Phys 501: HOMEWORK ASSIGNMENT No (2)

Friday Feb 11th 2011

DUE DATE: Friday Feb 25th 2011.

(Please note that assignments handed in late may not receive a full mark.)

QUESTION (1): PROPAGATOR IN A STATIC FIELD

(i) The Lagrangian for a particle of charge q and mass m, in a static field, is given by

$$
\begin{equation*}
L=\frac{1}{2} m \dot{\mathbf{r}}^{2}+q \dot{\mathbf{r}} \cdot \mathbf{A}(\mathbf{r})-q V(\mathbf{r}) \tag{1}
\end{equation*}
$$

where $\mathbf{A}(\mathbf{r})$ is the magnetic vector potential, and $V(\mathbf{r})$ is the electric potential.
Write down the path integral expression expression for the 1-particle Green function $G\left(\mathbf{r}_{2}, \mathbf{r}_{1} ; \tau\right)$. Then, by considering an infinitesimal change in the final time t_{2}, show that the Schrodinger equation for the particle has the form

$$
\begin{equation*}
\left[\frac{1}{2 m}[(-i \hbar \nabla-q \mathbf{A}) \cdot(-i \hbar \nabla-q \mathbf{A})]+q V(\mathbf{r})\right] \psi(\mathbf{r}, t)=-i \hbar \partial_{t} \psi(\mathbf{r}, t) \tag{2}
\end{equation*}
$$

(ii) The Lagrangian given above for a charged particle in a field is a quadratic function of its arguments, provided the vector potential is also a quadratic function of \mathbf{r}. One may then derive an exact expression for the propagator in terms of the classical action, and the fluctuation prefactor, evaluated to quadratic order in fluctuations, in the form

$$
\begin{equation*}
G\left(\mathbf{r}_{2}, \mathbf{r}_{1} ; \tau\right)=A(\tau) e^{i S_{c}(2,1) / \hbar} \tag{3}
\end{equation*}
$$

Show that if the magnetic field is a constant along the \hat{z}-axis, so that $\nabla \times \mathbf{A}(\mathbf{r})=\hat{z} B_{o}$, then by choosing the appropriate gauge, the terms in the propagator take the form

$$
\begin{gather*}
A(\tau)=(m / 2 \pi \hbar \tau)^{3 / 2} \frac{\omega_{c} \tau}{2 \sin \left(\omega_{c} \tau / 2\right)} \tag{4}\\
S(2,1)=\frac{m \omega_{c}^{2}}{4} \cot \left(\omega_{c} \tau / 2\right)\left[\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|^{2}-\hat{z} \cdot\left(\mathbf{r}_{2} \times \mathbf{r}_{1}\right)\right] \tag{5}
\end{gather*}
$$

where $\omega_{c}=q B_{o} / m$.

QUESTION (2): SCATTERING PROBLEM

The famous Yukawa interaction (mediated by mesons) can be approximated by ignoring retardation in the interaction, to treat it as a static potential. In this case we have a d-dimensional potential

$$
\begin{equation*}
V(r)=\frac{V_{o}}{r^{(d-1) / 2}} e^{-\kappa r} \tag{6}
\end{equation*}
$$

(i) Find the scattering function $f_{k}(\Omega)$ for the system in the Born approximation, for $d=1,2,3$, where Ω is the scattering angle, and $k=|\mathbf{k}|$, where \mathbf{k} is the incoming momentum. Also find an expression for the phase shifts in Born approximation in $d=1,2,3$ dimensions, and write down the partial wave expansion of the scattered wave. Finally, find the cross-section for the scattering in Born approximation for $d=1,2,3$
(ii) Now consider the problem in $d=1$. Find an expression for the T-matrix of the system in this case. Under what circumstances can you accurately sum the infinite series here, and what answer do you then get?

