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5.   The GRAND CANONICAL DISTRIBUTION      
                                        
GOAL: To derive the grand canonical partition function, and to use it to analyze 
problems in which the chemical potential and/or particle transfer are important.  
 
This section generalizes the whole notion of a partition function to include particle 
exchange – it is therefore connected directly to the Gibbs free energy and the grand 
canonical potential (see Chapter 1, part 1(c)), which you should look at again.  
 
 
 
 
5(a)    Grand Canonical Partition Function 
 
We will consider a “sub-system” or central system Σ, coupled to a bath or reservoir Σenv  
at temperature T and chemical potential µ , such that both particles and energy can be 
exchanged between the two. Thus the reservoir is now not only a thermal reservoir but 
also a particle reservoir. In the figure the central system is not yet in equilibrium – neither 
the temperature nor the particle concentrations are the same in system and reservoir, and 
flows still exist. 

                                          
 
We are going to derive the grand partition function for this system – we will do this using 
2 different methods, which exactly parallel those used for the derivation of the canonical 
partition function in the last chapter.  
 
 
Argument 1:  We know that the total energy E0, of the combined central system plus 
bath, is conserved. We also know that the total number N0 of particles in this total system 
is conserved. We will again expand about the maximum probability state for the bath, as 
we did before.  
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To do this, let us again define the set of energies { εk } referring to the bath Σenv , and the 
set {εj  } for the central system Σ. We will also define the set { Nα } of particle numbers 
for the bath, and { nβ } for the central system. We then have the constraints 
 

                 E0   =    εk  +  εj    =    const    (for all allowed pairs k, j)                               (1)  
 
                 N0   =   Nα  +   nβ   =    const    (for all allowed pairs α, β)                             (2)  
 
where now we must include in our analysis all possible energy eigenstates states j, k of 
the system and bath respectively that obey eqtn. (1), as well as all possible number 
eigenstates that obey (2).  
 
Again, the bath is by hypothesis very large compared to the central system, and so for any 
given values of E0 and N0 we expect that almost all of the energy and of the particles will 
be in the bath Σenv. We therefore assume that 
 
   εj /E0  <<  1             and                 nβ /N0   <<   1                                                         (3) 
 
for any of the relevant central system states. The description of the central system will 
then reside in the probabilities of occupation of the combined set of “pair states” labelled 
by  { j,β }. 
 

Let us now count the number of  microstates Ω0 (εj, nβ ; εk, Nα) corresponding to the 
macroscopic state of the combined system plus bath having these fixed number of 
particles and energy. We now get 
 

Ω0 (εj, nβ ; εk, Nα)    =     Ω(εj, nβ) Ωenv (εk, Nα)    

                                        X   δ (E0 – (εj + εk))  δ (N0 – (nβ+ Nα))                                 (4) 
 
with any sums over j,k,α,β,  having to satisfy the constraints imposed by the two delta-
functions.  
 

From this point the argument goes along as before; the multiplicity Ωenv (εk , Nα)  for the 
bath states is far larger than that of the central system, and increases with both energy and 
particle number incredibly fast.  Thus we can immediately see that the most probable 
energy for the bath is just its maximum possible value E0, and the most probable particle 
number for the bath is Nα = N0.  
         Again, as before, we want to find out how the probabilities vary as we move away 

from the maximum probability at  (εk, Nα)  =  (E0, N0). To find this we expand around 
this maximum, now by varying the two variables (energy and particle number). We then 
get, in place of eqtns (4.4) and (4.5) in Chapter 4, the result 
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ln Ωenv (E,N)      =     ln Ωenv (E0, N0)   +  (d ln Ωenv / d E)| E=E0   (E0 – E)   

                                                                      +  (d ln Ωenv / d N)| N=N0   (N0 – N)   + ..           
 
                            =    ln Ωenv (E0)  -  βε  + µβn  ….                                                       (5) 
 
Where we use the fact that the energy of the central sub-system here is just  ε  = E0 – E, if 
the bath energy is E, and the number of particles in the sub-system is  n  = N0 – N, if the 
bath number is N. As before, β = 1/kBT, the inverse temperature. We identify the second 
coefficient here with  -µβ  =  −µ/kBT  using the same kind of thermodynamic arguments 
as we used in deriving the canonical partition function. In this case we can compare with, 
eg., eqn (41) for the variation dU of the energy with N; we see that at constant p, one has 
dS/dN = - µ/T, so that using Boltzmann’s usual relation that S = k ln W, we get  
d ln Ω/d N  =  −µ/kBT.  
 
From this it follows, again by just exponentiating the result back, that we can write the 
probability function and partition function for this system in the form 
 
              P(εj, nβ)   =   exp[-β(εj – µnβ)] / Ξ                                                                    (6) 
 
              Ξ (β,µ)   =   Σj, β  exp[-β(εj – µnβ)]                                                                  (7) 
 
where  Ξ (β,µ)  is usually called the grand canonical partition function, and we note that 
in (7), we sum over both particle number index β and energy level index j.  
 
Finally, let us emphasize that the energy εj in all these expressions denotes the 
eigenenergies of the whole central system, which may itself contain many particles. Later 
on we will, in the case where the central system is made up of independent particles, 
write  εj  =  n εj,  where the  εj  are the “1-particle” energies, ie., the energy per particle, 
and n is the number of particles (dropping the index β for brevity).  
 
 
 
Argument 2: Our 2nd argument parallels the 2nd derivation of the canonical distribution 
in the preceding chapter. Assume Σ  has a single quantum state only – the simplest 
system we can imagine - with energy E  if it is occupied, or energy 0 if it is unoccupied.  
Thus the entropy in Σ depends entirely on whether it is occupied or not. As an example, 
consider a H atom in free space, which we imagine can either be in its ground state or in 
an ionized state (we ignore here all the excited states). In this case E  = eV6.13− .  A 
model which only has a single possible occupied state is actually a good description of 
certain impurity ions in solids.  
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Now suppose E is positive. The reservoir, and thus the total system, will have a smaller 
entropy when the state in Σ  is occupied; indeed it will be reduced by an amount 
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where the second equal sign accords with our the definitions for µ  and T . Now we recall 
that  
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Thus when a particle leaves the reservoir the change in entropy has two contributions: 
one from the decrease in the particle number from 100 −→ NN , and a second from the 
decrease in the energy in the reservoir by an amount E .  
         Generalizing to a state that can hold n particles, we get 
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where the intensive variables µ and T for the large reservoir are  independent of  n,  but 

)(nE  is extensive, and is in general a non-trivial function of n; only if the particles are 
non-interacting do we have nEnE =)( .  
 
The probability that the state is occupied by n  particles, with energy )(nE  can now be 
compared with the probability that the state is unoccupied. We get 
 

))]((exp[)(exp]/exp[
]/exp[

]/exp[
/

/ nEn
Tk

nEnkS
kS

kS
B

B
Bunocc

Bocc

unocc

occ −=






 −
=∆==

Ω
Ω µβµ

        (11)   

and, just as in the canonical distribution, this must hold true for a microsystem with 
multiple energy levels and occupancies. The only way for this to hold true is if the 
probability for the system to contain n particles in microstate i with energy iE  is 
proportional to the Gibb’s factor )](exp[ iEn −≡ µβ , so that we can write 
 

)](exp[),( 1
ii EnEnP −Ξ= − µβ                                                                                      (12) 

 

As in (60 above; and the normalization constant Ξ, ie., the grand canonical partition 
function, is  just given by (7) as before.    
 
 
 
Properties of Grand Canonical Partition Function:  There are various useful 
things we can say about Ξ.   Let us first just find the probability that the system has n  
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particles  - this is clearly just obtained by summing over all microstates  iE   with n  
particles, so that we get 
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where nZ is the partition function for n particles, and we define the function 
 
                                                           ]exp[βµα ≡                                                          (14) 
 
This function α (βµ)  is usually called the activity. From the result in (13) we can now 
find the expectation value <n> of n, and we get: 
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which should be compared with the analogous relation in the canonical enesmeble for the 
mean energy. 
 
Fluctuations in n:    In the canonical ensemble, the energy could fluctuate but not the 
particle number. In the grand canonical ensemble n fluctuates as well. The mean squared 
fluctuation in occupancy, defined by 
 
                                       222 〉〈−〉〈≡〉∆〈 nnn                                                                   (16) 
 
is then given by computing these 2 quantities, to get 
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Thus we finally obtain 
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And we see that if µ is insensitive to 〉〈n  then fluctuations in 〉〈n will be large. In the 
same we we can calculate the mean value of the energy, as: 
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and if we wish we could also calculate fluctuation in the energy E in the same way as for 
the canonical distribution.  
 
 
Influence of an External Potential:   We have seen above that the chemical potential 
µ is the same for two systems aΣ  and bΣ which are in thermal and diffusive equilibrium.   
        However, suppose there is some external potential V (gravitational, electrical etc )  
which changes the potential energy of each particle  in aΣ  by an amount Ea, but which 
changes the potential energy of each particle  in system bΣ  by a different energy Eb.  
 
In this case, for the two systems to be in equilibrium we require that the two chemical 
potentials be related by 
                                                    ' '

a a a b b bE Eµ µ µ µ= + = + = .                                  (21) 
 

To show this consider the free energy in aΣ  including aE ; we then have 
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Similarly for the other system we get 
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In thermal and diffusive equilibrium we must have '' ba µµ =   and thus we get 

bbaa EE +=+ µµ  as given in (21). Note that in many texts and papers the effect of V is 
already included in the definition of the potential.  
 
There are many ways that we can get a variation of chemical potential in this way. As we 
discuss below, m my even vary continuously across a large system, where the gradient of 
change in potential corresponds to some field.  If an electric field is responsible, then 'µ  
is referred to as the electrochemical potential. If a gravitational field is responsible, then 
we refer to the gravitational contribution to µ, or to the “gravimetric” potential. In all 
these cases, we can then define a spatically varying chemical potential by 
 
                              µ’(r)   =   µ  +  U(r)                                                                     (26) 
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where r is the spatial coordinate, and U(r) the spatially varying external potential.  
 
 
 
5(b)    Some Examples 
 
We will give only a few examples here because a lot more will appear in subsequent 
chapters. Note that by far the most common use of the chemical potential and the grand 
partition function is in theoretical chemistry, to deal with chemical reactions and/or 
equilibrium between different chemical species.  
 
 
Example 1:   Electrochemical Potential    Consider two metals A and B, 
separated in space. We define work functions Aφ  and Bφ  respectively, where φ  is the 
energy required to remove an electron from one or other metal to the outside reference 
vacuum.  Thus we have AvA µµφ −=  and BvB µµφ −=  , where µν  is the potential of the 
electron in the vacuum.  
         Let us assume that BA φφ >  to be definite. Imagine that we now bring the two metals 
into contact. Electrons will then flow from B to A (ie., from higher chemical potential to 
lower potential).  In equilibrium a contact voltage  ABc VVV −≡   must then develop 
between A and B, in order that the electrochemical potential be equal on both sides of the 
interface. Taking into account the charge of the electron is negative (ie., writing it 
as q− where q is positive), we have 
 

                                   BBAA VqVq )()( −+=−+ µµ   
or  
                                      BAABAB VVq φφµµ −=−=− )(  
so that finally 

                                                   
q

V BA
c

φφ −
=                                                                  (27) 

 

which is what we might have guessed in the first place.  
 
 
Example 2:  Earth’s Atmosphere    In the atmosphere, as is in the sea, the 
gravitational potential varies with height.  Consider, eg., a single particle in the earth’s 
atmosphere, for which the gravitational potential energy is 
 

                                                             mgzE =                                                            (28) 
 

where z is height above sea level.  We will assume here for simplicity that the other 
contributions to the energy, such as the temperature, are independent of height this of 
course is not true – precisely because the gravitational potential varies with height).  
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Notice immediately that this is not a quantum-mechanical problem, and we don’t have 
discrete states. However we can still use the usual SM tools. Suppose, eg., we try to 
analyze this using the ordinary canonical distribution. Even though we don’t have 
discrete states, we can still define a probability distribution  P(z)  for the particle to be 
found at height z; this means that in an interval dz, the probability of finding the particle 
is  P(z) dz.  In the canonical distribution, where the probability goes like exp[-βE], we 
then have 
 

dzmgzZdzzP ]exp[)( 1 β−= −                                                                                          (29) 
 
where the partition function Z(β) is just the integral of  exp[-βmgz] over z from zero to 
infinity, so as to properly normalize the distribution, ie., we have  
 
                                              Z(β)  =  1/βmg                                                                   (30) 
 
Now the particle density ρ (z) is just proportional to P(z), so we have  
 

]exp[)( 0 mgzz βρρ −=             ie.,            
0

)(ln
ρ

ρ zTkmgz B−=                                       (31) 

where 0ρ is the particle density at sea level.  
 
Note that so far we have not used the grand canonical ensemble at all, even though 
particle exchange is involved between different levels of the atmosphere. In order to use 
it, we first have to determine how the chemical potential varies with z. From the 
discussion given above, we actually already know this – we expect it vary linearly with z, 
according to equations (26), since the energy U(z) in this equation varies linearly 
according to (28).  
 
To see this explicitly, using what we have already found, we start off by letting 0µ  be the 
chemical potential at sea level.  Then in equilibrium the total gravitational+chemical 
potential – the gravipotential  - is independent of height, and just given according to (26) 
by 
                                                                0)(' µµµ =+= mgzz                                       (31) 
which, according to (31), gives 

                                                               
0

0
)(ln)(

ρ
ρµµ zTkz B+=                                   (32) 

 
We have thus established, in this simplified model, that not only does the chemical 
potential drop linearly and the gravitational potential rise linearly as a function of z to 
keep the gravi-chemical potential constant, but that the density drops exponentially.   
          Notice a curious feature of (32); as the density ρ (z)  0, the chemical potential 
µ(z) −∞→  logarithmically. This result is actually misleading – we do not expect the 
linear increase in potential given by (28) to persist indefinitely (otherwise we on earth 
would be in an infinitely deep potential well!), and so the calculation needs to be re-
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worked to take account of the real  1/r  potential of the earth’s field.   However, we will 
see in a later chapter that µ must always be negative for an ideal gas.  
 
The physics here, which is adequately captured by the canonical distribution, is one of a 
competition between the gravitational potential which tends to concentrate at the gas at 
sea level and the entropy, which tried to maximize itself by distributing the gas over a 
larger volume. If we now want to go further with this calculation – for example, to 
calculate the fluctuations in density, or to look at what happens when we have multiple 
species of gas atom – then it becomes advantageous to use the grand canonical potential 
to analyze the problem.  
 
 
Example 3:  Partially Ionized Gas:   Consider an atom with ionization energy I in 
contact with a reservoir of electrons at temperatureT and chemical potential µ . Here we 
choose the zero of energy of the atom to be when it is in the ionized state (ie., the energy 
of the vacuum plus one free electron), so that when the electron is on the atom .IE −=   
        If we ignore electron spin and excited state there are only two possible microstates 
of the system, viz., the state 0,0 == En  (ie., the ionized atom), and the bound atomic 
state IEn −== ,1 . The grand canonical partition function for the system of a single atom 
and its ionic counterpart is then very simple, since there are only 2 states involved; we 
have 
 
 

                                                       ]exp[1 Iβα+=Ξ                                                      (33) 
 

where α is again the activity (see eqtn (14));  here the first term refers to the ionized state 
(so that βµn = 0, and E = 0), and the second term to the atomic state). 
        The mean occupancy in the bound atomic state is then given by 
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Here we see explicitly how the chemical potential µ and the number expectation value 
are connected, and both depend on temperature. Notice that the occupied atomic state 
will have a 50% occupancy, ie.  <n> = ½,  when I−=µ . 
 
Now this calculation equally applies to a set of non-interacting atoms and ions, ie., a gas 
in which a set of neutral atoms of density ρ = N<n> coexists with a plasma of positive 
ions and negative electrons, each with density  N(1-<n>); here N is the number of atoms 
per unit volume when there is no ionization at all. We assume still tha the electrons 
constitute the particle and thermal reservoir – in reality there will be many different 
chemical species, and the density of electrons will predominate over that of all the other 
species. The chemical potential is then a function of the density ρ  and temperature.  
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The reason that we can take over the results in (33) ad (34) directly to the gas is that if the 
different species (ions and atoms) do not interact, then the grand partition function for the 
mixed gas/plasma is just the product over all the different atoms, ie., we have  
 
                                                            ΞN   =   Ξ1

N                                                             (35) 
 
where Ξ1 refers to the partition function in (33) above, for a single H atoms and its ionic 
counterpart, and  ΞN  to the partition function for a set of N atoms and their ionic 
counterparts.  
 
Because we can use these results to describe this mixed system, we see it has real 
practical application -  we can use it to describe, eg.,a gas of H atoms in interstellar space, 
far from any star – some of these will be ionized, even at low T, because the density is so 
low. It can equally well be used to describe the same gas inside a star – here far more of 
the atoms will be ionized, because now T is very high!  
 
Let’s see how this goes in practice.  
 
It convenient to express things in terms of the “quantum concentration” qρ  (the inverse of 

the quantum volume Vq defined in eqtns (4.64) and (4.66) of the last chapter), and given 
here by 
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where we have generalized eqtns (4.64) and (4.66) to include  the effect of spin, which 
multiplies the single particle partition function  by a factor  of  2S+1.  
 
Now as it happens, the behavior of the chemical potential for a low-density gas, in the 
limit qρρ <<   takes a very simple form. One finds that the activity is simply qρρα /= ; 
or equivalently we have 
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We have not yet shown this - will show this is true in the next chapter.  Note however 
that it is consistent with the density variation we found for a gas in a gravitational field 
where we saw that:  
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(compare eqtn. (32) above).  
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Actually, formulas like (33) and (34), and their generalization to multiple species, are of 
crucial importance to astrophysics. In astrophysical systems one arrives at an equilibrium 
between different species of atoms, molecules, and ions, depending on the temperature 
and the densities of the species. Consider, eg., a simple problem involving the 
equilibrium between photons, protons, the electron bath, and the neutral H atoms. 
Obviously at very high T, as in a star, most of the H atoms will ionize, and come 
equilibrium with the free photons, electrons, and protons (with photon emission 
accompanying any recombination processes, and absorption any ionization of the H 
atoms) .  
        However one can also have almost complete ionization if the gas density is very 
low, even at moderate temperatures – this is because for very low densities, one an atom 
ionizes it is very hard for a proton and electron to find each other again and recombine. 
The physics of this is described by the “Saha equation”, which is described simply at, eg.,  
 
https://en.wikipedia.org/wiki/Saha_ionization_equation                                        
 
for this sort of problem.  
 
We can see how this might work by considering a simple example. At the surface of the 
sun, the electron density 319106 −×= mρ  and eVTkorKT B 55.06400 == .   At this 
temperature, and ignoring electron spin, we have 3271025.1 −×= mqρ , from (36), for the 
electron system (using the electron mass in (36). It then follows that 
 

       [ ] eVeVeVTkB 3.9108.4ln55.0
1025.1

106ln55.0ln 8
27

19

−=×=
×

×
== −αµ                     (38) 

 
Note µ is negative for non-degenerate gases where qρρ << , but increases with number 
density. We can now consider 2 cases.  
 
        (i)  Consider first the case of Li where eVI 4.5=  which is considerably less than 

|| µ . From eqtn. (34) we have the atomic occupation probability 
 

                   4108
]55.0/)4.53.9exp[(

1 −×=
−

≈〉〈n                        (Li)                            (39) 

 
so that even though ITkB <<  ionization is nearly complete. This is because the electron 
density, even at the surface of the sun, is not that high – if we were in interstellar space 
the degree of ionization would be even higher at this temperature, and indeed for much 
lower temperatures as well.  
 
       (ii)   Now consider the case of H, where the ionization energy is I = 13.6 eV (ie., just 
over 150,000K). We then find from eqtn. (34) that    
 
                                    <n>   ~    0.9996                                       (H)                            (40) 
 

https://en.wikipedia.org/wiki/Saha_ionization_equation
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ie., there is almost no ionization of the H atoms at all.  The key point here is that it is 
much harder to ionize the H atoms at the same density as the Li atoms, because they are 
more tightly bound. Another way to see what is going on is to notice the when the 
chemical potential µ = -9.3 eV, the bound H state has much lower energy than µ, but the 
bound Li state has much higher energy. Thus the Li it is energetically advantageous for 
the Li atoms to ionize.  
 

 
 
              FIG: shows characteristic spectra for stars in classes from O6 to M5.  
 
 
In real stars there are many species and one has to look at the equilibrium between all of 
them. The results allow us to compute their concentration, and thereby predict the 
intensity of their contribution to the various spectral lines of a stellar spectrum (or indeed 
the spectrum of any other celestial object). This is what makes spectroscopy such a 
powerful tool in astronomy.  
 
The figure above shows spectra for stars ranging from very hot (O6 stars have surface 
temperatures ~ 45,00K), to very cool (M5 stars have surface temperatures ~ 3,100K). We 
notice how lines appear and disappear according to spectral type.  
 
Actually we can get lots more information from stellar spectra. The exact lineshape of a 
given line can tell us a great deal, because the line broadening comes from the random 
velocities of the relevant ions or atoms (via the Doppler effect), which is governed both 
by the temperature and the density; the lineshape is also influenced by a magnetic field 
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(by its action on different spin states), and so on. Thus detailed analysis of a stellar 
spectrum can give a fantastically detailed picture of the star. 
 
 
 
 
 


