
Solution to Assignment 4

1. (a) The first part is just a straight forward calculation from A (E) to
T (E), and then one uses T (E) to find G (E). Since we are only
given A (E) as a function of E, but not the eigenstates, we will not
be able to construct the real matrices. So we are good as long as
we can figure out T (E) and G (E) as functions of E. Also when
construct G (E), in fact G0 (E) is required, but we can assume it is
given formally.
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After using some tricks, say for instance finding and separating all
possible poles of the integrand, to deal with principal value integral,
one arrives
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Then the full Green’s function can be constructed from

G (z) = G0 (z) +G0 (z)T (z)G0 (z) . (3)

(b) The second part is slightly non-trivial. We have calculated exactly
the scattering wave for such a potential in our last assignment so
exact form of T (E) can be derived easily from there. With Born
approximation, the physical picture is totally different. It assumes
that the out-going waves have the same form as the in-coming wave.
Although it could have possible different frequencies, Born approxi-
mation does not take care of the proper coefficients appearing in scat-
tering waves. Because of that, for a delta potential scattering wave
does have the same form with in-coming wave, however, answers from
Born approximation could still be quite different with the exact one.
From the last assignment, T−k,k = ik~2

m R and Tk,k = ik~2
m S, where R

and S were defined there. For Born approximation,
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2. (a) The general idea is to find exact form of the radial part of scattering

wave ψl (kr) and then make use of fl (k) =
√

2
πke

iδl(k) sin δl (k) to
find fl (k). And here δl (k) is related to ψl (kr) via

eiδl(k) sin δl (k) = −i m
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∫ ∞
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rdrJl (kr)V (r)ψl (kr) . (5)

As of ψl (kr), there are couple ways can be used here: first, solving
S.E. by matching boundary conditions as we did before; second, using
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L.S.E. and Green’s function of free system. Since we are given free
Green’s function in the notes, here I am going to use the second
method. Let’s start from LSE in the form of partial waves

ψl (kr) = Jl (kr) +
∫ ∞

0

r′dr′V (r′) g0 (k, r − r′)ψl (kr′) , (6)

where

g0 (k, r − r′) = − im

2~2
[Hl (kr) Jl (kr′) θ (r − r′) +H∗

l (kr′)Jl (kr) θ (r′ − r)] .

(7)
And then plug in the δ potential we will get an equation in terms of
ψl (kr). In fact due to the property of δ function, this equation is
only an equation of ψl (kR0) and a general ψl (kr) can be expressed
in terms of Jl (kr) and ψl (kR0). Here is the equation of ψl (kR0),

ψl (kR0) = Jl (kR0)− im

2~2
V0Hl (kR0)Jl (kR0)ψl (kR0) . (8)

This in turn gives us,
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·
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And then finally this ψl (kr) can be plugged into (5) to get fl.

2


