$$
\text { "PHYS } 501 \ll
$$

Solutions of HF \# 4 \sum

Q1.

$$
\begin{aligned}
& \vec{S}=\hbar \vec{\sigma}, \quad|\vec{\sigma}|=\frac{1}{2} \\
& H=-\overrightarrow{\mu_{2}} \cdot \vec{B}, \quad \vec{\mu}=g k_{B} \vec{S}=g k_{B} \hbar \vec{\sigma} \\
& \vec{B}=\hat{z} B_{0}+\hat{x} b_{1} f(t) \\
& \Rightarrow H=-\underbrace{-g h_{B} \hbar B_{0} \sigma_{z}}_{\hat{H}}-\underbrace{b_{1} g \mu_{B} \hbar f(t) \sigma_{x}}_{\hat{V}(t)} \\
& C_{n}(t)=C_{n}(t \rightarrow-\infty)-\frac{i}{\hbar} \int_{-\infty}^{t}\left(V_{I}^{\prime}\left(t^{\prime}\right) C_{n m} C_{m}\left(t^{\prime}\right) d t^{\prime}\right.
\end{aligned}
$$

first order :

$$
\begin{aligned}
& \text { er : } \\
& C_{n}(\infty)=C_{n}(-\infty)-i / \hbar \int_{-\infty}^{\infty}\left(V_{I}(t)\right)_{n m} C_{m}(-\infty) d t^{\prime} \\
& =1,2 \hat{z} \uparrow \rightarrow 1, \hat{z} \downarrow \rightarrow 2
\end{aligned}
$$

two-level $\Rightarrow n=1,2 \quad \hat{z} \uparrow \rightarrow 1, \hat{z} \downarrow \rightarrow 2$

$$
\begin{aligned}
C_{n}(-\infty) & =\delta_{n_{1}} \\
\Longrightarrow C_{2}(\infty) & =\delta_{21}-\frac{i}{\hbar} \int_{0}^{\infty}\left(V_{I}\left(t^{\prime}\right)\right)_{21} d t^{\prime} \\
\left(V_{I}\left(t^{\prime}\right)\right)_{21} & =e^{i g k_{B} B_{0} t^{\prime}} \cdot(\underbrace{-b_{1} g k_{B} \hbar f\left(t^{\prime}\right)}_{C})=C e^{i \omega t^{\prime}} f\left(t^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow c_{z}(\infty)=-\frac{i}{\hbar} C \int_{-\infty}^{\infty} e^{i \omega t^{\prime}} f\left(t^{\prime}\right) d t^{\prime} \\
& f\left(t^{\prime}\right)=\frac{e^{t / t_{0}}}{1+e^{t^{\prime} t_{0}}} \\
& \oint f(z) d z=2 \pi i \operatorname{Rez}(i \pi)
\end{aligned}
$$

Since $f(z)$ on the a or b sides have nonzero value we should be careful when we integrate,

Note that $f(t)=\frac{1}{1+e^{-t / t_{0}}}=1-\frac{1}{1+e^{t / t_{0}}}=1-f(-t)$

$$
\Rightarrow f(t)+f(-t)=1 \xrightarrow{\text { F.T }} f(\omega)+f^{*}(\omega)=2 \pi \delta(\omega)
$$

$\Rightarrow \operatorname{Re} f(\omega)=\pi \delta(\omega) \Longrightarrow$ This in infect comes from the a, b side integration
for the two other sides we have:

$$
P_{\xi}=\left[\int_{-\infty}^{\infty} e^{i \omega t} f(t) d t-e^{-2 \pi \omega t_{0}} \int_{-\infty}^{\infty} e^{i \omega t} f(t) d t\right]=2 \pi i \cdot(-i e) \cdot\left(-t_{0}\right)
$$

excluding the Dirac delta function contribution

$$
\begin{aligned}
& \Rightarrow \sinh \omega \pi t_{0} \int_{-\infty}^{\infty} e^{i \omega t} f(t) d t=-\pi t_{0} \\
& \Rightarrow \int_{-\infty}^{\infty} e^{i \omega t_{0}} f(t) d t=\frac{i \pi t_{0}}{\sinh \omega \pi t_{0}}+\pi \delta(\omega) \\
& \Longrightarrow C_{2}(\infty)=-\frac{i}{\hbar} C \cdot\left[\frac{i \pi t_{0}}{\sinh \left[\omega \pi t_{0}\right]}+\pi \delta(\omega)\right] \\
& \omega=g \mu_{B}\left|B_{0}\right|, C=-b_{1} g h_{B} \hbar \\
& \Rightarrow \quad C_{2}(\omega)=\frac{b_{1} g k_{B} \pi t_{0}}{\sinh \left[g h_{B}\left|B_{0}\right| \pi t_{0}\right]}
\end{aligned}
$$

(ii) if $g h_{B}\left|B_{0}\right| t_{0} \ll 1$ it means that $\omega t_{0} \ll 1$

This means that for our system $f(t)$ behaves like an step function $\Theta(t)$ so we have

$$
C_{2}(t)=-i C_{1} \int_{-\infty}^{t} \theta\left(t^{\prime}\right) e^{i \omega t^{\prime}} d t^{\prime}=-i / C_{1}\left[\frac{e^{i \omega t}-1}{i \omega}\right] \Theta(t)
$$

$$
\Longrightarrow C_{2}(t)=\frac{b_{1} g \mu_{B}}{g \mu_{B}\left|B_{0}\right|}\left[e^{i g \mu_{B}\left|B_{0}\right| t}-1\right] \Theta(t)
$$

So the system remains into initial state for $t<0$ and from $t=0$ it starts + transition to $z \not$ state with the amplitude given above.

$$
H_{0}=-K_{0} \hat{S}_{z}^{2}+E_{0} S_{x}^{2} \quad K_{0}, E_{0}>0
$$

(i)

$$
\begin{aligned}
E_{0}=0 \Rightarrow H=-K_{0} S_{z}^{2} \quad \begin{array}{l}
\hat{S}_{z}|M\rangle=\hbar M|M\rangle \\
M
\end{array} \quad-S,-S+1, \ldots, S-1, S
\end{aligned}
$$

$\Rightarrow E_{m}=-K_{0} \hbar^{2} M^{2}$, so $|M\rangle Z|-M\rangle$ are degenerate.
(ii)

$$
\begin{aligned}
& \frac{E_{0}}{K_{0}} \ll 1, S_{n}^{2}=\left(\frac{S_{+}+S_{-}}{2}\right)^{2}=\frac{S_{+}^{2}+S_{-}^{2}+S_{+} S_{-}+S_{-} S_{+}}{4} \\
& \Delta_{M}^{S}=2 \cdot\left\{V^{-M,-(M-2)} \cdot \frac{1}{\left|E_{M}^{0}-E_{-(M-2)}^{0}\right|} \cdot V^{-(M-2) ;(m-4)} \cdot \frac{1}{\left|E_{M-E^{-}(M-4)}^{0}\right|} \cdots \cdot \cdot V^{M-4, M-2} \cdot \frac{1}{\left|E_{m}^{0}-E^{0} \cdot(M-2)\right|} V^{M-2, M}\right\} \\
& \Delta E_{M}(k) \equiv\left|E_{M}^{0}-E_{-(M-2 k)}^{0}\right| \quad k=1, \ldots, M-1 \\
& V_{M}(k)=V^{-(M-2 k+2),-(M-2 k)}=\langle-(M-2 k+2)|\left(+E_{0} \hat{S}_{x}^{2}\right)|-(M-2 k)\rangle \\
& \Rightarrow \Delta E_{M}(k)=+k_{0} \hbar^{2}\left[M^{2}-(M-2 k)^{2}\right]=+4 k_{0} \hbar^{2} k(M-k) \\
& V_{M}(k)=E_{0} \hbar^{2}[(S+M-2 k+2)(S+M-2 k+1)(S-M+2 k)(S-M+2 k-1)]^{\frac{1}{2}} \\
& \Rightarrow \Delta_{M}^{S}=2 \cdot\left[\prod_{k=1}^{M-1} \cdot \frac{V_{M}(k)}{\Delta E_{M}(k)}\right] \cdot V^{-M,-(M-2)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \Delta_{m}^{-}=\frac{2 \cdot V}{(4 k)^{m-1}} \cdot\left(\prod_{k=1} \frac{1}{k(M-k)}\right) \cdot\left(\frac{E_{0}}{4}\right) \cdot\left(\prod_{k=1} \widetilde{V}_{m}(k)\right) \\
& \frac{\downarrow}{[(m-1)!]^{2}} \quad \text { where } \widetilde{V}_{m}(k)=\frac{4 V_{m}(k)}{E_{0} \hbar^{2}} \\
& V^{M-2, M} \prod_{k=1}^{M-1} \widetilde{V}_{m}(k)=\prod_{k=1}^{M} \widetilde{V}_{m}(k)=\frac{(S+M)!}{(S-M)!} \\
& \Rightarrow \Delta_{m}^{S}=2 \cdot\left(\frac{E_{0}}{16 K_{0}}\right)^{m-1} \frac{E_{0}}{4[(M-1)!]^{2}} \cdot \frac{(S+M)!}{(S-M)!} \\
& \Rightarrow \Delta_{M}^{S}=A_{M}^{S} K_{0}\left(\frac{E_{0}}{16 K_{0}}\right)^{M} \\
& A_{M}^{S}=\frac{8}{[(M-1)!]^{2}} \cdot \frac{(S+M)!}{(S-M)!}
\end{aligned}
$$

Stirling's approx: $\quad \lim _{n \rightarrow \infty}\left[\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}\right]=1$

$$
A_{S}^{S}=\left[\frac{8}{((S-1)!)^{2}} \cdot(2 S)!\right]=\frac{8 \cdot \sqrt{2 \pi \times(2 S)} \cdot\left(\frac{2 S}{e}\right)^{2 S}}{\left[\sqrt{2 \pi(S-1)} \cdot\left(\frac{S-1}{e}\right)^{S-1}\right]^{2}}
$$

$$
\begin{aligned}
\Rightarrow A_{s}^{s} & =\frac{8 \cdot \sqrt{4 \pi s} \cdot 4^{s} \cdot s^{2 S} \cdot e^{-2 S}}{\left[\sqrt{2 \pi s} \cdot s^{s-1} \cdot e^{-s+1}\right]^{2}}=\frac{2 \cdot 4^{s+1}}{\sqrt{\pi S}} \cdot\left(\frac{S}{e}\right)^{2} \\
& \Rightarrow \Delta_{s}^{s}=\frac{2.4 \cdot K_{0} \cdot S^{3 / 2}}{\sqrt{\pi} \cdot e^{2}} \cdot\left(\frac{E_{0}}{16 K_{0}}\right)^{S}
\end{aligned}
$$

$$
\begin{array}{r}
\quad \ln \left[\frac{\Delta_{S}^{S}}{K_{0}}\right]=\operatorname{Ln} C+\frac{3}{2} \operatorname{Ln} S+S \operatorname{Ln}\left(\frac{E_{0}}{4 K_{0}}\right) \\
\quad \text { where } C=\frac{8}{\sqrt{\pi}} \cdot \frac{1}{e^{2}}
\end{array}
$$

