Phys 501: HOMEWORK ASSIGNMENT No (1)

Saturday January 10th 2009

DUE DATE: Friday Jan 16th 2009.

(Please note that assignments handed in late may not receive a full mark.)

QUESTION (1): DENSITY MATRIX FOR SPIN-1/2

Imagine that you combine 2 molecular beams, each contaning an equal number of spin- $1 / 2$ particles. In one of the beams you know that the spins are all oriented in the \hat{y}-direction, in pure states. In the other all you know is that there is an equal statistical mixture of spin-up and spin-down particles.
(i) Find the density matrix of the combined system - give the form for this first in a representation where $\hat{\sigma}_{z}$ is diagonal, and then where $\hat{\sigma}_{y}$ is diagonal.
(ii) Now compute the expectation values of $\hat{\sigma}_{z}, \hat{\sigma}_{x}$, and $\hat{\sigma}_{y}$, for this system.

QUESTION (2): REDUCED DENSITY MATRIX

Consider a pure state for a pair of spin- $1 / 2$ systems, equal to

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{3}}\left[|\uparrow \uparrow\rangle+e^{i \chi}|\downarrow \uparrow\rangle+e^{i \phi}|\downarrow \downarrow\rangle\right] \tag{1}
\end{equation*}
$$

with 2 different phases χ and ϕ.
(i) Find the total density matrix for the pair of systems, quantizing along the \hat{z}-axis.
(ii) Now find the reduced density matrix for the first spin, again quantizing along the \hat{z}-axis.
(iii) Now calculate the expectation values of $\hat{\sigma}_{z}$ and $\hat{\sigma}_{x}$ for the first spin using this reduced density matrix.

