Phys 501: HOMEWORK ASSIGNMENT No (2)

Sunday January 25th 2009

DUE DATE: Friday Feb 6th 2009.

Assignments handed in late may not receive a full mark.

QUESTION (1): RANDOM FORCE PROPAGATOR

(i) Consider a free particle which is acted upon by a force $F(t)$ so that its Lagrangian is

$$
\begin{equation*}
L=\frac{m}{2} \dot{x}^{2}-F(t) x \tag{1}
\end{equation*}
$$

Suppose that at time t_{1} the system is at x_{1}, and at time t_{2} it is at x_{2}. Find the classical action for a particle with these boundary conditions, following the classical trajectory of minimum action.
(ii) Now, derive an expression for the quantum propagator $G(2,1)$ for a particle with the same Lagrangian and these same boundary conditions, including the prefactor.

QUESTION (2): THE BIASED 2-LEVEL SYSTEM

(i) Consider the 2-level system with Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\epsilon_{o} \hat{\tau}_{z}+\Delta_{o} \hat{\tau}_{x} \tag{2}
\end{equation*}
$$

Find the eigenfunctions and eigenvalues of this Hamiltonian, and then the time-dependent density matrix, assuming the system starts in the state $|\uparrow\rangle$ at $t=0$.
(ii) Now write down a path integral expression for the time evolution of the wave-function, assuming the same initial wave-function as above; and rederive the same result for the density matrix as a function of time.

QUESTION (3): PAIR of OSCILLATORS

(i) Consider a pair of coupled oscillators with the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 m}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{m}{2}\left(x_{1}^{2}+x_{2}^{2}+2 g x_{1} x_{2}\right) \tag{3}
\end{equation*}
$$

where $g<1$. Write this in second quantised form, and then find the eigenenergies of the problem, and show how the Hamiltonian can be written in terms of a set of new boson operators which also satisfy the usual commutation values.
(ii) Now write down a set of coherent states for this new system, and show in a figure what kind of motion this system will show in phase space if it is in a coherent state.

