APPENDIX

SOME
PROPERTIES
OF FUNCTIONS
OF A COMPLEX
VARIABLE

Throughout this book we make frequent use of certain
properties of functions of a complex variable. A
summary of these properties is presented for reference
and review in this appendix. We recommend that the
student unfamiliar with this material do some outside
reading in a mathematics book on the subject. For
example, the two little books by Knopp (K4) are quite
short and very readable.

A-1 FUNCTIONS OF A COMPLEX
VARIABLE. MAPPING
A complex number has the form
z=x+iy=re" (A-1)
where x, y, r, and 0 are real, i?= —1, and e” =cos 0 + isinf. x and
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Figure A-1 A point in the complex plane

y are the real (Re z) and imaginary (Im z) parts of z, respectively, r = |z| is
the magnitude, and 0 is the phase or argument arg z. Such a number may
be represented geometrically by a point on the complex z-plane, or xy-plane,
as shown in Figure A-1. The complex conjugate of z will be denoted by
¥, ¥ =x—1iy.

A function W(z) of the complex variable z is itself a complex number
whose real and imaginary parts U and V depend on the position of z in the
xy-plane.

W(z) = U(x, y) + iV(x, y) (A-2)

Two different graphical representations of the function W(z) are useful.
One is simply to plot the real and (or) imaginary parts U(x, y) and V(x, y) as
surfaces above the xy-plane (see, for example, Section 3-6, Figure 3-13). The
other is to represent the complex number W(z) by a point in the complex
* W-plane,” or UV-plane, so that to each point in the z-plane corresponds
one (or more) points in the W-plane. In this way, the function W(z) pro-
duces a mapping of the xy-plane onto the UV-plane.

EXAMPLE

W(z) = 22 = (x + iy)® = x*> — y* + 2ixy (A-3)
U=x*—y> V=2y
Alternatively,

W 22w g2 g2 00

The mapping of a number of points and two curves from the z-plane onto
the W-plane is shown in Figure A-2. For example, the line x = 1 becomes
the parabola 4U =4 — V2,
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Figure A-2 Illustration by some points and curves of the mapping
produced by the function W(z)=:z. The points a, b, . . .
in the z-plane are mapped into a’, /', . . . in the W-plane

In the above example, two points z and —z go into the same point W(z).
The upper half of the z-plane maps onto the entire W-plane, and so does the
lower half z-plane. Clearly, this situation presents difficulties for the inverse
mapping, which is produced by the square root

W(z) = 2" = [re®? (A-4)

This is a multivalued function, one point p in the xy-plane going into two
points p* and p" in the UV-plane. [These are the two square roots corre-
sponding to the phases 0, =16, and 0, = 30, + 2n).] This situation is
illustrated in Figure A-3.

Suppose we try to make the mapping single valued by agreeing that a
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Figure A-3 Illustration of the mapping produced by W(z) = z!/2



474 Some Properties of Functions of a Complex Variable

point p corresponds to p’ and not p*. We must make sure that if we start
at p and trace a closed curve in the z-piane, the mapping will produce a
closed curve in the W-plane starting at p’ and returning to p’, not p”. This is
true provided the closed curve in the xy-plane does not encircle the origin.
However, if the curve encircles the origin once, 6 changes by 27 and the
mapped curve in the W-plane will not return to its starting point.

Thus the multivalued feature can be avoided only if we agree never to
encircle the origin z = 0. To ensure this, we draw a so-called branch line g~
branch cut from z = 0 to infinity and agree not to cross it. The singulas
point z =0 is called a branch point. The branch line may be drawn from
z = 0 to infinity in any way but it is usually convenient to take it along the
positive or negative real axis.

The z-plane, when cut in this way, is called a sheet, or Riemann sheet, of the
function W(z). This sheet maps in a single-valued manner onto a portion
(in our example, half) of the W-plane, this portion being called a branch of the
function. A second sheet, similarly cut, is needed to map onto the other half
of the W-plane. We may now cross the branch line without getting into
multivalue troubles if we transfer from one sheet to the other, when crossing
the cut. To picture this, imagine that the edges of the sheets along the cut are
joined to each other in the manner indicated in Figure A-4. The sheets so
joined form a Riemann surface which maps in a single-valued manner onto
the entire W-plane. If we now go around the branch point z = 0 twice, once

AV

b W-plane

(b)

Figure A—4 Riemannsurfaceand mapping for the function W(z) =z
The dashed part of the curve in the z-plane lies on the
lower sheet

-
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Other roots may be described in the same way.

EXAMPLE

Ll
W=z (A-5)

The mapping produced by this function is indicated in Figure A-5. The

origin is again a branch point, said to be of order 2 b i
' ; ecause
surface contains 3(= 2 + 1) sheets. e

Another example is W(z) = In z:

Z=re" (A-6)
Inz=Inr+i0

Tl.w origin is again a branch point, this time of infinite order because the
RlcTnann surface has an infinite number of sheets. Each sheet maps onto a
hgr]zc.mtal strip in the W-plane of width AV =2r in the “imaginary ™
direction. By continued circling of the origin z =0 in the same sense {Me
never return to the starting point on the map. ,

.A.nother important type of function is one containing two branch points
arising from square roots. Consider

W) = /(z - a)(z - b)

edge view
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Figure A-5 Biemarm surface and mapping for W = z'*, This sketch
is a less pictorial way of conveying information similar
to that in Figure A—4
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Figure A-6 Two of the ways of drawing branch lines for the func-
tion W(z) = ./(z—a)(z—b), with the behavior of W
indicated in various regions of one Riemann sheet
covering the z-plane. In both drawings, the sheet is that
one for which W(z) is positive along the “upper side ”
of the real axis to the right of 5. The symbol — i|W|, for
example, means that W(z) is pure negative imaginary at
the place indicated

with branch points at z=a and z = b. The Riemann surface of this func-
tion may be formed by drawing branch cuts from each of the two branch
points to infinity in arbitrary directions, or by making a single cut connecting
the two points.  The resulting Riemann sheets and the branch of the function
corresponding to a given sheet depend on the choice of cuts, as shown for an
example in Figure A-6.

In order to sketch the mapping, it is convenient to introduce polar coor-
dinates of z centered at each branch point, that is,
if2

z—a=re" z—b=r,e

W(z) = /(z — a)(z — b) = (r,ry)!/2eH@1+02

The behavior of this function is indicated in Figure A-6.!

The mappings produced by more complicated functions may be investigated
by extensions of the above procedures.

! In the right-hand drawing of Figure A-6, as the point z moves around the cut, the
radius vectors from a and b to z will of course sweep across the cut. This is perfectly all
right, but the point z itself must not cross the cut—if it does, it will find itself on the other
Riemann sheet.

g
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A-2 ANALYTIC FUNCTIONS

In this section we review those properties of analytic functions of a complex
variable which are needed in this book. For the general mathematical
theory, see any of the numerous books on the subject; for example, Apostol
(AS), especially Chapter 16; Knopp (K4); Copson (C8); Whittaker and
Watson (W5); or Titchmarsh (T4).

1. A function is analytic at a point z if it has a derivative there; that is, if

) < lim1E W = 1)

A-7
i p (A7)

exists and is independent of the path by which the complex number 4 ap-
proaches zero. If a function is both analytic and single valued throughout a
region R, we shall call it regular in R. A region of regularity of a multivalued
function should be specified on a cut Riemann sheet.

2. If W(z) = U(x, y) + i¥(x, y) is an analytic function and we write

h=h,+ih,

then two paths for # —0 are along the horizontal and vertical directions,
for which h, =0 and h, =0, respectively. The limits (A-7) obtained for
these paths must be equal:

ou v 1éU oV .
— il = W'(z
T et e =R Sl
Equating real and imaginary parts of this equation gives the Cauchy—Riemann
differential equations:
ou av oV ou
— =5 T =-— (A-8)
ox dy dx dy
These equations may be shown to be sufficient as well as necessary for the
function W= U + iV to be regular in a region, provided the four partial
derivatives exist and are continuous there.

EXAMPLE
W = z2
U=x*—y? V=2xy
ou av av ou

PR sy

The following example shows that some functions are not analytic any-
where.
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EXAMPLE

W =z*  (complex conjugate)

U=x V=—y
au v
—=+1 —= -1
ox i dy

3. Integration. The integral

f 1(2) dz

is a line integral which depends in general on the path followed from zy to
z, (Figure A-7). However, the integral will be the same for two paths if
f(2) is regular in the region bounded by the paths. An equivalent statement
is Cauchy’s theorem:

35 f(z2)dz=0 (A-9)

if C is any closed path lying within a region in which f(z) is regular.
A kind of converse is also true; if §. f(z) dz =0 for every closed path C
within aregion R, where f(z) is continuous and single valued, then f(z) is
regular in R.

4. If f(z) is regular in a region, its derivatives of all orders exist and are
regular there.

5. Iff(z) is regular in a region R, the value of /(z) at any point within R may
be expressed by Cauchy’s integral formula

d
foy— L (L0

2miJe C—Z

(A-10)

where C is any closed path within R encircling z once in the counterclockwise
direction. This formula follows directly from the theorem of residues,

Figure A-7 Paths of integration in the complex plane
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item 8 below. The remarkable property of analytic functions implied by
Eq. (A-10) should be noted. The values of an analytic function throughout a
region are completely determined by the values of the functio.n on the bound-
ary of that region. See Section 5-2 for an application of this property.
Cauchy’s formula may be differentiated any number of times to obtain

L1 O
f(z)_ﬁ C(C_z)z

o Al ¢ JOd ]
f( }(2)_2—ﬂjcw (A]])

6. A power series expansion (Taylor’s series) is possible about any point z,
within a region where f(z) is regular:

f(z)=a0+al(z—zg)+a2(z—zo)2+"'

ao= () ay= (z0) (A-12)
The region of the z-plane in which the series converges is a circl.c. This
circle of convergence extends to the nearest singularity of f(z), that is, to the
nearest point where f(z) is not analytic.

The converse is also true. Any power series convergent within a circle R
represents a regular function there. ;

7. The Laurent expansion. If f(z) is regular in an annular region between
two concentric circles with center z,, then f(z) may be represented within this
region by a Laurent expansion

o0

f@)= Y afz—z)

=—m

where the coefficients a, are

Jiz) iz (A-13)

_1 §;
=i Yoz — zo)y ™!

C is any closed path encircling z, counterclockwise within the annular region.
Note that the coefficient a_; is

1
=— z)dz -14
a_, 2m_ﬁ‘:f()a' (A-14)

If f(z) is regular in the annulus, no matter how small we make the inner
circle, and yet f(z) is not regular throughout the larger circle, we say that z,
is an isolated singularity of f(z). For such an isolated singularity, there are
three possibilities:
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(a) The Laurent series for f(z) may contain no terms with negative powers
of (z — z,). Thisisatrivial case, and is called a removable singularity.
By redefining f(z) at the point z = z,, the singularity may be removed.
For example, the function

z |z]>0
J@= 1 z=0
has a removable singularity at z = 0.

(b) The Laurent series for f(z) may contain a finite number of terms with
negative powers of (z — z,). In this case 2, is called a pole of order m,
where —m is the lowest power of (z — z,) appearing in the Laurent
series.  For example, the function f(z) = (1/sin z)? has poles of order
twoatz=0, +n, +2r,.... If f(2) has a pole of order m at Zo, the
function (z — z4)"f(z) is regular in the neighborhood of z,.

(¢) The Laurent series for f(z) may contain infinitely many terms with
negative powers of (z —z,). In this case, f(z) is said to have an
essential singularity at z=z,. For example, e!/* has an essential
singularity at z =0 (and therefore ¢* has an essential singularity at
z = ).

If z, is an isolated singularity, the coefficient a_, in the Laurent expansion
is called the residue of f(z) at z,. It has special importance, because of the
relation (A-14), as will now be discussed.

8. The theorem of residues allows us to evaluate easily the integral of a
function f(z) along a closed path C such that f(2) is regular in the region
bounded by C except for a finite number of poles and (isolated) essential
singularities in the interior of C. By Cauchy’s theorem, the path, or contour,
C may be deformed without crossing any singularities until it is reduced to
little circles surrounding each singular point. The integral around each little
circle is then given by (A-14), so that we have the theorem of residues

f Sf(z)dz =2mi } residues (A-15)
c

where the sum is over all the poles and essential singularities inside C. This
theorem is of enormous practical importance in the evaluation of integrals,
and a number of examples of its application are given in Section 3-3,

What if a pole lies on the contour?  The first thing to do is to look into the
physics of the problem to see if this awkward location of the pole results from
some approximation. If so, one can decide on which side of the path the
pole really lies and thus see whether its residue should be included or not.

A mathematical integral with a pole on the contour strictly does not exist,
but, for a simple pole on the real axis, one defines the Cauchy principal value as

¥ 1(z) iy o=l ) b f(x)
d a x—xodx_!sl—»n?; {J.a X — X dx+fxo+6x_x0 dx] (A-16)

where ¢ is positive.
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The path for the Cauchy principal value integral can form part of a closed
contour in which the ends x, + 6 are joined by a small semicircle centered at
the pole (see Figure A-8). Along this semicircle the integral is easy to
evaluate; if we let the radius approach zero, f(z) > a_;(z — x,)~'. Let

z—xo=re  dz=ire”do
Then

f f(z)dz— —j a_,id0 = —mia_,
semicircle 0

and if, as is usually the case, the large semicircle gives no contribution,

§ f(z)ydz=P ff(z) dz — mi(residue at z)

= 2mi(} residues inside C)
This gives the result

P J.f(z) dz = 2ni(4 residue at x, + ) residues inside C)  (A-17)

Thus the Cauchy principal value is the average of the two results obtained
with the pole inside and outside of the contour. ‘

We often have an integral along the real axis with a simple pole just
above (or just below) the axis at x,. We may consider the pole to be on
the axis if we make the path of integration miss the pole by going around
X on a little semicircle below (or above). Then it follows by_reasoning
similar to that leading to (A-17) that the integral may be expressed in terms of
the Cauchy principal value as follows:

X .
ILJC)_ dx =P J‘&dx + inf(xo)
X — Xo T ie X — Xq
We may express this result in the somewhat symbolic form

: — =P - + in 8(x — xo) (A-18)
X — Xq F ig X — X

where d(x — x,) is the Dirac delta-function defined in (4-19).

Xo

Figure A-8 Illustration of a pole on the real axis
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9. The identity theorem states that if two functions are each regular
in a region R, and have the same values for all points within some subregion
or for all points along an arc of some curve within R, or even for a denumer-
ably infinite number of points having a limit point within R, then the two
functions are identical everywhere in the region. For example, if f(z) =0
all along some arc in R, then f(z) is the regular function 0 everywhere
in R.

This theorem is useful in extending into the complex plane functions defined
on the real axis. For example,

1 2
E=1+ztm2t 4o

is the unique function f(z) which is equal to e* on the real axis.

10. Consider a function f(z) which is analytic in a region R of the complex
plane, and assume that a finite part of the real axis is included in R. If the
function f(z) assumes only real values on that part of the real axis in R, then
it can be shown that f(z*) = [ f(z)]* throughout R. That is, going from a
point z to its “image” in the real axis, namely, z*, just carries the value f of

the function over into its image f*. This is known as the Schwartz reflection
principle.

The identity theorem forms the basis for the procedure of analytic continua-
tion. A power series about z; represents a regular function f;(z) within its circle
of convergence, which extends to the nearest singularity. If an expansion of
this function is made about a new point z,, the resulting series will converge
in a circle which may extend beyond the circle of convergence of fi(z). The
values of f3(z) in the extended region are uniquely determined by £,(z)—in
fact, by the values of £;(z) in the common region of convergence of £(z) and
J2(2). f2(2) is said to be the analytic continuation of fi(z) into the new region.
This process may be repeated (with limitations mentioned below) until the

entire plane is covered except for singular points by these elements of a single
function F(z).

EXAMPLE

@) =14z4+22+23 ...

converges in a circle of radius 1 to

1
1—-z

Fz) =

But F{(z) is analytic everywhere except at the simple pole z = 1, and no other
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function analytic outside |z| = 1 can coincide with f,(z) within |z| < 1. F(z)is
the unique analytic continuation of f;(z) into the entire plane.

Not all functions can be continued indefinitely. The extension may be
blocked by a barrier of singularities. -

It may also happen that the function F(z) obtained by contmuatlo.n is
multivalued. For example, suppose that after repeating the process described
above a number of times, the nth circle of convergence partially overlaps the
first one. Then the values of the element £,(z) in the common region may or
may not agree with fi(z). If they do not agree, then the function F(2) is
multivalued, and the “path” along which the continuation was made has
encircled one or more branch points. . .

A power series which converges everywhere defines a single-valued analytic
function with no singularities in the entire plane (excluding o). Such a
function is called an entire function. Examples are polynomials, &7, _aqd
sin z.. A single-valued function which has no singularities other than poles in
the entire plane (excluding o) is called a meromorphic function. Examples
are rational functions, that is, ratios of polynomials. . ‘

We conclude by mentioning Liouville’s theorem; if‘the ‘functmn f(z). is
regular everywhere in the z-plane, including the point at infinity, then f(z) is a
constant.
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A very nice treatment of the theory of functions of a complex vgriable may
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many other books, for example, Copson (C8); Whittaker and Watson (W5);
Apostol (AS5); Nehari (N2); and Titchmarsh (T4).

PROBLEMS
A-1 Describe the mapping produced by the function

1
W - ——————
&= JF -2
A-2 Describe the mapping produced by the function

1
"= T

A-3  Which of the following are analytic functions of the complex variable z?
(@ |zl
(b) Re z
(C) esin z
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