Solution to Assignment 4

1. (a) The first part is just a straight forward calculation from $A(E)$ to $T(E)$, and then one uses $T(E)$ to find $G(E)$. Since we are only given $A(E)$ as a function of E, but not the eigenstates, we will not be able to construct the real matrices. So we are good as long as we can figure out $T(E)$ and $G(E)$ as functions of E. Also when construct $G(E)$, in fact $G_{0}(E)$ is required, but we can assume it is given formally.

$$
\begin{equation*}
T(z)=\frac{1}{z+E_{0}}+\frac{1}{\pi} \mathbb{P}\left[\int_{0}^{\infty} \frac{A(\xi)}{\xi-z} d \xi\right] . \tag{1}
\end{equation*}
$$

After using some tricks, say for instance finding and separating all possible poles of the integrand, to deal with principal value integral, one arrives

$$
\begin{equation*}
T(z)=\frac{1}{z+E_{0}}+\frac{N_{0} \Omega_{0}^{2}}{\pi\left(\Omega_{0}^{2}+z^{2}\right)}\left[\ln \frac{\Omega_{0}}{z}-\frac{z \pi}{2 \Omega_{0}}\right] \tag{2}
\end{equation*}
$$

Then the full Green's function can be constructed from

$$
\begin{equation*}
G(z)=G_{0}(z)+G_{0}(z) T(z) G_{0}(z) . \tag{3}
\end{equation*}
$$

(b) The second part is slightly non-trivial. We have calculated exactly the scattering wave for such a potential in our last assignment so exact form of $T(E)$ can be derived easily from there. With Born approximation, the physical picture is totally different. It assumes that the out-going waves have the same form as the in-coming wave. Although it could have possible different frequencies, Born approximation does not take care of the proper coefficients appearing in scattering waves. Because of that, for a delta potential scattering wave does have the same form with in-coming wave, however, answers from Born approximation could still be quite different with the exact one. From the last assignment, $T_{-k, k}=\frac{i k \hbar^{2}}{m} R$ and $T_{k, k}=\frac{i k \hbar^{2}}{m} S$, where R and S were defined there. For Born approximation,

$$
\begin{equation*}
T_{k k^{\prime}}=\int d x e^{-i k^{\prime} x} V(x) e^{i k^{x}}=2 V_{0} \cos \frac{\left(k-k^{\prime}\right) a_{0}}{2} \tag{4}
\end{equation*}
$$

2. (a) The general idea is to find exact form of the radial part of scattering wave $\psi_{l}(k r)$ and then make use of $f_{l}(k)=\sqrt{\frac{2}{\pi k}} e^{i \delta_{l}(k)} \sin \delta_{l}(k)$ to find $f_{l}(k)$. And here $\delta_{l}(k)$ is related to $\psi_{l}(k r)$ via

$$
\begin{equation*}
e^{i \delta_{l}(k)} \sin \delta_{l}(k)=-i \frac{m}{2 \hbar^{2}} \int_{0}^{\infty} r d r J_{l}(k r) V(r) \psi_{l}(k r) . \tag{5}
\end{equation*}
$$

As of $\psi_{l}(k r)$, there are couple ways can be used here: first, solving S.E. by matching boundary conditions as we did before; second, using
L.S.E. and Green's function of free system. Since we are given free Green's function in the notes, here I am going to use the second method. Let's start from LSE in the form of partial waves

$$
\begin{equation*}
\psi_{l}(k r)=J_{l}(k r)+\int_{0}^{\infty} r^{\prime} d r^{\prime} V\left(r^{\prime}\right) g_{0}\left(k, r-r^{\prime}\right) \psi_{l}\left(k r^{\prime}\right) \tag{6}
\end{equation*}
$$

where
$g_{0}\left(k, r-r^{\prime}\right)=-\frac{i m}{2 \hbar^{2}}\left[H_{l}(k r) J_{l}\left(k r^{\prime}\right) \theta\left(r-r^{\prime}\right)+H_{l}^{*}\left(k r^{\prime}\right) J_{l}(k r) \theta\left(r^{\prime}-r\right)\right]$.
And then plug in the δ potential we will get an equation in terms of $\psi_{l}(k r)$. In fact due to the property of δ function, this equation is only an equation of $\psi_{l}\left(k R_{0}\right)$ and a general $\psi_{l}(k r)$ can be expressed in terms of $J_{l}(k r)$ and $\psi_{l}\left(k R_{0}\right)$. Here is the equation of $\psi_{l}\left(k R_{0}\right)$,

$$
\begin{equation*}
\psi_{l}\left(k R_{0}\right)=J_{l}\left(k R_{0}\right)-\frac{i m}{2 \hbar^{2}} V_{0} H_{l}\left(k R_{0}\right) J_{l}\left(k R_{0}\right) \psi_{l}\left(k R_{0}\right) \tag{8}
\end{equation*}
$$

This in turn gives us,

$$
\begin{array}{r}
\psi_{l}(k r)=J_{l}(k r)-\frac{i m}{2 \hbar^{2}} \frac{V_{0} R_{0} J_{l}\left(k R_{0}\right)}{1+\frac{i m}{2 \hbar^{2}} V_{0} H_{l}\left(k R_{0}\right) J_{l}\left(k R_{0}\right) \psi_{l}\left(k R_{0}\right)} . \\
{\left[H_{l}(k r) J_{l}\left(k R_{0}\right) \theta\left(r-R_{0}\right)+H_{l}^{*}\left(k R_{0}\right) J_{l}(k r) \theta\left(R_{0}-r\right)\right] .} \tag{9}
\end{array}
$$

And then finally this $\psi_{l}(k r)$ can be plugged into (5) to get f_{l}.

