SOME MOCK EXAM QUESTIONS for PHYS 501 (2009)

REMARKS on the EXAM

The exam will last 2 hrs and 30 mins . The only material allowed into the exam will be pens, pencils, and erasers. No notes of any kind are permitted, nor any calculators.

There will be 2 sections. Students should answer THREE QUESTIONS ONLY from section A, and TWO QUESTIONS ONLY from section B. No extra marks will be given for extra questions answered. The questions in section A should take roughly $15-20$ minutes to answer, and the questions in section B roughly 45-50 minutes to answer.

MOCK QUESTIONS

MOCK SECTION A QUESTIONS

A1: Starting from Schrodinger's equation, written as

$$
\begin{equation*}
\left[\frac{-\hbar^{2} \nabla^{2}}{2 m}+V(\mathbf{r})\right] \psi(\mathbf{r}, t)=i \hbar \partial_{t} \psi(\mathbf{r}, t) \tag{1}
\end{equation*}
$$

let us assume a form $\psi(\mathbf{r}, t)=A(\mathbf{r}, t) e^{i \mathcal{S}(\mathbf{r}, t) / \hbar}$ for the wave-function, where $A(\mathbf{r}, t)$ is assumed to vary slowly. Find, by expanding in powers of \hbar, the equations of motion for $\mathcal{S}(\mathbf{r}, t)$ and for the probability $\rho(\mathbf{r} . t)=|\psi(\mathbf{r}, t)|^{2}$. Now, take the equation for \mathcal{S} and, making the identification $E=-\partial_{t} \mathcal{S}$ for the energy, draw the lines of constant action $\mathcal{S}(\mathbf{r})$ at a given time t for the case where $V(\mathbf{r})$ is a 2-dimensional harmonic oscillator, with $V(\mathbf{r})=m \Omega_{o}^{2} r^{2} / 2$.

A2: The propagator for a particle in quantum mechanics is the unitary operator producing time evolution of the wave-function, ie.,

$$
\begin{equation*}
\hat{G}\left(t_{2}-t_{1}\right)=e^{-\frac{i}{\hbar} \hat{H}\left(t_{2}-t_{1}\right)} \tag{2}
\end{equation*}
$$

Show that this operator also satisfies the defining equation for a Green function, viz., that

$$
\begin{equation*}
\left(\hat{H}-i \hbar \partial_{t}\right) \hat{G}\left(t-t^{\prime}\right)=-i \hbar \hat{\mathbf{1}} \delta\left(t-t^{\prime}\right) \tag{3}
\end{equation*}
$$

where $\hat{\mathbf{1}}$ is the unit operator; and also show, by Fourier transforming the propagator, that it can be written in the position representation as

$$
\begin{equation*}
\langle\mathbf{r}| \hat{G}(\omega)\left|\mathbf{r}^{\prime}\right\rangle=\sum_{n} \frac{\psi_{n}^{*}(\mathbf{r}) \psi_{n}\left(\mathbf{r}^{\prime}\right)}{\omega-E_{n} / \hbar} \tag{4}
\end{equation*}
$$

where the $\left\{\psi_{n}\right\}$ are the eigenfunctions of the Hamiltonian \hat{H}.

A3: Consider a free particle of mass m, moving in one dimension. Assuming it moves between spacetime points x_{1}, t_{1} and x_{2}, t_{2}, find the classical action \mathcal{S}_{c} for the classical path between these
points. The quantum propagator for the same boundary conditions is $G\left(x_{2}-x_{1}, t_{2}-t_{1}\right)=A_{o} e^{i \mathcal{S}_{c} / \hbar}$, where we need to find A_{o}. But G is also given by

$$
\begin{equation*}
G\left(x_{2}-x_{1}, t_{2}-t_{1}\right)=\left\langle x_{2}\right| e^{-\frac{i}{\hbar} \hat{H}\left(t_{2}-t_{1}\right)}\left|x_{1}\right\rangle \tag{5}
\end{equation*}
$$

Noting that G is diagonal in the momentum basis, evaluate this expression for G and thereby find the prefactor A_{o}.

A4: A system of two spin- $1 / 2$ particles is in an initial pure correlated stated of form

$$
\begin{equation*}
|\Psi\rangle=a|\uparrow \downarrow\rangle+b e^{i \phi}|\downarrow \uparrow\rangle \tag{6}
\end{equation*}
$$

where a, b are real and $a^{2}+b^{2}=1$. Write down the density matrix for this system in the 4×4 state basis, showing how you have labelled the states in the matrix. Now, suppose we have no knowledge of the state of the 2 nd spin, and must average over it. What is the reduced density matrix for the first spin?

A5: Consider an initial state $|\Psi\rangle=\sum_{j} c_{j}\left|\phi_{j}\right\rangle$ for some quantum system \mathcal{S}. Suppose it now interacts with a measuring device \mathcal{A} in such a way that the measuring system final states $\left|\Phi_{j}\right\rangle$ are uniquely correlated with the initial states of the system. Explain how the 'von Neumann chain' of measurements works, by describing how the wave function of the combined system $\mathcal{S}+\mathcal{A}$ changes, and how the reduced density matrices of both \mathcal{S} and \mathcal{A} changes, before and after the measurement. You should describe the difference between measurements of the 1st and 2nd kind here.

A6: Consider 2 identical quantum particles which scatter off each other in 3 dimensions through an angle θ, with amplitude $K(\theta)$. Now indistinguishability and unitarity (conservation of probability) mean that we can write $K(\theta)=f(\theta)+e^{2 \pi i \alpha} f(\theta+\pi)$. Why is this? Show that in 3 dimensions we must have $\alpha=n / 2$.

A7: In 2 dimensions the Hamiltonian for a charged particle in a perpendicular magnetic field is

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 m}\left(\hat{\mathbf{p}}+e \hat{\mathbf{A}}_{o}(\mathbf{r})\right)^{2} \equiv \frac{\hat{\pi}^{2}}{2 m} \tag{7}
\end{equation*}
$$

where we assume that the vector $\nabla \times \mathbf{A}_{o}(\mathbf{r})=H_{o} \hat{z}$. Show first that the commutation relations between the components of π are

$$
\begin{equation*}
\left[\hat{\pi}_{x}, \hat{\pi}_{y}\right]=-i \hbar e H_{o} \tag{8}
\end{equation*}
$$

Now diagonalise the Hamiltonian by defining bosonic operators which are linear combinations of $\hat{\pi}_{x}$ and $\hat{\pi}_{y}$; and thereby find the eigenvalues.

A8: The 1-particle Green function $G_{o}^{ \pm}$for a free particle with retarded/advanced boundary conditions is

$$
\begin{equation*}
G^{ \pm}\left(\mathbf{r}, \mathbf{r}^{\prime} ; E\right)=\langle\mathbf{r}| \frac{1}{E-\hat{\mathcal{H}}_{o} \pm i \delta}\left|\mathbf{r}^{\prime}\right\rangle \tag{9}
\end{equation*}
$$

where the operator $\hat{\mathcal{H}}_{o}$ has eigenvalues $p^{2} / 2 m$. Show, using the diagonal representation of G in momentum space and by contour integration, that in 3 dimensions, the Green function takes the form

$$
\begin{equation*}
G^{ \pm}\left(\mathbf{r}, \mathbf{r}^{\prime} ; E\right)=-\frac{m}{2 \pi \hbar^{2}} \frac{e^{\mp i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{10}
\end{equation*}
$$

where k is defined by $E=\hbar^{2} k^{2} / 2 m$.

A9: Find the solutions (eigenvalues and eigenfunctions) to the Schrodinger equation for a 1-d potential in which $V(x)=\infty$ when $|x|>L$, and $V(x)=V_{o} \delta(x)$ for $|x|<L$.

A10: The partial wave components of the S-matrix are related to the partial wave phase shifts by $S_{l}=e^{i \delta_{l}}$, and to the T-matrix components t_{l} by $S_{l}=1-2 i t_{l}$. Find expressions in terms of the phase shifts for t_{l} and for $k_{l}=-\tan \delta_{l}$ in terms of S_{l} and in terms of t_{l}.

Finally, suppose that the $l=0$ t-matrix component takes the approximate form $t_{0}(k)=$ $k /\left(\kappa_{o}+i k-r_{o} k^{2} / 2\right)$, where $\kappa_{o}=1 / a_{0}$ is the inverse effective range. Find the form, in this lowmomentum expansion, for $\delta_{l}(k)$ and $S_{l}(k)$.

A11: The Born approximation of the exact T-matrix is given by $T_{\mathbf{k k}^{\prime}}=V_{\mathbf{k k}^{\prime}}$, where $V_{\mathbf{k k}^{\prime}}$ is the Fourier transform of the real space potential $V(\mathbf{r})$. Show that in 3 dimensions, this is given by

$$
\begin{equation*}
V_{\mathbf{k} \mathbf{k}^{\prime}}=\frac{4 \pi}{\left|\mathbf{k}-\mathbf{k}^{\prime}\right|} \int_{0}^{\infty} r d r V(r) \sin \left(\left|\mathbf{k}-\mathbf{k}^{\prime}\right| r\right) \tag{11}
\end{equation*}
$$

Now suppose that the potential takes the form $V(r)=e^{-\kappa_{o} r} / r$. Find the form of $V_{\mathbf{k k}^{\prime}}$.

A12: The Lagrangian for a $\operatorname{spin} \mathbf{S}$ is given by $L=S \mathcal{A} \cdot(d \mathbf{n} / d t)-\mathcal{H}$, where $\mathbf{n}(t)$ is a unit vector on the spin sphere, and \mathcal{H} is the Hamiltonian of the spin. The vector \mathcal{A} is the gauge potential from a unit monopole at the centre of the sphere, defined so that $\mathbf{n} \cdot(\nabla \times \mathcal{A})=1$.

Show that the equation of motion for $\mathbf{n}(t)$ is given by

$$
\begin{equation*}
d \mathbf{n} / d t=-\mathbf{n} \times \frac{\partial \mathcal{H}}{\partial \mathbf{n}} \tag{12}
\end{equation*}
$$

MOCK SECTION B QUESTIONS

