
LECTURES 1-3   (Wed 12 Jan, Fri 14 Jan, Mon 17 Jan 2022)

PROBABILITY

N Distinguishable objects:  the definition is obvious. There are N! different 
possible arrangements (permutations) 

The object in the first position on the line may be chosen in N different ways, that in the second 
position in N−1 ways, and so on. The number of possible arrangements is therefore   

N(N−1)(N−2)(1)  = N!

N Indistinguishable objects:  One makes one of 2 assumptions. Either:
(i) the definition is absolute – there is no difference in principle, AT ALL, between 
the different permutations (as in quantum mechanics); or
(ii) We simply decide we don’t want to distinguish them (as for coin tosses)

3! = 6

1! = 1

STEP 1: COUNTING STATES (COMBINATORICS)

Example: 3 distinguishable objects

At left we see the 
6 different ways of 
ordering (ie., permuting) 
3 different balls.

Then there is only ONE permutation



Let’s generalize the previous example with the 2 following examples

BINOMIAL DISTRIBUTION

Example 1: We want to know the total number of ways of extracting n objects 
from N distinguishable objects, without regard for the order in which they 
are selected. 

We can organize the N objects in N! different ways. However re-orderings of the n! objects in the 
group selected, and the (N-n)! objects in the remaining group not selected, do not count, since 
they do not change this. The number of possible arrangements is therefore   

selected Not selected

(binomial factor)

Example 2: We have 2 sets of indistinguishable objects; the total number is N, 
and n of them in one set, N-n in the other. What is the total number of 
distinguishable ways of ordering them? These could be, eg., H or T for N coins. 
We can organize the N objects in N! different ways. However re-orderings of the n! objects in the 
1st set, and the (N-n)! objects in the 2nd set, do not count, since all these different rearrangements 
are indistinguishable from each other. The number of possible arrangements is therefore again  

(binomial factor)

Suppose, eg., I toss 10 coins, and I want to know how many different arrangements of these 10 
tosses will have 3 heads and 7 tails turn up, in any order. The answer is  10!/(3! 7!) = 120



BINOMIAL DISTRIBUTION (Cont.)

Example 3: A card game.   

Suppose we are dealt 7 cards from a 52-card pack. 
What is the probability this hand contains 3 Aces?

To do this we need to first ask how many possible outcomes there are for the 7 cards 
that are dealt; we then ask how many of these give 3 Aces.

(1) Total number of possible distinguishable arrangements is the binomial C52
7≡C52

45= 52!/(7! 45!)  
This is because we can re-order the first 7 cards 7! times, and the last 45 cards 45! times

(2) To find how many of these are Aces, we note first that it does not matter which Aces we get. We 
need to multiply the number of ways of getting 3 of the 4 Aces (without caring which ones), by the 
total number of outcomes for the other 4 cards that are dealt, with the constraint that these other cards 
are NOT Aces. The first number is C4

3= 4.To find the second number, we note that there are 48 cards 
that are not Aces, and we are getting 4 of these. So this latter number is C48

4= 48!/(44! 4!)

The final result for the probability P{7}
AAA is then 

which if we work it out gives P{7}
AAA ∼ 0:00582, ie., roughly 1/172.



STEP 2: ASSIGNING PROBABILITIES 

We’ve found the number of permutations – now we must assign a probability to 
each one. 

The simplest is to assign equal probabilities to each permutation or “outcome”. 
If the total number of permutations is X, the probability of each outcome is 1/X

Example 1: Coin tossing
We look for the probability of getting n heads (ie., spin up) from N tosses. 
Suppose the coins are equally balanced. The total number of possible 
outcomes is 2N; each therefore has probability 1/2N . However the total 
number of permutations having n heads is CN

n.

We then have

Unequal Probabilities:  Suppose coins are unbalanced; the probability of 
getting a head (spin up) is p+, and that of getting a down is p- = 1- p+ . Then we 
have 

because the probability of getting any one of the combinations with n heads and N−n tails is, by 
assumption, just the product over the probabilities for each throw. When p+= 1/2, this just reduces 
to the previous result.



MULTINOMIAL COMBINATORICS
Here we partition the N objects into m different groups. We want to know the 
number of permutations/outcomes in which internal permutations of objects 
inside a box are considered to be indistinguishable 

n1 objects n3 objectsn2 objects
(n1 = 3) (n2 = 6) (n3 = 2)

permutations

Example 2:  a set of N particles, each with spin s. For each spin, 
there are m = 2s + 1 different distinguishable states (spin projections) 

for each spin. What is the total number of different possible combinations with n1
spins having spin projection sz = s, n2 with projection s-1, etc, up to nm with spin 
projection sz = -s. 

since the k-th group of identical objects can be rearranged in nk! ways without changing 
anything, and we can do this for any of the m different sub-groups.

By the same arguments as before we have:

Example 1: We throw N dice, each having six possible states (1-6). 
What is the total number of outcomes with n1 showing 1, n2
showing 2, etc, with Σj nj = N?

The answer is again                   with m=2s + 1.

The answer is                    with m=6.  



MULTINOMIAL  PROBABILITIES

Suppose we have N balls which we distribute in m different cells or boxes, but now the 
probability of going into the k-th box is pk, where k= 1;2;···m (and where of course ∑k pk= 1). 
As we saw before, the number of different ways of doing this is just the multinomial coefficient

It then follows that the probability PN(n1; n2;···nm) of getting an outcome in which there are 
nk balls in the k-th box is just

However now the weighting attached to any one of these ways is:

Kronecker Delta Function

prob p2prob p1 prob p3

We’ve now done the combinatorics for the multinomial distribution – we must again
assign a probability to each one. 

Again, the simplest is to assign equal probabilities to each permutation/outcome. 
If the total number of permutations is X, the probability of each is again 1/X

n1 objects n3 objectsn2 objects



MULTINOMIAL DISTRIBUTION (Cont)

Example 3: Another card game.   
Suppose we have 4 players, & each one is dealt 5 cards. What is the 
probability that each player has exactly one Ace?

See Notes and Homework assignments for other examples

This generalizes the previous card problem to a multinomial distribution. We must 
first ask how many possible outcomes there are for the 4 batches of 5 cards that 
are dealt; we then ask how many of these give 1 Ace in each hand.

(1) There are C52
5:5:5:5:32  ≡  52!/[(5!)432!] ways of distributing the cards amongst 4 hands of 5 cards, 

and then amongst the remaining 32 cards.

(2) There are 4! ways of ordering the 4 Aces. There are then 48 cards left, that are not Aces - these 
can be dealt out to the 4 different hands in a total of C48

4:4:4:4:32  ≡  48!/[(4!)432!] times.

Probability is then ∼ 2:31×10−3  ∼ 1/433
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