\right]^{1 / 2}
\end{array}\right\}
$$

The coesplerels of the system defied on the redial esta. and on the boundary condition We assure, ad ca be modestood in the sue why as in the Coulomb problem, except that the parmoter μ now eaters eveystree. In the sane way one can do sectherms theory for the monopole problem.

The monopole problem is interesting not joist for particle theorists. We will see in the next man section that it prides wis with say at doing path integrals for spin.

This concludes the discussion of axcetly solvictle models - it hes only tancred on the tope. it cause, but provided us with a bise for doing perturbative sppoximotion, to which wo now tum.

