Phys 501: HOMEWORK ASSIGNMENT No (4)

Thursday April 8th 2010

DUE DATE: Monday April 19th 2010.

Assignments handed in late may not receive a full mark.

QUESTION (1): TIME-DEPENDENT PERTURBATION THEORY

Consider a spin $\mathbf{S}=\hbar \boldsymbol{\sigma}$, where $|\boldsymbol{\sigma}|=1 / 2$, which for time $t \rightarrow-\infty$ is in a state oriented along the \hat{z} axis, and which is subject to a field $\mathbf{B}=\hat{\mathbf{z}} B_{o}+\hat{\mathbf{x}} b_{1} f(t)$, where $\left|b_{1}\right| \ll\left|B_{o}\right|$, and where

$$
\begin{equation*}
f(t)=\frac{e^{t / t_{o}}}{1+e^{t / t_{o}}} \tag{1}
\end{equation*}
$$

for all times $-\infty<t<\infty$.
(i) Using first-order time-dependent perturbation theory, find the amplitude $c_{-}(\infty)$ for the spin to be in the state oriented along $-\hat{z}$ as time $t \rightarrow \infty$ (evaluate the Fourier transform by closing the contour in the upper half-plane).
(ii) Suppose that $g \mu_{B}\left|B_{o}\right| t_{o} \ll \hbar$; we can then find the exact dynamics of the system, at any time t, by elementary means. What is this dynamics?

QUESTION (3): SPIN TUNNELING

Suppose we have a spin of magnitude S in a combined easy-axis anisotropy field and a transverse term, so that the Hamiltonian is given by

$$
\begin{equation*}
\mathcal{H}_{o}=-K_{o} \hat{S}_{z}^{2}+E_{o} \hat{S}_{x}^{2} \tag{2}
\end{equation*}
$$

where $K_{o}, E_{o}>0$
(i) Find the energy levels of the problem when $E_{o}=0$
(ii) Suppose now that $E_{o}>0$, but $E_{o} / K_{o} \ll 1$. Show that if S has an integer value, then pairs of levels which have projection $S_{z}= \pm M$ are split by the transverse term, with a splitting given by perturbation theory in the parameter E_{o} / K_{o} as

$$
\begin{equation*}
\Delta_{M}^{S}=A_{M}^{S} K_{o}\left(\frac{E_{o}}{16 K_{o}}\right)^{M} \quad ; \quad A_{M}^{S}=\frac{8}{[(M-1)!]^{2}} \frac{(S+M)!}{(S-M)!} \tag{3}
\end{equation*}
$$

and find an approximate expression for the ground-state splitting Δ_{S}^{S} when $S \gg 1$.
(iii) The Hamiltonian in (ii) can be diagonalised numerically very easily. Do this for $S=20$, and plot $\ln \Delta_{S}^{S}$ as a function E_{o} / K_{o}. Compare with the answer in (ii) to see how accurate the perturbative expansion is.

