Phys 501: HOMEWORK ASSIGNMENT No (4)

Tuesday March 29th 2011

DUE DATE: Friday April 8th 2011.
(Please note that assignments handed in late may not receive a full mark.)

QUESTION (1): ADIABATIC REGIME

(i) Consider the time-dependent Schrodinger equation $\mathcal{H}(t) \Psi(t)=i \hbar \partial_{t} \Psi(t)$ in the limit where $\mathcal{H}(t)$ changes slowly as a function of some parameter $\mathbf{g}(t)$. Defining the adiabatic eigenstates $\psi_{n}(t)$ by $\mathcal{H}(t) \psi_{n}(t)=E_{n}(t) \psi_{n}(t)$, where now t is simply a fixed parameter, write $\Psi(t)$ in the form

$$
\begin{equation*}
\Psi(t)=\sum_{n} c_{n}(t) \psi_{n}(t) e^{\frac{-i}{\hbar} \int^{t} d t^{\prime} E_{n}\left(t^{\prime}\right)} \tag{1}
\end{equation*}
$$

and show that the equation of motion for the $c_{n}(t)$ can be written as

$$
\begin{equation*}
\dot{c}_{n}(t)=-\sum\left\langle\psi_{n}\right| \partial_{t}\left|\psi_{m}\right\rangle c_{m}(t) e^{\frac{i}{\hbar} \int^{t} d t^{\prime}\left(E_{n}\left(t^{\prime}\right)-E_{m}\left(t^{\prime}\right)\right)} \tag{2}
\end{equation*}
$$

Show also that

$$
\begin{equation*}
\left\langle\psi_{n}\right| \partial_{t}\left|\psi_{m}\right\rangle=-\frac{\left\langle\psi_{n}\right| \partial_{t} \mathcal{H}\left|\psi_{m}\right\rangle}{\left(E_{n}(t)-E_{m}(t)\right.} \tag{3}
\end{equation*}
$$

when $m \neq n$.
(ii) Now consider the case where $m=n$. We imagine taking the Hamiltonian slowly around a circuit, by varying $\mathbf{g}(t)$ over a long time period so as to bring it back to its original value. If the Berry phase is defined as $\phi_{B}^{n}(\mathcal{C})=i \oint_{\mathcal{C}} d \mathbf{g} \cdot\left\langle n(g) \mid \nabla_{g} n(g)\right\rangle$, where the line integral is taken around the circuit \mathcal{C}, then show that

$$
\begin{align*}
\phi_{B}^{n}(\mathcal{C}) & =-\operatorname{Im} \oint_{\mathcal{C}} d \mathbf{S} \cdot \nabla_{g} \times\left\langle n \mid \nabla_{g} n\right\rangle \\
& =-\operatorname{Im} \oint_{\mathcal{C}} d \mathbf{S} \cdot \sum_{m \neq n}\left\langle\nabla_{g} n \mid m\right\rangle \times\left\langle m \mid \nabla_{g} n\right\rangle \tag{4}
\end{align*}
$$

where the integration is over the surface in parameter space (ie., \mathbf{g}-space) enclosed by the closed curve \mathcal{C}.

QUESTION (2): SPIN DYNAMICS

(i) Suppose we have a Hamiltonian $\mathcal{H}_{o}(\hat{\boldsymbol{\sigma}})$ for a spin-half system taking the simple form

$$
\begin{equation*}
\mathcal{H}_{o}(t)=B_{z} \hat{\tau}_{z}+b_{x} \hat{\tau}_{x} \theta(t) \tag{5}
\end{equation*}
$$

Suppose the system starts for $t<0$ in the state $|\uparrow\rangle$; find the solution to the Schrodinger equation for this system for $t>0$, and show it is precessional motion. What is the solid angle subtended by one circuit of this precessional motion?
(ii) A spin $S=1 / 2$ is oriented at time $t=0$ in the $x z$-plane along an angle 60° between the x and z axes. A magnetic field B_{o} along the z-axis is applied at $t=0$. Assuming an electronic
g-factor 2 , determine the precession period T for the spin. Then, suppose we allow the spin to precess for a time $t=100 T$. What is the final state of the spin wave-function?
(iii) Now suppose we have the same spin in the same initial state as in (i), but we now apply a field of strength B_{o} at $t=0$ which is parallel to the spin's initial state. We then move this field very slowly in a circuit around the z-axis, completing 100 full circuits, always keeping the field at an angle of 60° from the z-axis. What now is the final state of the spin wave-function?

