INTRODUCTION to PHASE TRANSITIONS

The simplest kinds of phase, and the names given in
English to the transitions between them, are shown

at right.

The classic phase transitions are the one between
the liquid, solid, and gaseous phases of a system.
In this case one can plot the boundaries between
these phases in a P,T phase diagram.

Another common kind of phase diagram involves
different magnetic phases (FM = Ferromagnet,
AFM = Antiferromagnet, and PM = paramagnet)
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The freezing point of water depends on its pressure. (image: Cmglee, CC 3.0)



Phase Diagram of Water
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Water is not such a simple system.

The liquid-ice transition temperature
actually goes down in T as P increases;
and the liquid is denser than the solid.

These properties can be explained
by looking at the “cage-like” structure
of the solid on the atomic scale.
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Alloys have very complex phase diagrams
as a function of the concentration of the
relevant constituents. The example

of the phase dagram for Al-Ni alloys

gives a hint of this complexity.

The understanding of these has been
a crucial part of the development of
early technology and tools.



PHASE DIAGRAMS for Now we have quantum fluctuations, as well

QUANTUM LIQUIDS/SOLIDS as thermal fluctuations, playing a role
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is superfluid

The He-3 phase diagram is much more complex, because
the He-3 atoms have a spin, and are fermions (and can
form Cooper pairs to give superluid phases. The spin
makes the system magnetic
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EHRENFEST CLASSIFICATION
for PHASE TRANSITIONS

This starts by asking how the thermodynamic state
functions (here the Gibbs free energy G) varies as
we pass through the transition. A 1st order transition
is continuous has a kink, so its derivative is
discontinuous. A 2" order transition has a kink in the
derivative; and so on.

One then gets the characteristic features shown.
Note that | am showing here that the parameter
that is being varied to take us through the transition
is temperature T. But it could be many other things
(H, p, concentration, etc).
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If we then work out how

all the different interesting
thermodynamic functions
vary with the key parameter
that is being varied, we get
the typical results shown

at left.
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KINETICS of 1st ORDER PHASE TRANSITIONS

There is a famous model for the kinematics and dynamics of 15t order phase
transitions, sometimes called the droplet model for reasons that will become
obvious. Suppose we have a simple problem in which 2 phases A and B have different
bulk free energies. Phase B with the lowest free energy is thermodynamically
favoured - but if we start with A, we have to find a way of growing or “nucleating”
a region of phase B inside it.

The idea is that this can happen anywhere - but to
create the “bubble” of new phase, we need to create
a transition regime, in the form if a surface of finite
A thickness, between them. This surface has a finite
energy per unit area, which we call the surface
energy - it is responsible for the “surface tension”.
Example: gas-liquid interface

Energetics: The total Gibbs free enerqay for a bubble

of radius R is G(R) = grMp(R) + g,M,(R) + 47T7R2 G(R)
4
= —WpL Ag R® + 47?7]?2 + const R
g4(A) 5 —
where we define Ag = (9. — g,) \

A
92(") The thermodynamic phase transition is where the 2 free

> A energy lines cross. Here A = p,T,V,H, etc.. is some control
parameter (which could be T or p for the gas-liquid system).

Note if we are growing a bubble of gas in the liquid (so the liquid is unstable), then
Ag > O (this is the case of boiling or even superheating, where gas bubbles grow in

the liquid). On the other hand if the liquid bubble is growing in the gas (ie, we have

condensation of the liquid, or even supercooling), then Ag <0.



Dynamics: The top of this energy barrier caused by surface tension is defined by

dG 9
= = Adm(prAg R* + 2vR)
. . . —2y ) ) 160 A3
giving a ‘critical radius’ ., = & barrier height [/, = G(R,) =
© T oL Ag ] (Re) 3 (prAg)?

Because of this energy barrier, one can in principle go well into the unstable phase, to
give either superheating or supercooling.

The analysis so far has been thermodynamic. One can also gas

analyse it microscopically, by looking at how gaseous
clusters of particles (the incipient liquid) can form or \

i i i liquid
dissociate into a gas. iqui

droplet
Let’s suppose that the gas dynamics is diffusive, implying
that the rate of change of mass of the liquid droplet will go like

_ dm
I = dtL — —D,Vp,(r) Fick’s law (diffusion)
i The point here is that the
which leads to T - _4WT2DO% gas pressure must be
g ~ higher at the bubble
and integrating: P/ —g = —47TDO/ dpy(r) surface than at infinity.
T R, This can be seen from the
remark that energy is
so finallyweget I = 47R.D, [p,(R.) — ngO)] associated with the surface
curvature (NB:
] . m this is not obvious from
or, using the idealgas law T = 4ﬂRcDok—T[pg(Rc) _pgoo)] this derivation).

Now let’s look at all this
in another way



ANOTHER WAY of looking at REACTION RATES

Obviously the topic of reaction rates is an important one in physics, chemistry &
biology. So it is worth asking how else we can approach it.

Now the transitions of the system out of the
0 ‘ n=0 L potential well can go in one of 2 ways, viz.,
; / A '_'_'_E (1) by direct tunneling from the ground state (n = M),
3 yy -\ -- > or by thermal activation from the ground state to
_____ __) =
1 . some level n, followed by tunneling from level n
N > (3) by thermal activation to states above the barrier
A r J > (at which point the system is no longer bound).
M A > Let’s ignore process (2) for the moment, and focus on (1).

tunneling

| I(r)

Then we can write that the rate of barrier traversal will be

= zisz(E%)Fo(Eﬁ)

which multiplies the probability that the system is in the n-th level, by the tunneling
rate through the barrier from that level (whose energy is E ).

Obviously we have
pr(E) < exp|—FE/kT)]
The WKB tunneling rate is

I'(E) = Qoexp[—%/

Ty

€T

2 dx\/Zm(V(:E) — I

where V(x) is the barrier potential, m is
the effective mass of the object, x, and
X, are entry and exit points through this

potential, and Qo is an ‘attempt frequency’

For an inverted parabolic potential one
has
U'o(E,) x explAy(E, — Ey)]

The exponential increase with E of [,
fights against the exponential decrease
of p,(E), with a crossover between the
two when A kT ~1.

The growth & nucleation of a critical
bubble is a special case of this analysis.
At low T we have “quantum nucleation”
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