Phys 501: HOMEWORK ASSIGNMENT No (3)

Monday March 6th 2011

DUE DATE: Wed March 23rd 2011.

(Please note that assignments handed in late may not receive a full mark.)

QUESTION (1): PERTURBATION THEORY for SPIN

Suppose we have a spin of magnitude S in a combination of easy-axis and 4th-order anisotropy fields, where the Hamiltonian is given by

$$
\begin{equation*}
\mathcal{H}_{o}=-K_{o} \hat{S}_{z}^{2}+\Lambda_{o}\left(\hat{S}_{+}^{4}+\hat{S}_{-}^{4}\right) \tag{1}
\end{equation*}
$$

where $K_{o}, \Lambda_{o}>0$.
(i) Find the energy levels of the problem when $\Lambda_{o}=0$
(ii) Suppose now that $\Lambda_{o}>0$, but $g_{o}=S^{3} \Lambda_{o} / K_{o} \ll 1$. Show that if S has an integer value, then pairs of levels which have projection $S_{z}= \pm M$, where M is an even number, are split by the term 4th-order in $\hat{S}_{ \pm}$, with a splitting given to leading order in perturbation theory by

$$
\begin{equation*}
\Delta_{M}^{S}=A_{M}^{S} K_{o}\left(\frac{\Lambda_{o}}{K_{o}}\right)^{M / 2} ; \quad A_{M}^{S}=\frac{(-1)^{M / 2-1}}{4^{M-2}[(M / 2-1)!]^{2}} \frac{(S+M)!}{(S-M)!} \tag{2}
\end{equation*}
$$

(iii) Now find an approximate expression for the ground-state splitting Δ_{S}^{S} when $S \gg 1$ and even; and also for the splitting Δ_{M}^{S} when $M \gg 1$ and $S-M \gg 1$, and both are even. Note that the latter expression does not tend to the former when $M \rightarrow S$.
(iv) The Hamiltonian in (i) can be diagonalised numerically very easily. Suppose do this for $S=14$. Now, we wish to compare with both the perturbative result in (ii), for Δ_{S}^{S}, and with the large S result in (iii) for Δ_{S}^{S}. Plot all three results for $\ln \Delta_{S}^{S}$ together as a function of $\left(\Lambda_{o} / K_{o}\right)$.

QUESTION (2): SPIN INSTANTON

A spin tunneling in a biaxial potential with Hamiltonian $\mathcal{H}=-D \hat{S}_{z}^{2}+E \hat{S}_{x}^{2}$, with $D, E>0$. We will assume that $E \gg D$, so that, for large S, we are in the semiclassical regime where a WKB/instanton approximation is valid. Then, with this assumption, the semiclassical instanton paths for tunneling are approximately along the 2 lines, in the $\hat{y} \hat{z}$-plane, between the 'north' and 'south' poles of the Bloch sphere.
(i) Show that if we assume that $d \phi / d \tau \sim 0$ in the imaginary time equations of motion, then the instanton solutions are given, after eliminating ϕ, by

$$
\begin{equation*}
\sin \theta(\tau)=\frac{1}{\cosh \left(\omega_{o} \tau\right)} ; \quad \text { where } \quad \omega_{o}=2 S \sqrt{D(D+E)} \tag{3}
\end{equation*}
$$

(ii) Then show that the semiclassical instanton action along these paths is given by the expression

$$
\begin{equation*}
\mathcal{S}_{o}^{(\eta)}=2 S \hbar \ln \left[\left(\frac{D+E}{E}\right)^{1 / 2}+\left(\frac{D}{E}\right)^{1 / 2}\right]+i \pi \eta S \tag{4}
\end{equation*}
$$

where $\eta= \pm 1$ labels the paths.

