Phys 501: HOMEWORK ASSIGNMENT No (1)

Friday January 14th 2011

DUE DATE: Friday Jan 28th 2011.
(Please note that assignments handed in late may not receive a full mark.)

QUESTION (1): CLASSICAL MECHANICS

(i) Consider a 2-dimensional classical harmonic oscillator, with Hamiltonian

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2}\left[\left(\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}\right)+g x_{1} x_{2}+\left(m_{1} \omega_{1} x_{1}^{2}+m_{2} \omega_{2} x_{2}^{2}\right)\right] \tag{1}
\end{equation*}
$$

Find the normal modes q_{1}, q_{2} of this system, and the natural frequencies Ω_{1}, Ω_{2}.
(ii) The classical action \mathcal{S} for a classical system can be written as $\mathcal{S}=\int(P d Q-\mathcal{H} d t)$, where P, Q are generalised momenta and coordinate variables, and \mathcal{H} is the Hamiltonian. Derive the Hamilton-Jacobi equation for the action, in the form

$$
\begin{equation*}
\frac{\partial \mathcal{S}}{\partial t}+\mathcal{H}\left(\frac{\partial \mathcal{S}}{\partial Q}, Q ; t\right)=0 \tag{2}
\end{equation*}
$$

and show that $\partial \mathcal{S} / \partial Q=P$. From this write down the Hamilton-Jacobi equation for a particle in a 2-d potential $V(\mathbf{r})$, and draw a picture which shows schematically the contours of constant action and the particle trajectories for the 2-dimensional harmonic oscillator, in terms of the original coordinates x_{1}, x_{2}, and their conjugate momenta.

QUESTION (2): DENSITY MATRICES

(i) Consider a 2 -spin system of spin- $1 / 2$ particles, which has been prepared such that we have (a) a probability $1-P=1-A^{2}$ that the system is in an incoherent mixture, with equal weighting, of states $\left|\psi_{a}\right\rangle=[|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle] / \sqrt{2}$ and $\left|\psi_{b}\right\rangle=[|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle] / \sqrt{2}$, and (b) a probability P the system is in pure state with wave-function $|\psi\rangle=\left[\left|\psi_{a}\right\rangle+\left|\psi_{b}\right\rangle\right] / \sqrt{2}$.

Find the total density matrix for this 2 -spin system, quantizing along the \hat{z}-axis. Then calculate the expectation values of (a) the "up-up" operator $\hat{\sigma}_{1}^{z} \hat{\sigma}_{2}^{z}$, and (b) the "up-right" operator $\hat{\sigma}_{1}^{z} \hat{\sigma}_{2}^{x}$, for the pair of spins.
(ii) Now suppose we trace over spin 2 , to get a reduced density matrix for spin 1. Find this reduced density matrix, and then calculate the expectation values of $\hat{\sigma}_{1}^{z}$, and $\hat{\sigma}_{1}^{x}$, for the first spin.
(iii) Comment on your results, focusing particularly on the way in which the degree to which the 2 spins are entangled appears in the resulting density matrices, and also on the way in which different measurements can reveal these properties.

QUESTION (3): PATH INTEGRALS

Suppose we have a simple 1-d harmonic oscillator driven by some arbitrary time-dependent force $F(t)$, with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{m}{2}\left(\dot{x}^{2}-\omega_{o}^{2} x^{2}\right)-F(t) x \tag{3}
\end{equation*}
$$

where x is the coordinate. We want to calculate transition amplitudes between the eigenstates of the SHO.
(i) Show that the "vacuum amplitude' $G_{o o}(t ; F)=\langle 0| \hat{G}(t)|0\rangle$ from the ground state $|0\rangle$ of the free oscillator (with $F(t)=0$), of energy $\hbar \omega_{o}$, at time 0 , to the same state at time t, is given by

$$
\begin{equation*}
G_{o o}(t ; F)=\exp \left[-\frac{1}{2 m \hbar \omega_{o}} \int_{0}^{t} d \tau \int_{0}^{t^{\prime}} d \tau^{\prime} F(\tau) F\left(\tau^{\prime}\right) e^{i \omega_{o}\left(\tau-\tau^{\prime}\right)}\right] \tag{4}
\end{equation*}
$$

(ii) Now see if you can find the amplitude $G_{10}(t)$ to go from $|0\rangle$ at time 0 , to the lowest excited state $|1\rangle$, of energy $\frac{3}{2} \hbar \omega_{o}$, at time t.

