
Solution to Assignment 3

1. (a) Equation of motion for this 2-d centrally potential can be separated
into radial part and angular part, and the radial part becomes,
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R (r) = 0, (1)

where l is an integer and K =
√

2mE
~ . Solutions of this equation are

Bessel functions, generally,

R (r) = Jl (Kr) or Yl (Kr) , (2)

and since we require limr→∞R (r) = 0, then only Jl is valid. There-
fore, we have connection condition at r = R as

Jl (KR) = 0. (3)

This gives us eigenvalues, that only a subset of R can be our possible
values of K and thereafter E. And those are determined by Zn,l, the
nth root of Jl (z),

E =
~2

2mR2
Z2

n,l, and , ψ (r, θ) ∝ eilθJl

(
Zn,l

R
r

)
. (4)

(b) This question can be solved exactly by the same procedure if we
regard V0δ (r) as V0

πb2 θ
(
b2 − r2

)
and then let b → 0 later. Then our

general solution is a three-piece function, in respectively three regions
r < b, b < r < a and r > a. And its explicit form depends on the
value of E. When E < 0 = V (r > a), it will be a bounded state
while it should be a scattering state when E > 0. For example, when
E < 0,





ψ (r) = AIm (κr) r < b;
ψ (r) = BJm (Kr) + CYm (Kr) b < r < a;

ψ (r) = DKm (kr) r > a.
, (5)

where κ =

√
2m(−E+

V0
πb2 )

~2 , K =
√

2m(E+V0)
~2 , and k =

√
−2mE
~2 . Here,

one may try to consider bounded states with even lower energy, such
as E < −V0. In that case, one could just follow the same procedure
and at the end one should find that there is no such bounded state
in this question. Next, we need to match all connections.

{
ψ (b−) = ψ (b+) , ψ′ (b−) = ψ′ (b+) ;
ψ (a−) = ψ (a+) , ψ′ (a−) = ψ′ (a+) . (6)
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This will relate all coefficients and pick up some specific values of E
from R as it does similarly in part (a). Final results after performing
all those algebra and taking the b→ 0 limit is

{
ψ (r) = Bm,nJm (Km,nr) eimθ r < a;
ψ (r) = Dm,nKm (km,nr) eimθ r > a.

, (7)

where Km,n and km,n are determined by eigenenergy Em,n, which in
turn is determined by the nth root of the following equation,
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Bm,n and Dm,n are not independent and can be fixed via normaliza-
tion. Scattering states can be solved similarly. And this time, the
answer is that given an arbitrary value of E > 0, we have solution,

{
ψ (r) = AmJm (kr) eimθ r < a;

ψ (r) = EmJm (Kr) eimθ + FmYm (Kr) eimθ r > a.
, (9)

where K =
√

2m(E+V0)
~2 and k =

√
2mE
~2 . And this time not all

coefficients can be fixed, since normalization condition could not be
applied here. But all coefficients are still related.

2. Starting from a plan wave general solution at all three regions and then
match their connections at x = ±a

2 , although not that trivial because of
the δ function, one can easily find the solution,

ψ (x) =





eikx +R1e
−ikx r < −a

2 ;
S1e

ikx +R2e
−ikx −a

2 < r < a
2 ;

S2e
ikx r > a

2 .
, (10)

where k =
√

2mE
~2 and R1,2, S1,2 are also functions of k. Another way to

solve this question is to make use of the Lippmann-Schwinger equation.
It is totally different and it is a very interesting and insightful way to
deal with scattering waves. And further more this LSE method can be
generalized onto more complicated problems. So try it out if you can.

3. (a) With a flux at only the centre the equation of motion becomes,
{
∂2

r +
1
r
∂r +

[
k2 − 1

r2
(i∂θ + α)2

]}
ψ (r, θ) = 0, (11)

which can be separated into angular and radial parts, ψ (r, θ) =
R (r) eilθ, then

{
∂2

r +
1
r
∂r +

[
k2 − 1

r2
(α− l)2

]}
R (r) = 0. (12)
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This is again a Bessel function. Repeat the same procedure in ques-
tion 1 for the above equation, one can find again bounded states
and scattering states for both repulsive and attractive potential. Of
course, for repulsive potential, energies of bounded states, if there are
such states, have to be E < 0. And in this case one can go ahead and
do some algebra to check the possibility. In the following I will show
an example on bounded states with attractive potential (V0 < 0 and
E − V0 > 0).

{
ψ (r) = AlJl−α (Kr) eilθ r < R;
ψ (r) = BlKl−α (kr) eilθ r > R.

, (13)

where K =
√

2m(E−V0)
~2 and k =

√
−2mE
~2 . Connection at r = R gives

us {
AlJl−α (KR) = BlKl−α (kR)

KAlJ
′
l−α (KR) = kBlK

′
l−α (kR) . , (14)

This leads to the following equation

Jl−α (KR)
KJ ′l−α (KR)

=
Kl−α (kR)
kK ′

l−α (kR)
, (15)

which determinds eigenvalues E, and thereafter k,K. And we also
notice Al is related to Bl so in fact there is only one extra degree of
freedom which will be fixed by normalization.
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