Phys 501: HOMEWORK ASSIGNMENT No (5)

Sunday April 5th 2009

DUE DATE: Wednesday April 15th 2009.

Assignments handed in late may not receive a full mark.
This assignment is not arduous - its main purpose is to make you think about the material that we have done at the end of the course, and see what is important. Note that I will continue to have time reserved for tutorials for anyone who wants to come, right up until the exam - and I will also compose some 'mock' exam questions.

QUESTION (1): BERRY PHASE

The following identities are needed in the demonstration of the result for the Berry phase.
(i) First, for a Hamiltonian $\mathcal{H}(g)$ depending on a parameter g, and having adiabatic eigenvalues $E_{n}(g)$ and eigenstates $\left|\psi_{n}(g)\right\rangle \equiv|n(g)\rangle$, show that

$$
\begin{equation*}
\left(E_{n}-E_{m}\right)\left\langle m \mid \nabla_{g} n\right\rangle=\langle m| \nabla_{g} \mathcal{H}|n\rangle \tag{1}
\end{equation*}
$$

when $m \neq n$.
(ii) Second, if the Berry phase is defined as $\phi_{B}^{n}(\mathcal{C})=i \oint_{\mathcal{C}} d \mathbf{g} \cdot\left\langle n(g) \mid \nabla_{g} n(g)\right\rangle$, where the line integral is taken around the circuit \mathcal{C}, then show that

$$
\begin{align*}
\phi_{B}^{n}(\mathcal{C}) & =-\operatorname{Im} \oint_{\mathcal{C}} d \mathbf{S} \cdot \nabla_{g} \times\left\langle n \mid \nabla_{g} n\right\rangle \\
& =-\operatorname{Im} \oint_{\mathcal{C}} d \mathbf{S} \cdot \sum_{m \neq n}\left\langle\nabla_{g} n \mid m\right\rangle \times\left\langle m \mid \nabla_{g} n\right\rangle \tag{2}
\end{align*}
$$

where the integration is over the surface in parameter space (ie., \mathbf{g}-space) enclosed by the closed curve \mathcal{C}.

QUESTION (2):

(i) A spin $S=1$ is oriented at time $t=0$ in the $x z$-plane along an angle 45° between the x and z axes. A magnetic field B_{o} along the z-axis is applied at $t=0$. Assuming an electronic g-factor 2 , determine the precession period T for the spin. Then, suppose we allow the spin to precess for a time $t=10 T$. What is the final state of the spin wave-function?
(ii) Now suppose we have the same spin in the same initial state as in (i), but we now apply a field of strength B_{o} at $t=0$ which is parallel to the spin's initial state. We then move this field very slowly in a circuit around the z-axis, completing 10 full circuits, always keeping the field at an angle of 45° from the z-axis. What now is the final state of the spin wave-function?

