Phys 501: HOMEWORK ASSIGNMENT No (2)

Wednesday March 7th 2012

DUE DATE: Monday March 19th 2012.

(Please note that assignments handed in late may not receive a full mark.)

QUESTION (1): SCATTERING OFF 'SHELL' POTENTIALS

(i) Consider a potential of form

$$
\begin{equation*}
V(x)=V_{o} \delta(x)-U_{o} \theta\left(a_{o}^{2}-x^{2}\right) \tag{1}
\end{equation*}
$$

where $V_{o}, U_{o}>0$, and $\theta(x)$ is the Heavisde function. Now assume we have a plane wave incident to the left on this potential. Find the scattered solution for $x>a_{o}$, and thereby determine the T-matrix for this problem, as a function of the wave-vector k of the incoming wave, and of the parameters V_{o}, U_{o}, and a_{o}.

Draw a graph of the way in which the phase shift δ_{o} depends on $k a_{o}$, for different values of V_{o} / U_{o}, under circumstances where there is a single bound state in the potential well.
(ii) Now consider a somewhat similar 2-d version of this problem, to a δ-shell potential, given by $V(r)=V_{o} \delta\left(|\mathbf{r}|-a_{o}\right)$. This problem is actually solved explicitly in the course notes. However we can modify it as follows - let the potential now become

$$
\begin{equation*}
V(r)=V_{o} \delta\left(|\mathbf{r}|-a_{o}\right)+U_{o} \delta(\mathbf{r}) \tag{2}
\end{equation*}
$$

where $U_{o}>0$.
Now solve this problem, and find a formula for the phase shifts $\delta_{l}(k)$ as a function of k and of the strengths U_{o} and V_{o} of the 2 parts of the potential.

To understand these results, let's first compare with the result when $U_{o}=0$. Show in a graph how both $\delta_{o}(k)$ and $t_{o}(k)$ vary as a function of k for a number of different strengths of the shell potential V_{o}, when $V_{o}=0$.

Now do the same for a given value of V_{o} while varying U_{o}. From these graphical investigations, see if you can give a qualitative picture of what is going on here.

QUESTION (2): T-MATRIX PROBLEM

Consider a potential whose magnitude as a function of energy ϵ_{k} can be written as $V\left(\epsilon_{k}\right)=$ $V_{o} \theta\left(D_{o}^{2}-\epsilon_{k}^{2}\right)$, where $\theta(x)$ is the Heaviside function, in a problem where the electrons themselves are given a density of states $N(\epsilon)=\left(N_{o} / 2 D_{o}\right) \theta\left(D_{o}^{2}-\epsilon^{2}\right)$ in energy space. This roughly describes impurity scattering in a conductor of bandwidth $2 D_{o}$.
(i) Find the phase shift $\delta_{o}(z)$ and the T-matrix $T(z)$ as a function of complex energy z for this system. Draw the phase shift as a function of real energy (ie., letting $z \rightarrow E$, where E is real).
(ii) Then find an expression for the one-particle Green function $G(z)$ for the same system, and for its imaginary part $A(E)$ on the real axis. Draw a picture showing the pole structure of the Green function on the complex energy sheets.

