Phys 501: HOMEWORK ASSIGNMENT No (2)

Friday January 22nd 2010

DUE DATE: Wednesday Feb 3rd 2010.

Assignments handed in late may not receive a full mark.

QUESTION (1): PROBLEMS WITH PROPAGATORS

(i) The propagator for a particle in quantum mechanics is the unitary operator producing time evolution of the wave-function, ie.,

$$\hat{G}(t_2 - t_1) = e^{-\frac{i}{\hbar}\hat{H}(t_2 - t_1)} \tag{1}$$

Show that this operator also satisfies the defining equation for a Green function, viz., that

$$(\hat{H} - i\hbar\partial_t)\hat{G}(t - t') = -i\hbar\hat{\mathbf{1}}\delta(t - t')$$
(2)

where $\hat{\mathbf{1}}$ is the unit operator.

(ii) Consider a free particle of mass m, moving in one dimension. Assuming it moves between spacetime points x_1, t_1 and x_2, t_2 , find the classical action S_c for the classical path between these points. The quantum propagator for the same boundary conditions is $G(x_2 - x_1, t_2 - t_1) = A_o e^{iS_c/\hbar}$, where we need to find A_o . Noting that G is diagonal in the momentum basis for this free particle, evaluate it and thereby find the prefactor A_o .

(iii) Now suppose the particle is moving inside a box, i.e., it is confined to the region -L < x < L by an infinite potential for |x| > L. Find $G(x_2 - x_1, t_2 - t_1)$, as a series expansion over the eigenfunctions of the system.

(iv) Now consider the problem where the particle moves in a linear potential $V(x) = -\alpha x$. What is the classical equation of motion for this system? Find the quantum propagator $G(x_2 - x_1, t_2 - t_1)$ for this system, by first finding the classical action as in (ii) above, and then show that the fluctuation prefactor A_o is unchanged from that for the free particle.

QUESTION (2): AVERAGING OVER NOISE

(i) Now consider the problem of a free particle in a 'noise field' F(t), for which the Lagrangian is m_{-2}

$$L = \frac{m}{2}\dot{x}^2 - F(t)x$$

Suppose that at time t_1 the system is at x_1 , and at time t_2 it is at x_2 . Show that the propagator between these 2 points is $G(x_2, x_1; t_2, t_1 | F) = A_{2,1}^o e^{iS_{21}/\hbar}$, in which A_{21}^o is the prefactor for a free particle, and

$$S_{21} = x_2 \int_{t_1}^{t_2} d\tau F(\tau) - \frac{1}{2m} \int_{t_1}^{t_2} d\tau \left[\int_{t_1}^{\tau} d\tau' F(\tau') \right]^2 + \frac{m}{2} \frac{1}{(t_2 - t_1)} \left[(x_2 - x_1) - \frac{1}{m} \int_{t_1}^{t_2} d\tau \int_{t_1}^{\tau} F(\tau') d\tau' \right]^2$$
(3)

in which $x_1 = x(t_1)$, and $x_2 = x(t_2)$ (the latter produced by simple integration of the equations of motion).

(ii) Now suppose that the noise function F(t) is white noise, with a correlator $\langle F(t)F(t')\rangle = \alpha\delta(t-t')$, where α is a constant. Find the noise-averaged propagator $\langle G(x_2, x_1; t_2, t_1|F)\rangle_F$ for a free particle exposed to this white noise.