Phys 501: HOMEWORK ASSIGNMENT No (3)

Wednesday March 28th 2012
DUE DATE: Wednesday April 4th 2012.
NB: Please note that assignments handed in late may not receive a full mark.

QUESTION (1): ADIABATIC PROCESSES

(i) The time-dependent Schrodinger equation $\mathcal{H}(t) \Psi(t)=i \hbar \partial_{t} \Psi(t)$. In the limit where $\mathcal{H}(t)$ changes slowly as a function of some parameter $\mathbf{g}(t)$, we write $\mathcal{H}(t) \psi_{n}(t)=E_{n}(t) \psi_{n}(t)$, where now t is simply a fixed parameter; and we write $\Psi(t)$ in the form

$$
\begin{equation*}
\Psi(t)=\sum_{n} c_{n}(t) \psi_{n}(t) e^{\frac{-i}{\hbar} \int^{t} d t^{\prime} E_{n}\left(t^{\prime}\right)} \tag{1}
\end{equation*}
$$

(i) First show that

$$
\begin{equation*}
\left\langle\psi_{n}\right| \partial_{t}\left|\psi_{m}\right\rangle=-\frac{\left\langle\psi_{n}\right| \partial_{t} \mathcal{H}\left|\psi_{m}\right\rangle}{\left(E_{n}(t)-E_{m}(t)\right.} \tag{2}
\end{equation*}
$$

when $m \neq n$. Then, consider the case where $m=n$. We imagine taking the Hamiltonian slowly around a circuit, by varying $\mathbf{g}(t)$ over a long time period so as to bring it back to its original value. If the Berry phase is defined as $\phi_{B}^{n}(\mathcal{C})=i \oint_{\mathcal{C}} d \mathbf{g} \cdot\left\langle n(g) \mid \nabla_{g} n(g)\right\rangle$, where the line integral is taken around the circuit \mathcal{C}, then show that

$$
\begin{align*}
\phi_{B}^{n}(\mathcal{C}) & =-\operatorname{Im} \oint_{\mathcal{C}} d \mathbf{S} \cdot \nabla_{g} \times\left\langle n \mid \nabla_{g} n\right\rangle \\
& =-\operatorname{Im} \oint_{\mathcal{C}} d \mathbf{S} \cdot \sum_{m \neq n}\left\langle\nabla_{g} n \mid m\right\rangle \times\left\langle m \mid \nabla_{g} n\right\rangle \tag{3}
\end{align*}
$$

where the integration is over the surface in parameter space (ie., g-space) enclosed by the closed curve \mathcal{C}.
(ii) Consider 2 potential wells (shaped however you want - eg., harmonic oscillators, or attractive Coulomb potentials), with centres situated at positions $x= \pm R_{o}$. Show how you think the energy levels will vary as a function of R_{o} in a graph.

QUESTION (2): SPIN DYNAMICS

We first consider a spin- $1 / 2$ system with the simple Hamiltonian $\mathcal{H}=\gamma \mathbf{B}(t) \cdot \hat{\boldsymbol{\sigma}}$, where $\hat{\boldsymbol{\sigma}}$ is the Pauli vector, γ is a constant, and $\mathbf{B}(t)$ is a magnetic field with some arbitrary time-dependence.
(i) Consider the above Hamiltonian where $\mathbf{B}(t)$ is the time-independent constant $\mathbf{B}=\hat{x} \Delta+\hat{z} \epsilon$. Find the amplitude $G_{\uparrow \uparrow}(\tau)$ for the spin to start off at time $t=0$ in state $|\uparrow\rangle$, and end up at time $t=\tau$ in the same state $|\uparrow\rangle$.
(ii) Again assuming that $\mathbf{B}=\hat{x} \Delta+\hat{z} \epsilon$, find $G_{\uparrow \uparrow}(\tau)$ as a series expansion in $\Delta \tau$, by expanding the expression $G_{\uparrow \uparrow}(\tau)=\langle\uparrow| \exp [-i \mathcal{H} \tau / \hbar]|\uparrow\rangle$. Then sum this series in the particular case where $\epsilon=0$.
(iii) Now let us consider a spin $S \gg 1$, and suppose it has the spin Hamiltonian

$$
\begin{equation*}
\left.\mathcal{H}=\hbar\left(\frac{k_{2}^{z}}{S} \hat{S}_{z}^{2}+\frac{1}{S^{3}}\left[k_{4}^{z} \hat{S}_{z}^{4}+\frac{1}{2} k_{4}^{\perp}\left(\hat{S}_{+}^{4}+\hat{S}_{-}^{4}\right)\right]+\frac{k_{6}}{2 S^{5}} \hat{S}_{z}^{2}\left(\hat{S}_{+}^{4}+\hat{S}_{-}^{4}\right)\right]\right) \tag{4}
\end{equation*}
$$

Are there any restrictions on the value of S implied in this Hamiltonian?
Write down the Lagrangian for this system, in terms of the classical spin vector $\mathbf{S}=S \mathbf{n}$, where \mathbf{n} is a unit vector on the Bloch sphere. Then show a topographical map on the Bloch sphere of the spin potential given in this equation, assuming that all of the constants coefficients in the Hamiltonian are positive except for k_{2}^{z}.

Finally, find the equation of motion for the spin components of the classical vector \mathbf{S}, for this potential.

