
The CANONICAL DISTRIBUTION

We now go to the more 
physically relevant case where 
the system is coupled 
to a heat bath, which defines 
the temperature. Suppose the 
eigenenergies of system & bath 
are     &       respectively. Then 
we have

Because the bath is huge, we also know that
Let’s now count the microstates of the total. Holding the total energy Eo

constant, we then have

which has a maximum for some value of the bath energy    & the system energy
.  However the environment is much bigger than the system, so its density 

of states at any energy is MUCH larger, and increases FAR faster with energy. So 
Ω is maximized when E = Eo , and ε = 0 !! How does it vary with E ? We have

where

The probability P(ε) for the system to have energy ε is thus proportional to e –βε .
In fact we can write

where The all-important 
PARTITION FUNCTION



WHAT IS the PARTITION FUNCTION?

At first glance, Z(β) is nothing but a normalizing factor for the probabilities. But we 
shall very quickly see that it takes on a life of its own, as often happens with 
mathematical quantitites defined in physics.  

H. Hertz (1885) 
NB: Hertz (1857-1894) was a remarkable 
experimental physicist; here he is 
describing how he felt about Maxwell’s 
theory of electromagnetic fields. 

The name for the partition function comes because it summarizes how probabilities 
are partitioned over different energies.  It’s power becomes apparent when we take 
the logarithm of it, which can be related directly to thermodynamic quantities (and 
fluctuations of them). It can be written in different ways; in terms of the Hamiltonian 
H of the system, it is 

where “tr” refers to the trace of the operator. If thids operator is diagonalized in 
terms of the energy eigenstates, we get back the usual expression. 

Mathematically, it is helpful to think of Z as a kind of “generating function” (you can 
read upabout these in mathematics textbooks or online). A generating function is 
typically written in the form 

and in it is encoded the set of numbers {an }; note that        dnG/dxn |x=0 =  an
1
n!
_

We will find that it is derivatives of the function ln Z(β) that are what matter. 



CANONICAL DISTRIBUTION – SOME KEY RESULTS

THERMODYNAMIC QUANTITIES:  The 1st & obvious thing to do is calculate 
the thermodynamic quantities. We assume energy eigenvalues Ei

Energy:  We have 

We then get:

Free Energy & Entropy: We now calculate both F & S together; this will lead to 
some nice results.  We first note that

Integrating this gives so that

and so that

How do we find the constant c?  Well, let’s go to T=0 where only the ground 
state is occupied, so that  

implying

However we know that at T=0, we must have S = kB ln Ω0, so we arrive at 2 
key results: 

and



More on Entropy:   We can get another very illuminating expression for S , in 
which the entropy is just a weighted sum over all the states of the quantity ln Pi
for each state (ie., over the “entropy for each state”). Let’s prove this – we have



But this is just the same as

& so cf. last page):  

NB: for the microcanonical ensemble, for which Pi = 1/Ω, where Ω is the total 
number of microstates, we then get

which we already found before

FLUCTUATIONS in THERMODYNAMIC QUANTITIES:   This is a big step 
beyond thermodynamics. Let’s first look at energy fluctuations. We have 

Mean energy: Mean square fluctuation: 

Working these out we have Hence

which we can also write as



MULTIPLE SYSTEMS:  We now come to a simple but fundamental result. 

SUMMARY – Basic Ideas of Canonical Distribution

Suppose we combine 2 systems A and B which are not interacting with each 
other (but can have lots of internal interactions). Then we can write

so that partition functions multiply, just like state multiplicities. This argument 
clearly extends to N different systems, and if they are all identical, we have

Then, for an extensive quantity like energy, we have

and indeed any extensive quantity will be proportional to a sum over the 
logarithms of the partition functions for each sub-system

1. In the canonical ensemble, the probability of occupying a state is NOT the 
same for all states, but falls exponentially with the energy of the state. 

2.  Extensive quantities come from derivatives of ln Z (logarithm of Z )

3.  Fluctuations about the mean also come from derivatives of ln Z.  



EXAMPLES
EXAMPLE 1:  N-QUBIT SYSTEM:   We go to our tried and trusted set of N

non-interacting spin-1/2 systems. The energy of each spin takes values 
E+ = µB, E- = -µB, so that the single spin partition function is just

and hence

High-T limit:

Low-T limit:

Energy:   We have

Specific Heat:   This is just

This takes the characteristic “Schottky” form, 
shown at left as a function of T. It is usually very 
obvious in low-T experiments - other modes 
(phonons, electrons, etc.) give v. different form.



EXAMPLE 2:  VIBRONS/OPTICAL “EINSTEIN” PHONONS:  These exist in most 
solids, & in all molecules – they are vibrational modes.

Consider the HCl molecule, 
shown schematically. The 
only possible vibron mode 

describes oscillations in the 
distance between the H & Cl ions.  We 
thus get a set of absorption lines which 
are those of a simple oscillator. IR absorption lines of HCl molecule

More interesting is the spectrum of benzene (C6H6), where one can have 
compressional, flexural (twisting) and `wiggling’ modes.  Many of these are 
degenerate because of the symmetry, and they interact weakly (`hybridize’) with 
each other, behaving as weakly coupled oscillators of different frequencies.

LEFT: Benzene 
oscillations

RIGHT: 
Benzene spectrum

(a) Molecules



(b) Phonons in crystals In any periodic system we have quantized 
vibrations propagating freely through the system as waves – these are 
acoustic phonons, with energy ω(k) = ck at long wavelengths (ie. for small 
k), where c is the sound velocity. 

If there is more than one ion per unit cell, then we can also have relative 
oscillations between these ions, which may be strongly localized in each cell, 
and look like molecular vibrons. Weak coupling between neighbouring vibrons 
allows them to propagate slowly as waves across the crystal. 

A very interesting case is the semiconductor Ge, where 
the 2 Ge atoms in each unit cell are in different 
surroundings (different crystal electric fields). There are 
thus also finite frequency vibron modes, which when they 
couple together across 
the crystal give rise to 
“optical modes”. The 

crystal thus has both 
acoustic and optical
modes

In a crude approximation we can just ignore 
the coupling between the local Ge vibrons, & 
then we have the “Einstein model” of N
different 3-d oscillators, each with the same 
frequency. 

In a 3-d system the oscillations can be divided 
into longitudinal L modes (compressional) and 
transverse T modes. 

Position of ions in a Ge crystal



Statistical Mechanics of Einstein Model:   We can now work this out, by 
starting with the results for a single oscillator. 

Recall that for a single oscillator we have energies:
The 1-oscillator partition function is then:

The T-dependent 1-oscillator energy expectation value, and 1-oscillator specific 
heat, are then

Now recall that =

and

What now of the N-oscillator system? Clearly, since the partition functions Zj
multiply and the ln Zj add over the different oscillators labelled by j, then we must 
have 

and

where the individual partition functions are just given by the functions 
above, with different frequencies νj for the different oscillators 



EXAMPLE 3: N DISTINGUISHABLE PARTICLES in a BOX:  Let us imagine a 
d-dimensional box with sides L & volume V=Ld; we will let L be macroscopic, 

so that the density of states can be approximated by a continuous function.
Recall that the N-particle density of states has the form 

which for a 1-particle system we write as 
where g(1,n) is the degeneracy of the n-th level. The number of states in 
an energy interval dE around E is then g(E) dE. Since our particles in the 
present case are non-interacting, we can do everything for the 1-particle 
case, just as we did for spins and oscillators above; ie., we find Z for the 
1-particle system, and then sum over ln Z for each particle to get the 
result for the N-particle system.  

Continuous density of States:  Let the probability for the 1-particle system 
to have an energy E be P(E),  so that in the canonical ensemble we must have,
for a system of volume V, that

= (note key Boltzmann factor)

with a partition function



so that = so now we have to 
find g(E) for different d



1-dimensional box:  The density of states is easy to find here. First recall that 
the quantized momenta are kn = πn/L, with non-relativistic energies given by 

The interval between states is then                  so that
the density of states g(k) in k-space is g(k) = L/π. 

We want to rewrite this in energy space, ie., to change variables. Going over to 
a continuous density of states, we use

Now g(k) = dN/dk = dN/dE (dE/dk) = g(E) (dE/dk);  so

2-dimensional box:  Now we have to count discrete states in the 2-d k-plane, & 
convert to a continuous density of states. Each state occupies a k-space area 

of π2/L2; inside a circle in k-space with radius k we then have a total

different states

The possible energies are

and, going over to continuous energy, we get after changing variables as above 
that, per unit volume

(2-d density of states is a constant)

(per unit volume)



3-dimensional box:  Here I will not go through the derivation – it is an obvious 
generalization of what we have already been doing. We 

have to deal with a 3-d spherical region in k-space, 
as shown. 

We then get a total number of

states per unit volume, and a density of states per 
unit volume given by

The final results 
are as shown for 
1-d, 2-d, & 3-d

More on the 3-d Gas:   Suppose we now write the partition function. For a single 
particle we now have:

= This integral is easily 
found – see next page



The integral on the last page gives:



where 
and (thermal de Broglie wavelength)

This means we count roughly 1 state per cube of size Vq ~ λ3

There is a paradox here – isn’t the partition function suppose to increase 
exponentially with volume V, so that the free energy is proportional to volume? 
Here we have 

To answer this, note that we still have               so that F is proportional to N. 
However, if, eg., we keep N constant and double V, we are not actually “doubling 
the system”; rather we are putting the same N particles & eigenstates into a larger 
V, although the energies decrease (and their density in energy increases).  To 
check, note that the thermodynamics is still fine – we have  

(ie., the usual ideal gas law pV = RT, with R = NkB)

and the energy per particle is 

giving a total energy & specific heat

Equipartition 
theorem



CUTE CASE 1:  DNA ZIPPER MODEL:  DNA molecules are made of 2 intertwined 
helical strands, easily pulled apart. To set up a toy model, let’s suppose that:

(i) There are g0 ways of opening a link; each 
costs energy E0; a closed zipper has E=0

(ii) The # of microstates for a closed zipper is 
Ω0

(N) = f (N) ; & for a zipper with r open links 
is Ωr

(N) = f (N-r) g0
r . Assume NE0 >> kBT .  

(iii) We will assume that f (N-r) = f (N) for all r .

The 3rd assumption is debatable – we’ll discuss it in class. 

Then

(1) Let g0 = 1:  unzipped chain has same Ω but higher E than zipped chain.
Then & so that &

(2) Now let g0 > 1:  unzipped chain has higher Ω & higher E than zipped chain.

(i) Suppose < 1. Then analysis is same as above.

(ii) Suppose > 1. Then diverges with r. 
We deduce that equilibrium value of r is infinite. 

(iii) Suppose so that Then Tc is “unzipping 
transition temperature”

Note the competition between TS & U in F = U-TS. 



CUTE CASE 2:  NEGATIVE SPIN TEMPERATURES:  This case was discussed 
in the notes in Ch 3, in the microcanonical ensemble.  Now let’s discuss this 

in realistic (canonical ensemble) terms, and in terms of a concrete experiment. 
We apply a field Bo along +z; the spins are initially at T=0 and so oriented 
along z, in their lowest energy state. Then we can do the following – apply 
a field pulse perpendicular to Bo, to tip 
the spin. Two examples are shown – in 
one, the spin is partially tipped, in the 
other, tipped by 180o.   

So now, tip all spins down. The 
system is now in its highest 
energy state! Note we can get 
the same effect by just reversing 
the external field, again leaving the 
system with all spins antiparallel to 
the field.

Initial state 
for each spin Partial tip 180o tip

N (E)

E

If we are at T=0, we can discuss this in the microcanonical 
ensemble, since the system is not in some probabilistic 

distribution of states – it 
simply jumps from one 

state to another. 
However we have the 

mysterious result that
dS/dU = 1/T has                 

changed sign;  
what does this  

mean?     



Spin Reversal at Finite T:   Now suppose we do the reversal at finite T. An 
ensemble of systems has the states occupied with a probability decaying 

exponentially with energy, proportional to exp [-E/kBT] ; thus only states with 
polarization strongly aligned with the field are significantly occupied (the lowest 
energy states). 
However when the field flips relative to the spins – but leaving the spins in 
the ensemble untouched - we see the opposite is now true – the probability 
is now proportional to exp [+E/kBT] ; the spins now preferentially occupy 
high E states! 

The change in occupation 
probability for the states is 
then as shown

Clearly this final state is NOT an equilibrium state – eventually it will 
relax back to the low energy state, again with the spins pointing 
parallel to the field. But the mechanism for this works slowly – it requires 
the energy to be carried off by photons or phonons, & the matrix elements 
for this may be very small. Thus this high energy metastable state lasts a 
long time. For much shorter times we can treat it as approximately a 
thermodynamic state, with a negative temperature.

Field reversal

This concludes the discussion of the Canonical Ensemble, 
and of the related Canonical Partition Function
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