
                         BASIC RESULTS on PROBABILITY 
 
Here we give results on probability that will be useful for Statistical Mechanics. Essentially 
this means we start from the theory for discrete events; this means that we will _rst need to recall 
basic facts about combinatorics (facts which are useful throughout physics). Later in the course 
we will go on to results on correlations, on continuous variables, and so on. It is assumed here that 
everyone has already taken a course on probability - this document is largely intended to refresh 
your memory. 
 
 
 

1. Permutations and Combinatorics 
 

We are interested in the theory of probability for a finite set of possible discrete outcomes. In physics 
this includes much of quantum mechanics, at least where a finite set of discrete states is involved. In 
statistical mechanics it involves the set of different microstates for any quantum system, which will be 
finite (but very large) if we deal with a finite system of N particles. 
 
In more general areas of inquiry, the theory of discrete probabilities is involved in a huge range of 
activities and processes. Thus, the theory includes the calculation of the probability of any physical 
process which involves a finite set of outcomes. Well-known tutorial examples of this come from the 
calculation of probabilities for, eg., a possible outcome of a card game or indeed any game involving a 
finite set of possible states for the game. 
 
 
1(a): COUNTING STATES:       One begins by considering the way in which N objects can be 
permuted amongst each other, ie., in how many different ways these N objects may be arranged (eg., on 
a line). There are two obvious cases here, viz., 
 
(i) Distinguishable Objects: In this case the objects are all different or 'distinguishable' from each other. 
The number of different permutations is then simple to deduce. The object in the 1rst position on the line 
may be chosen in N different ways, that in the second position in N - 1 ways, and so on. The number 
of possible arrangements is therefore N(N - 1)(N - 2)(1) = N! 
 
As an example let's look at 3 distinguishable objects, which we distinguish by their colour. Then, as 
shown in Fig. 1, there are 3! = 6 different possible sequences for the 3 balls. 
 
(ii) Indistinguishable Objects:  Alternatively, the objects are all indistinguishable. But then all the 
different permutations just given are identical - so there is only one way of arranging N indistinguishable 
objects on a line (compare Fig. 1 again). There are actually 2 different ways that one can arrive at a 
consideration of N indistinguishable objects, viz.; 
 
(a) we assume that the indistinguishability is absolute, ie., there is no difference in principle between the 
different permutations of the N objects (they really are not different from each other at all, and so the 



only thing that is `physically real' is that there are N identical objects). This is what we have in quantum 
mechanics, for indistinguishable particles. 
 
(b) we simply decide that there is no practically important distinction between different permutations (as 
in the case of a set of N coin tosses, where we don't care what order the coins are in). 
 
 
 

         
       Fig 1: Illustration, with 3 objects, of the difference between distinguishable and indistinguishable states 
 
 
 
1(b) MULTINOMIAL COMBINATORICS:      Suppose we now consider N objects of which 
we have n1 of type 1, which are identical to each other, n2 identical objects of type 2, etc., etc., up to nm 
identical objects of type m (so that Σj nj = N ). As we have seen, if all the N objects were 
distinguishable, the number of their permutations would be N!  However, in the present case, the 
number of distinguishable permutations is only 
                      

                                                                                      (1) 
 
since the j-th group of identical objects can be rearranged in nj ! ways without changing anything, and 
we can do this for any of the m different sub-groups. 
 
In Fig. 2 we show the example of a set of N dice, each of which can exist in one of 6 distinguishable 
states. Then the number of possible sequences with a throw of the N dice with n1 dice coming up 
showing the number 1, n2 dice showing the number 2, etc., is then given by the appropriate multinomial 
distribution (see Fig 2, Example 1).  
 
 



        
 
                Fig. 2: the general idea of a multinomial distribution is shown in the upper picture, 
                                 where we distinguish 3 types of object. In the middle picture (example 1) we  
                                 apply this to a set of N dice, where one now has 6 indistinguishable states. In  
                                 the lower picture (example 2) we depict a set of two indistinguishable states,  
                                  where the binomial distribution applies 
                                                                                                                        
 
The simplest example of a multinomial distribution is of course the binomial distribution, viz.,   
 

                                                                                                                             (2) 
 
and the best-known example of this is when we look at a sequence of N coins, which are considered to 
exist in 2 distinguishable states (ie., heads H, or tails T). Then there are CN

n  different sequences of N 
coins in which we have n heads and N-n tails (or vice-versa, ie., N-n heads and n tails). Figure 2 shows 
the example of 10 coins, in which 3 are heads. I will return later to say a little more about the binomial 
distribution. 
 
 
Intuition for Multinomial Coefficients: There are various intuitive ways to think about multinomial 
coefficients, since they arise in many situations. Here are three: 
 



 

              
 
 
Here the last result is obtained by just multiplying out all the terms, and noting how the numerator in one 
such term is cancelled by a factor in the denominator of the previous term. One can of course think of 
many other ways to count different orderings that involve these coefficients. 
 

         
 
Binomial Coefficients: Let's look a little more at the binomial coefficients, since these arise very often 
in physics and elsewhere. The easiest way to see how they arise is to consider some examples. 



 

                 
 

                

               

              
 
Later in the course we will study the binomial distribution in much more detail. We just note here that it 
is very sharply peaked around n ~ N/2. 
 
 
 
 

2. Discrete Probabilities 
 
Now that we have figured out how to count permutations for discrete outcomes (ie., where there is a 
finite number of possible outcomes for discrete events), we can move on to understand how one can 
calculate probabilities for the same discrete outcomes. To make the discussion simple, let's look first at 
bivariate probabilities, and then at multivariate probabilities. 
 
 



2(a) BIVARIATE PROBABILITIES: First we look at problems in which there are only 2 
different possible probabilities assigned to each of the discrete outcomes. Thus, eg., in a problem where 
we toss N coins, we can imagine that the coins are weighted so that all heads have one probability for 
turning up, and all tails another probability. 
 
(i)  Equal Probabilities: In the first and easiest kind of problem we will consider, all of the different 
possible outcomes are assumed to be a priori equally probable. Usually it is physically obvious for real 
systems when this should be the case, in that there is some symmetry which ensures that to suppose 
reason to suppose that one outcome is more likely than any other. A good example is the toss of a 
perfect coin, where by assumption the probability of getting heads (H) or tails (T) is equal (and therefore 
each has probability 1/2). 
           In this case there are 4 possible outcomes if we toss two such coins, and/or if we toss the same 
coin twice. These outcomes are just HH, HT, TH, and TT. Clearly each of these is equally likely, and so 
their probabilities are 1/4 each. 
           It is then clear that if we want to calculate the probability of one specific outcome when the total 
number of possible outcomes is Q, that probability must be 1/Q. On the other hand, if we want to find 
the probability that we will get an outcome which itself involves a set of S different discrete outcomes 
(this set being a subset of all possible outcomes), then that probability will be S/Q.  
           This is where all the counting exercises we have done above come in handy. To see this, consider 
the probability that we will get n heads if we throw a perfect coin N times. The ordering is irrelevant, so 
that the total number of ways of throwing n heads is just CN

n , as we have already seen. However the 
total number of possible outcomes is clearly 2N; and so it follows that the probability PN(n) of getting n 
heads is just given by 

                                                                                          (6) 
 
which is very sharply peaked around n = N=2 if N is large. When N; n _ 1 we can easily _nd accurate 
expressions for this using Stirling's asymptotic formula (seelater in the course). 
 
(ii)  Unequal Probabilities: Now suppose that the probabilities for the different outcomes are not the 
same. At this point we must assign probabilities depending on what knowledge we have of the system 
involved. Suppose, eg., that for the coin discussed above, we know somehow that the probability of 
getting heads is p+, so that the probability of getting tails is p-- = (1-p+). We count things in the same 
way, but now we have to assign the correct probability to each outcome. It should be immediately 
obvious that the new result for PN(n) is now 
 

                                                (7) 
 
because the probability of getting any one of the combinations with n heads and N-n tails is, by 
assumption, just pn+ p_N-n . When p+ = 1/2, this just reduces to the previous result. 
 
 
2(b) MULTIVARIATE PROBABILITIES:   It should now be obvious how to generalize this 
to cases where we have more than two different types of object involved in our outcomes, ie., where we 



must deal with multinomial combinatorics. Thus, suppose we have N identical balls which we distribute 
in m different cells or boxes, but now the probability of going into the k-th box is pk, where k = 1,… m  
(and where of course Σk pk = 1). 
                 As we saw before, the number of different ways of doing this is just the multinomial 
coefficient;  but now the weighting attached to any one of these ways is Π k (pk)nk . It then follows that 
the probability PN(n1; n2; .. nm) of getting an outcome in which there are nk balls in the k-th box is just 
 

                                                 (8) 
 
Again, we include the Kronecker delta constraint, as before. Note that if we now sum over all possible 
outcomes here (which means summing over all the different values of the nk within the constraint that 
Σk nk = N), then we just get back the formula (3) above, with pk substituted for zk. Note also that the left-
hand side of (3) then becomes unity, because Σk pk = 1, and this is of course what we would expect 
- the sum of the probabilities of all different outcomes exhausts all possibilities, and so it must be unity. 
 
Multivariate Examples: Let's consider some examples of what we are talking about here, to give you 
an idea. I will, for simplicity, look here at cases where the probabilities of each outcome are all the 
same; the way to generalize will be fairly clear. The main intellectual exercise here is to deduce what are 
the appropriate multinomial distributions to describe the situation (see Fig. 3 below for a visual 
representation of these examples). 
 

             

           
 



           

          
 
 
This completes our summary of the way in which probabilities are assigned for a finite number of 
discrete outcomes, ie., of the topics of discrete combinatorics and discrete probabilities. The examples 1-
3 are depicted on the next page in Figure 3.  
           I have of course only scratched the surface – if you want to know more you can use well-known 
textbooks, or look at Wikipedia articles such as  
 
                     https://en.wikipedia.org/wiki/Combinatorics 
                     https://en.wikipedia.org/wiki/Probabilistic_method 
                     https://en.wikipedia.org/wiki/Binomial_distribution 
                     https://en.wikipedia.org/wiki/Multinomial_distribution 

https://en.wikipedia.org/wiki/Combinatorics
https://en.wikipedia.org/wiki/Probabilistic_method
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Multinomial_distribution


 
              Even though we have only scratched the surface, you can, armed with this understanding, not 
only understand the probabilities assigned in most of statistical mechanics, but also successfully play 
poker!  
 
 
          

                   
 
             Figure 3: In (a) we see how the multinomial distribution is used for a problem involving  
                       3 different probabilities p1; p2; p3. In (b) we ask the probability that we get 3 Aces  
                       in a draw of 7 cards from a 52-card pack. In (c) we ask what is the probability that  
                       if 4 players each draw 5 cards, that each of them will get one Ace. 
 
 
 
                                              -------------------  FINIS ------------------- 


