Phys 501: HOMEWORK ASSIGNMENT No (4)

Friday March 20th 2009
DUE DATE: Wednesday April 1st 2009.
Assignments handed in late may not receive a full mark.

QUESTION (1): T-MATRIX and SCATTERING

(i) Suppose we have a T-matrix which we know has a simple pole (ie., of unit residue) at energy $E=-E_{o}$, and a branch cut of magnitude

$$
\begin{equation*}
A(E)=\frac{\left(N_{o} / \pi\right)}{\left[1+\left(E / \Omega_{o}\right)^{2}\right]} \theta(E) \tag{1}
\end{equation*}
$$

starting from the origin. Find the T-matrix $T(z)$ as a function of the complex energy z, assuming that $|T(z)|$ goes to zero sufficiently rapidly as $|z| \rightarrow \infty$. Write down also the form of the Green function $G(z)$ that follows from this.
(ii) Consider again the 1-dimensional "double-barrier" potential of form

$$
\begin{equation*}
V(x)=V_{o}\left[\delta\left(x-a_{o} / 2\right)+\delta\left(x+a_{o} / 2\right)\right] \tag{2}
\end{equation*}
$$

where each δ-function barrier has the same strength (you also looked at this problem in the last assignment).

Find the T-matrix and the lowest-order Born approximation result for the scattering amplitude off this potential.

QUESTION (2): BOUND STATES and RESONANCE IN 2D

Consider a 2-d "Delta-shell" potential with a δ-function repulsive potential in the centre of it; the form of this is

$$
\begin{equation*}
V(r)=V_{o} \delta\left(r-R_{o}\right)+U_{o} \delta(r) \tag{3}
\end{equation*}
$$

so that the "shell" barrier strength is V_{o}, and the central delta-function has strength U_{o}. Both potentials are repulsive, ie., $V_{o}, U_{o}>0$, so there are no bound states - however there will be resonant states inside the shell. In what follows you may find it useful to model the central delta-function by a potential $U(r)=\left(U_{o} / \pi a_{o}^{2}\right) \theta\left(a_{o}^{2}-r^{2}\right)$, and then let $a_{o} \rightarrow 0$.
(i) Find the form of the scattering functions $f_{l}(E)$ for the l-th angular momentum partial waves.
(ii) Now find the form of the $l=0$ function $f_{0}(E)$ in the low-momentum limit, where $k R_{o} \ll 1$; and also the form of the scattering cross-section.

