
QUANTUM & CLASSICAL GASES
Recall the fundamental difference between distinguishable & indistinguishable 
objects in the counting of states. Compare the following two examples:

In the case shown at left, of distinguishable particles, we know that the total 
number of possible states which has nj particles in the j-th state (ie., the j-th 
box) is   

(distinguishable – for N particles 
in m different possible states)

However, if the particles are indistinguishable, we have                    ; the system is
entirely specified by the occupation numbers { nj } .

QUANTUM MECHANICS: Recall that in quantum mechanics in 3 dimensions 
we have 2 possible statistics. If we exchange a pair of identical particles we have  

bosons

fermions
A

B Because the particles 
are identical, QM sums
over the different 
possibilities, with 
+ve or –ve relative sign



FERMION STATISTICS (IDEAL GAS)

1-PARTICLE DISTRIBUTION:  This is the probability distribution over all states, 
for a single particle, in a system of N particles. We write:

distribution over states distribution over energies

where n(α) and n(E) are 1-particle occupancies, as on previous slide. A key point: 
since the system is entirely specified by the occupation of each state, probability 
distributions are now over states, not over individual particles.

Since fermion states can only be empty or full, we have, for a single state, that 

=

If there are many different states available to a system of many particles, we 
then just have

Then the 1-particle mean occupancy for a Fermi gas is

=

=

so that finally we have
This is the “Fermi-Dirac” of “Fermi” 
distribution function. It gives, for 
fermions the probability that a state 
of energy E will be occupied



PROPERTIES of FERMI GAS

The Fermi distribution is shown at right for 
finite T ; when T=0, it is just a step function, 
with all states occupied below the chemical 
potential occupied.

Suppose we have a gas (no interactions), 
and we fix the number of particles to be N
(we will relax this assumption later), with 
number density ρ = N/V.  We also define the “Fermi energy” as EF = µ(T=0) ; the 
chemical potential itself will be a function of T and N. 

Now we know in general that

where g(E) is the 1-particle density of states. Let’s go to T=0. Then we simply 
have

But this is simply an equation that allows us to determine 
EF , the T=0 chemical potential. Let’s calculate it. We have

Hence:                            , also written as                                       and as

We call TF the Fermi temperature, and vF the Fermi velocity

Fermi 
sphere

kF



BOSON STATISTICS (IDEAL GAS)

The occupation of a boson state can be arbitrary, so now

= = =

=

=

The particles are independent, so E(n) = nE, where E is the single-particle energy; 
& thus for a gas we have

which gives

Writing this for a state α, we have 

Taking now the product over states, we find the partition function to be 

Now we can calculate the boson occupation <n(E)> for states of different E; we 
have

== 

==which is the same as

In the literature one often writes f (E) = n(E) for bosons, 
to distinguish from f (E) for fermions. So finally we have

Bose 
distribution 
function

This function is only defined for 
E > µ, and diverges when E = µ

Comparison of 
Bose and Fermi 
functions

f (E)

(E-µ)/ kT



BOSE GAS of MASSIVE PARTICLES:  We ignore here the case of massless 
bosons like photons or acoustic phonons (to be discussed later). 

Suppose we fix the ground state energy to define zero energy. Then the chemical 
potential must satisfy           , since otherwise the Bose function is undefined. 
Physically, if            then the system could lower its energy without limit by 
continuing to populate states with energy            (always possible for bosons).   

Let’s find the chemical potential. In the same way as for fermions, we write

where again 3d density 
of states

A simple change of variables then gives

Now this integral has a maximum value ~ 1.36 π½, when µ = 0. But this implies 
that N cannot exceed a maximum value N = Ncr, given by   

corresponding to a critical density

where again 

It turns out that this result is WRONG. Physically it makes no sense – these
are bosons, and so in principle one can have an arbitrarily large number of 

them. The problem is mathematical – we made a continuum approximation for 
the sum over states, and this does not work for bosons. We will fix it when we 
come to discuss superfluids.  



CLASSICAL MAXWELL-BOLTZMANN STATISTICS (IDEAL GAS)

Suppose we assume that                    , so that                           . Then it is clear 
that bosons and fermions will behave the same, because then 



=

=

We then have the Maxwell-Boltzmann (MB) distribution

Note that it is obtained when the occupation number is very low – this happens 
at high energy (ie., (E-µ) >> kT) or for low density (ie., ρ << ρq).  

Now, yet again, let’s go through the routine of finding N in terms of µ (and 
vice-versa). Again we have



Using the MB distribution             we get = =

where Z1 is the 1-particle canonical partition function found earlier, given by

===

Thus we find that                     so that =

which gives our key result                                    (again!)



PROPERTIES of MAXWELL-BOLTZMANN GAS

ENERGY & VELOCITY DISTRIBUTION:  The probability for a particle to have 
energy E is just


Multiplying out:

=

==

Changing variables to velocity v, we have
so that  

Velocity in m/sec

MB distribution 
for O2 molecules

This result was derived by Maxwell (1860), long 
before Boltzmann or statistical mechanics – he 
did it by methods given in the notes.

FREE ENERGY:  Let’s imagine adding particles to the system one by one. After 
adding r particles we have 

so that

we can then write

===

Stirling’s approx. gives ~ ~

Noting that 
,T



This is a key result:                                           so that~

However it is also a very puzzling result. Let’s recall that for a gas of 
distinguishable particles, we found that (distinguishable particles)

This differs by the factor N!, and implies that for distinguishable particles

=

=

==

=

= ie., we have

So why is the classical MB gas not the same as a gas of distinguishable particles? 
Let’s start on this question by looking at the Free energy F = U-TS. For the MB gas: 



However

= =ie., 

Let’s note 2 things here:

(i) both of these quantities are extensive, as they should be

(ii) However although the energy U is truly classical (it does not depend on 
Planck’s constant h), the entropy is not – it depends explicitly on h, 
through its dependence on ρq . How can this be?

The paradox was finally resolved by Gibbs – see next 2 slides



=

GIBBS’S PARADOX & ITS RESOLUTION

Gibbs defined the following thought experiment.
(i) put gases of different particles A and B in the 2 
compartments. 
(ii) Now remove the partitionA B

The question is – for a MB gas, what is the total entropy before & after mixing?

(i) Before mixing:  we have

where and

(ii) After mixing:  we have
Entropy 
of mixing

Now suppose particles A and B are identical….

(i) Before: 

(ii) After:



So nothing changes in this latter case. This is problematic for several reasons…



Problems raised by Gibbs Result:  This result has given rise to discussion 
ever since Gibbs formulated it. Here are 2 key points one can make:

(i) The limit as B  A:  Suppose we let B become identical to A in a continuous 
way. This is a process which is easily definable classically – for example, 
we could simply let the particles have different masses mA and mB, then 

let one tend to the other. 
However, we see that in the case of the MB gas, this limit is discontinuous –

the final entropy is completely different from the initial entropy, unless the 
particles are identical. This makes no sense classically. 

(ii) Inherent inconsistency of distinguishable particle result:  Much more 
serious, and harder to absorb, is the fact that the result for a gas of 
classical distinguishable particles, apparently quite innocuous, is 

actually internally inconsistent.  We note that for this system: 

(as found before)

& so we have

==

However neither of these results is extensive. The free energy has the factor 
N lnN in it, and the entropy has the factor N lnV ; thus neither is consistent with 
basic thermodynamics. 



ADDENDUM: Chemical Potential Behaviour for Quantum Gases

It is interesting to see how µ(T) varies with T for the 3 different kinds of gas 
(Fermi, Bose, and Maxwell-Boltzmann). The following shows results derived 
from the usual equation

3 DIMENSIONS:  In 3d,                      where ρ = N/V is the number density; thence    

It is useful to introduce a parameter                                     ,  where kq is the 
inverse of the mean interparticle spacing ao. Thus εq is the zero point energy 
associated with the lengthscale ao. For fermions, εq = EF , the Fermi energy. 

We will discuss how µ(T) varies for 
fermions later on. For bosons, as we will 
also presently discuss, µ(T) is negative 
down to a critical temperature Tc, with

Finally, for the MB gas, using
and

for particles of spin S, we get
which starts off positive and goes negative
at higher T.



2 DIMENSIONS:  The momentum parameter kq in 2d satisfies                   , so now 
we have  

There are some key differences here from 3d results.  In particular
(i) the chemical potential is in general lower in 2d than in 3d – this is a result of 

larger quantum fluctuations. 

(ii) The critical temperature Tc for bosons (where µ(T) goes to zero) is now 
driven down to Tc=0. 

(iii) the difference                         , where µ* = µ /εq , for any T. Moreover, at high 
T, the MB chemical potential is midway between the Bose and Fermi ones. 

It is noticeable that in both 2d
and 3d, all 3 of the chemical 
potentials tend to a limit at high T
where their ratio is 1, but they are 
of course never the same.  In 2d
the limiting behavior is that 
just described, whereas in 3d
they continue to approach each 
other, but never actually meet. 

Finally, we notice that in both 3d 
and 2d, the MB chemical potential 
is always positive at low T, but 
negative at high T.  



1 DIMENSION:  Quantum fluctuation effects are largest of all in 1d. Thus we see 
the chemical potential is pushed down even more, except for the curious hump in 
the fermion results at lower T.  

SUMMARY for QUANTUM GASES:  The key points are:

- For indistinguishable particles only the occupation number of a given state has 
any meaning. 

- The 1-particle distribution functions, defined by the expectation value <n(E)> 
for the occupation of states of states at energy E, takes a simple characteristic 
form for bosons and fermions

- The chemical potential is easily determined by integrating the product of the 
occupation number and density of states. However this method gives an 
incorrect answer for bosons (to be fixed later)

- The Maxwell-Boltzmann gas is the high-T (or low density) limit of either fermions 
or bosons. It is NOT the same as a gas of distinguishable particles. Such a gas 
turns out to have properties inconsistent with thermodynamics.
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