MICROCANONICAL ENSEMBLE

We now find the total number of microstates for a large system by combining
M sub-systems. We do this for a completely closed system. Note that closed
systems conserve total energy - so if the system starts with some energy E,
only microstates with that energy will be accessible at future times.
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Example 1: For a system of N spins with spin s (each having 2s + 1 states) the

total number of microstates is (2 = (2s + 1)N (so that In (Q = N In (2s+1)). Thus
the log of the multiplicity is additive. If each spin in the system was different,

with value s, for j = 1,2,...N, then we get In Q2 = X, In (2s; + 1), again additive.

KEY POINT: The total number () of microstates
for the whole system is given by

M
) = HQJ = Qlﬂg,'“QM
so that j=1

M
nQ =) = nU+nQ,+-+nQy
j=1

Thus the log of the number of microstates is an
additive quantity - ie., it is an extensive variable

The argument is a little more messy when we deal with particles with
continuously varying quantum numbers, or where the spectrum is
unbounded - we shall do this later.



MICROSTATES & ENTROPY

; Let’s look again at our thought expt with a closed box (no
aU=* heat or energy passes through any wall), in thermal eqlbm

at temperature 7. We have a massless moveable partition, &
work can be done on the contents of box 2 by those of box 1.
We do this reversibly. The total system stays in an energy eigenstate, total energy
is conserved, and each sub-system cycles between different energy eigenstates.

For an infinitesimal reversible 4O
motion of the wall we then have 4dInQ= - dinQ), +dInQ2, =0

However we also have JInQ-= {alnﬂl] dU, +{a£1£rﬁz] dU,
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or, using dU, =-dU, =dU we have dan:HDlnﬂl] _(alnﬂzj }JU:{J
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aU, ou,
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Notice how closely this argument parallels that in our thermodynamic discussion
of the same example (cf eqtns (9)-(11) of Ch. 1). There we saw that the common

temperature T for the 2 boxes is defined by U 55\
(55, [&)

Hence that we find that S is - E oU

fl::r:f'::':nvt:'l::z hf‘o?i-:lrlvse will S = kB In® If we use Kelvin units for 7, we have
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“closed box” scenario, that k =1.38%1077J/K
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EXAMPLE 2: N SPIN-1/2 PARTICLES

Recall that the number of states varies ! E. 2,

really fast with energy. Suppose that N — NuB 1 _

N=100; then the number of states (0 (n) N-2 ~(V-2)uB CN 1=N
varies as we have N-4 —(N-duB | C"2 = N(N-1)/2
already seen, N-100=0 0 Nsp ~ 105

as a binomial

’ P -
function. Let’s take the log of () (n) ; this just gives

S(E)/kg, where S(E) is the entropy as a
function of the energy E (written at
left as U). From the graph we see
that dS/dU = 1/T changes sign - we
oy e interpret this later.

EXAMPLE 3: ENTROPY of MIXING: We mix together 2 atomic

species in a lattice, with N, of species A, & N of species B, with :11111:
N, + N = N. If the mixture is random, we again have a binomial + 949499+
distribution of configurations. If we let x = N,/N, we have OB
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N!

= If the energy of all these
(xN)!A-x)N]! configurations is the same, then they

are all equally likely. If they are not, then

only ones with the same energy as the

InQ ~ —xNlnx-(1-x)NIn(1-x) initial energy will be allowed. How this

works depends on what the Hamiltonian

and the details go through as before of the system happens to be.

so that




EXAMPLE 4: 1-d POLYMER "‘E_‘_’

This is just a 1-d tethered string, as *—— ¢
shown. We have a total number N sub-units "*\—E\;
or “links”, each of length /; all configurations -
have the same energy U. This is yet again I
a binomial distribution - the net extension L is
like the excess of heads over tails, or the net spin, and we get for large N that the
number of microstates corresponding to different configurations is

-
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Q(L)=9Q, exp{— . } implying a configurational entropy §_ (L)=S5(0)-

2NI”

We can try pulling on one end of the system - a simple thermodynamic analysis
shows that if we apply a force £, then since U = const, and since

dU =TdS + fdL we have 4F = _SdT + fdL & hence f:[ﬁ) :_T(E’Smn) :!}‘:’ETL
oL ), oL ), NI’

which is just Hooke’s Law (extension proportional to force). This is a pretty amazing
result which gives a MICROSCOPIC result for Young’s modulus Y = L/f. It tells us the
force is fighting entropy in the system - it is fighting against an “entropic force”.

Role of Vibrations: there can also be vibrational excitations (called phonons
when quantized). Without discussing their origin or mechanics, we can still

say a few things. Suppose we slowly stretch the polymer, so the
total entropy doesn’t change. Then AS = 0, and

The total entropy is now

S=8,+5,, AS k;LAL The polymer heats up (ie.,
We shall evaluate S ,, Ay = —AS,,, = NI? energy an_d entropy go into
in the next chapter the vibrations).



SUMMARY for MICROCANONICAL ENSEMBLE

1. In line with the basic axioms of probability, the number of microstates
for a composite system is given by the product of the number of
microstates for each of the sub-systems.

2. The logarithm of the # of microstates is then ADDITIVE over the
sub-systems - it is therefore an extensive quantity.

3. The log of the number of microstates is proportional to the entropy S.

4. Entropy S therefore has a characteristic form as a function of energy.
For a system which can be mapped to a set of spin-1/2 spins, this has
a characteristic inverse parabola shape.

KEY RESULT

S=k;InQ
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