
1.      THERMODYNAMICS       
 
MAIN TOPIC:  Review the laws and application of Thermodynamics (TD) of 
macroscopic systems – to then be contrasted with the more microscopic Statistical 
Mechanical (SM) approach. The framework of TD underlies and predates that of 
equilibrium SM.     
 
 
1(a)   Basic Ideas of Thermodynamics 

 
       In thermodynamics (TD) one attempts to understand the properties of macroscopic 
objects such as a litre of gas, a wafer of Si, a bar magnet, or a melting block of ice etc. 
One needs to adopt a rather general approach here, and be creative in imagining different 
sorts of system to which one wants to apply TD ideas. Other examples: a piece of wood, 
or a piece of glass; a galaxy; a star; the earth; a lake; a fire; a person sleeping in a chair; a 
bacterium; a virus.  
       In TD, one is only interested in the macroscopic variables associated with the system 
– TD makes no reference to the microscopic degrees of freedom. In fact TD was 
developed in the 1800’s at a time when very few scientists thought seriously about the 
possibility of microscopic objects like atoms. In contrast in statistical mechanics (SM) 
one uses knowledge of the microscopic constituents (and the interactions between them) 
and applies the laws of physics and statistics to derive macroscopic quantities and 
relationships between them.   
 
 
One can approach TD both empirically, or using a more deductive approach.  
 
Empirical Approach: It is presupposed that thermodynamical systems are either in 
thermal equilibrium, or close to it. What this means in practice is not always easy to say. 
One way is to ask whether some macroscopic system is changing at all in the timescale of 
interest. If it is not, then we can argue that it may well be in thermal equilibrium.    
       Examples: an iceberg viewed over timescales of minutes or hours; a cup of warm tea 
over timescales of a few seconds; or a large lake over a period of a day or so.  
 
However a moment’s thought shows that this condition, while necessary, is certainly not 
sufficient. Thus, a system may be in a steady state without being in equilibrium.  
      Example 1: a smoothly flowing calm stream or river (it looks the same from one 
minute to another, but one is not even looking at the same body of water at the 2 times) 
      Example 2: a star over periods of, in some cases, many millions of years; it looks 
more or less identical, and yet huge amounts of energy have been emitted during this 
time.  
 
     It is clear that we will need eventually to adopt a more sophisticated approach to the 
idea of thermal equilibrium – this will come once we have more experience of what we 
are dealing with.  



       In any case, the empirical approach consists in defining various quantities which are 
supposed to describe the behavior of macroscopic bodies under slow changes. These 
macroscopic quantities are classified into 2 kinds, viz.,  
 
Intensive quantities: these are variables such as temperature T, pressure p and density 
ρ.  Τhey are, by definition, independent of the system size. 
 
Extensive quantities: these are variables such as mass M, internal energy U, volume V, 
magnetization M, and entropy S. They scale with the system size. 
 
 
Historical Note: If the subject of thermodynamics, and the arguments in it, sometimes 
seem a bit ad hoc, then it may be useful to bear in mind that this reflects the historical 
development of the subject. What we now call the “science of thermodynamics” was 
originally a set of ideas and analyses carried out by engineers, chemists and some 
physicists (although the distinction between these subjects was not so well-defined back 
then). Key early figures were Sadi Carnot (1796-1832), who first analyzed heat cycles, 
Rudolf Clausius (1822-1888), and William Thompson (ie., Lord Kelvin, 1824-1907). 
However the first empirical work on gases and other simple systems came much earlier, 
and was done by Otto von Guericke (1602-1686), Robert Boyle (1627-1691), and Robert 
Hooke (1635-1703).  
     If it seems odd to you that the way thermodynamics is formulated and even taught still 
bears the imprint of these early workers, then you should perhaps note 2 things: 

(i) Most of the people that need to use thermodynamics are are still engineers, 
chemists, and others who are not physicists and who want to apply the results 
to practical problems 

(ii) The same is true of all the different parts of physics. Thus, quantum mechanics is 
still taught in a way which reflects the philosophy and analyses of the 
“Copenhagen school” (Bohr, Heisenberg, etc.) and, with its anthropocentric 
emphasis on measurements, makes little intuitive sense. We shall see that in 
statistical mechanics, the vast majority of textbooks are still mired in the study 
of simple model systems, and have not caught up with the developments of the 
last 60-70 years across all of physics. This is the main reason I am not using a 
textbook for this course.  

 
 
 
Deductive Approach: A more theoretical approach to TD is to begin with a set of 
laws or axioms from which one derives relationships between the macroscopic variables 
of the system. These are the “Laws of Thermodynamics”, usually expressed as follows: 
 
Zeroth Law of thermodynamics: If two systems are each in thermal equilibrium with a 
third system, they are in thermal equilibrium with each other.  
       The importance of the zeroth law is that it allows the definition of temperature in a 
non-circular way without reference to entropy (which comes from the other laws). The 
idea is that temperature is defined as that property of the 3 systems above which they all 

https://en.wikipedia.org/wiki/Zeroth_law_of_thermodynamics


have in common. Note that the zeroth law presupposes some operational definition of 
thermal equilibrium. Below we will elaborate on the notion of temperature and how it is 
measured.  
 
First Law of thermodynamics: When energy passes between systems, in the form of  
work or heat, or possibly in the form of a transfer of matter, then the internal energy of 
the systems changes in accord with the law of conservation of total energy. Thus, the 
total energy of an isolated system is constant; energy can be transformed from one form 
to another, but not created or destroyed. Energy is an extensive quantity. 
     The first law requires an understanding of what we mean by the different forms of 
energy. The internal energy is discussed below in more detail; it comprises both internal 
kinetic and potential energy contributions. One can also do work on the system from 
outside – this involves either potential energy transfer to or from the system (eg., by 
applying pressure, or by adding gravitational potential energy) or else heat transfer or 
heat generation. We elaborate on ideas of heat below. Note that energy can also be 
transferred in and out of a system in the form of matter, if we allow matter transfer as 
well.      
                                                                                                               
Second Law of Thermodynamics:  The sum of the entropies of the interacting 
thermodynamic systems increases. Here we introduce a new extensive quantity, the 
entropy S. The entropy is introduced for several reasons. It is related to heat transfer, by 
the key relationship dQ = T dS. And since heat transfer in thermodynamics is related to 
irreversibility, changes in entropy are related to irreversibility in macroscopic processes.     
       Irreversibility arises, eg., in chemical reactions, in the generation of heat by friction 
or viscous processes, and in the transfer of heat by conduction or radiation. A key 
observation is that when two bodies at different temperatures come into thermal contact, 
then heat always flows from the hotter body to the colder one, until they eventually reach 
shared thermodynamic equilibrium. The final entropy is always greater than or equal to 
the sum of the entropies of the initially isolated systems. Equality occurs when the 
process is considered to be completely reversible. From a macroscopic thermodynamic 
point of view, this happens if and only if all of the intensive variables of the 2 systems are 
equal - the final system then also has the same values for theses variables. 
      In reality no physical process is ever exactly reversible – entropy always increases.  
      
Third Law of thermodynamics: The entropy of a system approaches a constant value as 
the temperature T approaches absolute zero.  
     Conventionally the zero-T entropy is often taken to be zero. However this is not 
correct, for 2 reasons. First, as one discovers in SM that zero entropy at T=0 only occurs 
of the system has a unique ground state (as defined in quantum mechanics), and this is 
not always so. Second, TD is often applied to systems that are only in thermodynamic 
equilibrium ‘for all practical purposes’ (FAPP). Examples here include disordered 
systems (like glasses, or indeed almost any real physical system at low T). In such 
systems, thermal relaxation and heat transfer processes become extremely long, so that 
the system can exist in one of many different states at very low T, with no 
communication between these – over very long time periods it can then be treated, FAPP, 
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as though it is very close to T=0, but with a large number of possible T=0 states 
available.     
 
 
 
 
1(b)   Some Key Quantities in Thermodynamics 
 
Let us now recall in more detail a number of the key concepts and relations in TD. We 
will simply go through a number of key ideas and results, which many of you may be 
familiar with from previous courses. The general discussion here will be somewhat 
phenomenological – it will often resort to thought experiments in which different 
thermodynamic processes are involved, and is thus very closely related to the empirical 
view of TD. This is of course very much how the subject originally developed in the 19th 
century – and this approach has influenced the subject ever since.   
    In the next section (section 1(c)) we will adopt a quite different (and more modern) 
approach, in which we define a set of “thermodynamic potentials” and use these to derive 
all the key quantities. This approach is due originally to Gibbs.  
 
 
Temperature T     Consider 2 systems A and B which are each in thermal equilibrium.   
We know from the zeroth law that if these 2 systems are also in mutual equilibrium if, 
when they are brought in thermal contact, there is no net heat transfer from one to the 
other. They then must have the same temperature (by our previous definition of 
temperature as that which equilibrium bodies have in common).  
      But how do we then attach some sort of numerical value to this temperature? 
Commonly one differentiates between empirical temperature, and absolute temperature.  
 
      Empirical Temperature θ is measured by using some system whose physical 
properties change in some easily measureable way with temperature. Many such systems 
can be used for this – eg., a column of  mercury marked so  that θ = 0 at the melting point 
of water and θ = 100 at the boiling point of water (this defines the Celsius temperature 
scale). 
 
       Absolute Temperature T is defined so that its value represents the actual thermal 
energy in the system – the definition of absolute temperature T can then only be done 
using statistical mechanical arguments. The simplest way to do this is to define a 
temperature based on the pressure and of a fixed volume of gas of very low density – one 
uses the ideal gas law, according to which 
 
pV = nRT                                                                                                                          (1) 
 
where n is the number of kmoles and R=8300 Jkmole-1 K-1. This scale is independent of 
the gas type provided the gas is ideal – this means that the effect of interactions between 
gas molecules must be negligible (which is why we make the gas of very low density).  
For real gases this approximates the Kelvin or absolute temperature scale where 0 is 



absolute zero and water melts at θ=273K.  Note that for ideal gases, T is simply 
proportional to the kinetic energy per particle of the gas.  
 
      Note that we have not derived (1); in fact, we can only say that it is valid 
experimentally, for sufficiently dilute gases. To properly define absolute temperature we 
need to know more SM theory. We will then see that there a various ways to do it, some 
more fundamental than others.  
 
 
 
Internal Energy U     For every object there exists a state quantity U, called the internal 
energy.. A state quantity is a function of state variables (extensive or intensive) which 
define the system (e.g . p, V  for a gas) .  U can change in different ways, depending the 
system and how it is coupled to the environment around it. In an isolated system we have: 
 

WU =∆                                                                                                                            (2) 
 
where W is the work done on the object  e.g. by gradual compression of a gas (see Figure 
below). 
 
For a reversible process   
 

pdVW −=δ ,  ∫−=
2

1

V

V

pdVW                                                                                             (3) 

 

 
     
In a closed system - where the mass of the body is fixed -  heat may be still however be 
exchanged with the environment. One then writes that 
 

WQU +=∆                                                                                                                    (4) 
 
where Q is the amount of heat entering the system through the walls. The first law of TD 
is then basically stating energy conservation.  Note W and Q are not state functions, since 
they are not functions of state variables.  In differential form the first law of TD is: 
 

pdVQdU −= δ                                                                                                                (5) 
   



 
 
      To see that W and Q are not state variables, note that one can move the system 
between two points A to C, each defined by specific values of state variables, via 
different paths. This is shown in the Figure, and one should compare paths through either 
D or B. The passage via different paths involves different amounts of work and heat 
transfer, but the total energy at the end is of course the same. 
 
 
Enthalpy H     We define the enthalpy of a thermodynamic system according to 
 

pVUH +≡                                                                                                                  (6) 
 
so that 
 

VdpQVdppdVdUdH +=++= δ                                                                               (7) 
 
The enthalpy is a state function and is useful for analyzing any process which can be 
carried out at constant pressure (e.g. heating a volume of gas at constant pressure). 
Suppose, eg., one boils a volume of water (eg., 1 litre) under constant pressure:  Then the 
amount of heat needed to do this is 
 

HVpUQ ∆=∆+∆=δ ,                                                                                              (8) 
 
where U∆ is the latent heat of the water at boiling point (ie., the energy required to 
transform it from liquid to gas at the boiling temperature), and ∆V is the change in 
volume brought about by the transformation under heating.  
 
 
Reversible Processes 
  

      A reversible process is a cyclical process in which a system is returned to its original 
state without any net heat transfer to the environment.  (As already noted, this means that 
there is no change in total entropy S).  
 
     Example 1: Consider an isolated system, in equilibrium, initially at volume V1 , which 
is then allowed to expand slowly against a piston to occupy a volume V2= V1+V0. 
 
   



                                       
 
      If the piston is frictionless the gas does work on the piston and the internal energy 
decreases.  However we can do that same amount of work on the system, increase U and 
return the gas to its original state. Thus this process is reversible.   
      To understand this properly, compare this process with one in which we suppose that 
the piston is massless, and offers no resistance, so that the gas freely expands to V2.  We 
can then compress the gas back to V1.  However this is not a reversible process – why 
not?   
 
    Example 2: Consider now a completely reversible process in which we allow energy 
dU to move between 2 systems Σ1 and Σ2, while keeping the combined systems isolated. 

                                     
 
We assume that the 2 systems are in mutual equilibrium, and therefore at the same 
temperature T. One way to do this might be to very slowly move a partition between the 
2 systems. The entropy of each will change, but there sum will remain constant – 
likewise the total energy will be conserved, ie., dU = dU1 + dU2 = 0, even though the 
energy of each system will change. Notice also that no heat flows between the systems, 
and the total entropy S = S1 + S2 does not change.  
  
However, there is no requirement that the pressures be the same in the 2 systems – 
equilibrium only requires that their temperatures be the same. Suppose we now allow the 
partition to move – it will then do so, under the influence of the pressure difference 
between the 2 containers – and work dW = dU will be done by one gas on the other, so 
that dU1 = - dU2.  
 
Now, we have for the changes in entropy of the 2 systems that 
 
           dS    =   (dS1/dU1) dU1  + (dS2/dU2) dU2        
                   =    [(dS1/dU1)  -  (dS2/dU2)]  dU       =      0                                                 (9) 
 
where we use dU = dU1 = - dU2.  Now, equation (9) is true for any pair of systems which 
have the one common property that the temperature T is the same for both – it is clear 
that for it to be obeyed for any such pair, we require dS1/dU1 = dS2/dU2, ie., any 2 bodies 



in thermal equilibrium have the same value of dS/dU. We will therefore DEFINE the 
absolute temperature T such that  
 
            dU  =  T dS                  (reversible)                                                                      (10) 
 
ie., we define the absolute temperature by the equation 
 
            T  =  dU/dS                                                                                                          (11) 
 
which connects it to the entropy, in  way which we did not do above (recall that eqtn (1) 
is fundamentally an experimental result – whereas (11) is a definition). Later on we shall 
show that (1) actually follows from the definition (9), using statistical mechanical 
arguments.  
 
 
Relationship Between Entropy and Heat:  We can say more, again in the context of 
reversible thought experiments. Recall from the first law of TD. For a reversible process, 
we have  pdVQdU −= δ  from eqtn. (5) above.  
 
Let us now consider a fluid or a gas – we would like to express this same result in terms 
of differentials of the state functions dV and dS . 
 
We know that any macroscopic observable (in particular, U or S) is a function of the state 
variables. That function depends on details of the system, and is embodied in the 
“equation of state”. The equation of state is a relationship between state variables – the 
simplest example is the equation TNkpV B= for an ideal gas.  
       Typically, for a gas or a fluid, we choose as state variables p and V, since they are 
readily measured. Then  ),( VpU  and ),( VpS  can be determined. However one can also 
write ),( VSU   as a function of S and V such that: 
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This latter relationship follows from the fact that pdVdU −=  for a reversible process in 
an isolated system (e.g slow compression of an isolated volume of gas); this process is of 
course isentropic. 
 



Comparing eqtns. (5) and (12), we immediately see that for a reversible process one has 
 
 

T
QdS δ

=                                                                                                                      (14) 

 
 
This is actually the original definition of entropy in Thermodynamics, introduced by 
Clausius in 1854 
 
 
 
 
Irreversibility and Entropy 
 

 As noted already above, no realistic physical process is ever truly reversible, although 
one can come close. One should note that the relations pdVW −=δ   and TQdS /δ=  
only hold necessarily for reversible processes.   
 
In spite of this, a remarkable thing about the science of TD, which was used by early 
workers in the field, is that one can in some cases one can replace or model an 
irreversible process by some equivalent  reversible process. For example, suppose a small 
amount of heat Qδ  flows from a hot object at temperature 1T  to a colder object at 
temperature 2T  with no change is their respective volumes.   This is an irreversible 
process.   
 
Nevertheless  the increase in entropy of  system 2  is still dS = dQ/T2, since one can  
replace system 1 at the higher temperature 1T with a third object at the same temperature 
T2 as system 2. The increase  in entropy of system 2 does not depend on where the heat is 
coming from, so replacing system 1 by system 3 is an equivalent thought experiment as 
far as the change  in entropy of system 2 is concerned. Since a small amount of heat can 
flow between objects at the same temperature with no net change in entropy this is 
allowed to be a reversible process and thus dS = dQ/T2  is still valid. A similar argument 
holds for the loss in entropy associated with the heat leaving system 1. In that case the 
decrease in entropy is dS = dQ/T1 . 
 
In the same way, we should note that even though the relation pdVW −=δ  is only 
strictly valid for reversible processes, the relation dU = TdS –pdV  in eqtn. (12) can be 
used also for irreversible processes. This is because it is written in terms of state 
functions.  
 
Suppose we then consider a reversible process whereby a volume of ideal gas expands 
isothermally by an amount  dV, and at the same time does a small amount of work.  
 
 



 
 
 
The work done, if acting on a piston, is just pdVW −=δ .  Then dU = 0, since the 

internal energy only depends on T for an ideal gas (recall that TNkU B2
3

= ) so the gas 

must absorb an amount dQ of heat from the surroundings ( pdVQ =δ ). Then from eqtn. 

(14)  the change in entropy
T
QdS δ

= .   Now let us instead assume that the gas expands by 

leaking into the slightly larger volume, but now the temperature T is held constant (this is 
of course an irreversible process).  The temperature is unchanged, so as before 0=dU .  
However this time no work is done, and no heat is transferred. Eqtn. (14) is now invalid, 

since in this case dS
T
Q

≠= 0δ . On the other hand eqtn. (12) is still valid, and can be used 

to calculate the change in entropy. Applying (12) to this process, we have  
 

T
pdVdS =                                                                                                                       (15) 

 
Note there is no work being done.    
 
 
 
Now let us look at finite changes in entropy brought about by irreversible processes. Let 
us consider the change in entropy of a system at temperature T and fixed volume V. This 
is given for an infinitesimal change by (14), ie., we have dS = dQ/T again.  
       Then for finite amounts of heat, where the temperature changes from iT  to Tf, one 
can compute the total change in entropy by just integrating (14), so that:  
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The total amount of entropy in some system at absolute temperature T can then be 
determined by taking 0=iT  TTf = . If we assume that the system is simple, so that the 
third law of TD states that S=0 at T=0, then we get 
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T
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),(                                                                                                       (17) 

 
For non-simple systems, where the T = 0 entropy is non-zero, we must add a constant to 
this. Notice that, unlike the heat ,Q  the entropy S is a state function.  
 



Now the second law of TD states that the entropy of an isolated system always increases, 
because of irreversibility. A simple but typical example involves a completely isolated 
system which consists of two sub-systems 1Σ  and Σ2, which are brought into thermal 
contact in such a way that an infinitesimal amount of heat Qδ  flows from  1Σ  to 2Σ , with 
no change in their respective volumes (note this is different from the “Example 2” given 
above - before eqtn. (9) - where no heat was transferred, only energy). In this case the 
total (infinitesimal) change is entropy of the combined system is 
 

12 T
Q

T
QdS δδ

−=          = 0        (if 21 TT = )  

                                 0>         (if 21 TT > )                                                                   (18) 

in accordance with our previous discussion – this is just the 2nd Law, in infinitesimal 
form.  
 
 
Heat Capacities CV  and Cp      The Heat capacity of some system is the amount of 
energy (not heat) required to raise the temperature of the system by some unit measure, 
for a unit volume of the system. It can be defined at constant volume or more typically at 
constant pressure, according to:  
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Thus a large heat capacity implies a large change in energy for a small change in 
temperature. To see how this relates to the change when heart is added to the system, let 
us imagine that we supply an infinitesimal amount of heat to the system, at constant V. 
Then the change in energy U, and the resultant heat capacity at constant V, are given by   
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In a similar way, the change in enthalpy H, and the heat capacity at constant p, are given 
by 
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If one measures empirically the heat capacities, most of the thermodynamic variables or 
state functions are also determined. For example, we have: 
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and we can determine other state functions from these.  
 
This concludes out ‘phenomenological’ analysis of TD. I have continued it up to a certain 
point, but although it gives a lot of physical feeling for the processes one is dealing with, 
it lacks generality. Let us not turn to a more deductive and more general approach.  
 
 
 
 
 
1(c)   Thermodynamic Potentials 
 
We now go over to a more deductive approach. This is often much easier to understand 
for people who want to use TD, but who are not yet terribly familiar with the often rather 
complicated empirical basis for many of the key concepts.  
     In the introduction above (in section 1(a) I dicussed the deductive approach by 
referring to the laws of TD. However when using TD, this is not terribly useful. What is 
more useful is to appreciate that one can start from a limited set of quantities, which are 
sometimes called “thermodynamic potentials” (other names include “functions of state”, 
or ‘free energies’, or also just the specific names for each particular one of these).  
       The general idea involves starting from the internal energy U, and then deciding 
which particular changes in the state of the system can influence U. We then incorporate 
the corresponding terms into the definition of U, and look to see how changes in U are 
reflected in the underlying state variables.  
 
 
 
Thermodynamic Potentials for Gases   
 

Let us note that in all of the above section (section 1(b)), which to some extent follows 
the historical development of the subject, we were actually assuming that the quantities 
involved in determining the TD state of the system were just the 4 quantities (T,S) and 
(p,V). Our formulation of the 1st law was given in terms of these quantities and changes in 
them. The very common focus on these variables to introduce TD properties is for 
historical reasons – all the initial analyses of TD were done for gases. 
       Now notice that we for any one of the two pairs of these quantities, we can imagine 
holding one constant while we infinitesimally vary the other. This then gives us 4 
possible changes, viz., (dS, dV),  or (dS, dP), or  (dT, dV), or (dT, dP). The first of these 



involves changing both of the extensive variables, the last involves changing both of the 
intensive variables, and the 2d and 3rd involve changing one of each.  
      We also started off by defining the change dU by  dU = TdS – pdV. We now see that 
by performing simple Legendre transforms on U, we can define 3 other functions, with 
the result that we have the following 4 “thermodynamic potential” functions:  
 
Internal energy:                        U 
Enthalpy:                                  H   =    U + pV 
Helmholtz Free Energy:           F    =   U – TS 
Gibbs Free Energy:                  G    =   U – TS + pV                                                      (24) 
 
with the consequent differentials given by 
 
Internal energy:                        dU   =    TdS -  pdV 
Enthalpy:                                  dH   =    TdS + Vdp 
Helmholtz Free Energy:           dF    =   -SdT – pdV 
Gibbs Free Energy:                  dG    =   -SdT + Vdp                                                      (25)        
 
We notice immediately several important features of these results, arising purely from 
their mathematical form: 
 
(i)  We exhaust all 4 combinations here, but notice the arbitrariness in starting from U as 
defined by the infinitesimal dU in (24) above. We could equally have started with any 
one of the four potentials, and derived the other three by adding or subtracting terms 
involving the same pairs of variables. We start from U and dU in the forms give above 
for purely historical reasons – note that this choice involves the one combination in which 
both of the infinitesimal variations (dS and dV) happen to be extensive.  
 
(ii)  With these 4 different potentials we can immediately define 8 different first 
derivatives, simply by varying one or other of the 4 potentials with respect to one or other 
of the 2 variables it depends on. Consider, for example, the Helmholtz free energy F 
(often just called the “free energy”). From (25), we can differentiate this with respect to 
either T or V to get 
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which allows us to define one of the state variables in terms of derivatives of F with 
respect to its conjugate. Thus suppose some TD potential Φ has a derivative that depends 
on derivatives dxj and dYk,  then we define 2 derivatives like those in (26) by holding the 
conjugate variables Yj and xk constant.  
 
(iii)  We can also define what are typically called “Maxwell relations”, by further 
differentiating a pair of relations like (26) with the conjugate variable to the one already 
used; in other words, we look at quantities like d2Φ/dxj dYk. Thus, for example, starting 
from the 2 relations in (26) we can also write  
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However, if we assume that the free energy F is an analytic function of its two variables 
T and V, then these two derivatives must be the same, ie., it doesn’t depend which order 
we take them in – so we immediately find that:  
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And we see how this will work for any such pair of derivatives, provided that we can 
assume that d2Φ/dxj dYk  =  d2Φ/dYk dxj .  This assumption of analyticity will work unless 
we are at a phase transition point. Maxwell relations are useful in the real world - if we 
can relate partial derivatives of state functions in this way, one may be easier to calculate 
or measure than the other. Thus they are particular important for experiments.  
 
(iv)  If we also know that some state function happens to be a constant, then we can use 
the triple product rule. As an example, suppose the entropy S(U, V),  considered as a 
function of the energy U and the volume V, is a constant under a slow change in volume, 
even if the energy varies -  this would be a reversible isentropic process is a constant. 
Then we can write 
     

       
                                                                            (29) 
 
 

 And results like this turn out to be useful as well.                                    
  
 
 
 
General Thermodynamic Potentials   
 

The definitions given above are obviously specifically tied to the idea that there are only 
4 state variables, viz., T,S, p, and V. However, most systems at equilibrium will need 
many state variables to describe their TD properties. We can try defining the infinitesimal 
changes associated with them by looking at the amount of work required to make an 
infinitesimal change in the energy of the system, ie., we write 
 
       dQ   =   dU  -   Σj xj Yj                                                                                              (30) 
 
where the set { xj } comprises all the relevant intensive variables, and the set  { Yj } their 
conjugate extensive variables. The way this equation is set up makes it clear that it is 
simply a generalization of the 1st law of TD, as written in eqtns. (5) and (12) above  
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(where it is assumed that there is only one set of state variables apart from T and S, viz., p 
and V).  
 
So what other sorts of state variables can we have in the set { xj, Yj }? As just noted, a 
complex system may have a great many of these active at once, making the 
thermodynamic analysis quite complex.  
 
Here are some common examples, listed by conjugate pair: 
 
 
Work done by force                              infinitesimal dW               term in TD potential 
 

Volume change (pressure)                         dW   =   - p dV                              - pV 
Length change (tension)                            dW   =   f dL                                  fL 
Areal change (surface tension)                  dW   =   γ dA                                 γA 
Strain  (stress)                                            dW   =   σij dεij                              σij εij     
Electric polarization (E field)                    dW   =   E. dp                               E.p 
Magnetization  (B field)                            dW   =   B. dM                              B.M 
Particle number (chemical potential)        dW   =   µ dN                                 µN 
Rotation (angular momentum)                  dW   =   Ω . dL                              Ω .L 
 
 
There are many more, some of which we will encounter in these notes. Note the different 
sign of  - pdV (the infinitesimal work done on the system by an external pressure acting 
inwards) from that of f dL and γ dA (work done on the systemby forces pulling outwards 
on the system). This difference is purely a matter of convention.  
 
Clearly, if only two pairs of TD variables are active (ie., (T,S) plus one other pair), then 
the analysis goes through in the same way as for gases above, with the new pair 
substituting for the pair (p,V) discussed above; and we can define precise analogues to the 
enthalpy, and the Helmholtz and Gibbs free energies, for such cases.  
       Consider as an example the case where hydrostatic changes (involving stresses, etc., 
which change the volume, area, etc.) do not play a role, but where an applied magnetic 
field induction B can cause changes in the magnetization M. Then the analogues of the 
equations in (25) above are just 
 
Internal energy:                         dU   =    TdS -  B. dM 
Enthalpy:                                  dH    =    TdS + M. dB 
Helmholtz Free Energy:           dF    =   -SdT – B. dM 
Gibbs Free Energy:                  dG    =   -SdT + M. dB                                               (31) 
 
with the parallel set of TD potentials in exact analogy with (23).  
 
The case where only 2 sets of TD potentials plays a role is of course anomalous. More 
generally we will have at least three. Then the number of different combinations of 
derivatives becomes very large - hence the complexity of real thermodynamics 
 



Clearly we cannot go through all possible examples. But it is useful at this point to say a 
little more about the Helmholtz free energy F. We will do this for the specific case of 
‘gas-like’ systems, for which the results (24)-(29) apply.  
 
 
 
 
Free Energy F   (Helmholtz Free Energy)   The Helmholtz free energy F, as we saw in 
(24) above, is given in terms of the energy U  by  
 

TSUF −=                                                                                                                    (32) 
 
and as we also saw, an infinitesimal change in F gives, for a simple ‘gas-like system,  
 
 dF  =    dU – TdS –SdT   =   TdS – pdV – TdS – SdT 
 
so that we get 
 
dF  =  -SdT – pdV                                                                                                         (33) 
 
From this we observe that a change in F gives the maximum work for an isothermal 
process, in the same way that a change in U  gives the maximum work for an isentropic 
process.   
     As we will discuss in more detail when we come to discuss the canonical distribution 
in SM, the free energy F typically refers to a system in contact with a heat bath at some 
temperature T.   We can then show, for the gas-like systems we are discussing, that a 
system with constant volume in thermal equilibrium with a heat bath will tend to 
minimize its free energy; more generally, F will be at minimum for a system at constant 
V  and T .   
       To see this, suppose we have two gases separated by a piston both in contact with a 
heat bath at temperature T (see diagram):                  

                                    
 
Consider now a small displacement of the piston such that  dVVV +→ 11 . Then 

dVVV −→ 22 , and the change in free energy F is just 
 



221121 dVpdVpdFdFdF −−=+=                                                                               (34) 
 
The pressures must be equal to balance the force and  21 dVdVdV −==  so that 
 

0=dF                                                                                                                          (35) 
 
Thus the free energy is at a minimum is equilibrium for a system at constant temperature. 
 
If on the other hand we were dealing with a closed system with some source of heat and 
an insulating piston,  as shown in the diagram immediately below, then U  would be a 
minimum in equilibrium since we then have 
 
 02211 =−−= dVpdVpdU                                                                                           (36) 

                             
 
From these considerations we establish, using TD arguments, that: 
 
When the system is in contact with a heat bath there is a balance between lowering the 
internal energy and increasing entropy.   
 
We see that at higher T entropy becomes more important, because the “TS” term in F 
wins; but when T  0, the “U” term wins.   
 

One can also easily obtain S and U from F. Using the result (26) for S, ie., 
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where kT/1≡β . This gives one way to determine the internal energy from 
measurements of the Helmholtz free energy, we shall also use it later extensively in SM 
as a purely theoretical relation.  
 
One can use similar arguments to look at the enthalpy H and the Gibbs free energy, or 
free enthalpy G. Thus the Gibbs free energy is, as noted above,  
 



G  =  H - TS 
      =  U – TS  + pV 
      =  F + pV                                                                                                              (38)  
 
so that in an analogous way as that argued above for the Helmholtz free energy, a system 
at constant pressure in contact with a heat bath will tend to minimize its free enthalpy – 
more generally, free enthalpy is minimized in systems with constant T and p . 
 
 
Particle Exchange and the Chemical Potential     
 

If we also allow matter to be exchanged with the heat bath (in, eg., the form of particles) 
then we need to define further state variables (in this case, as we saw in the table after 
eqtn. (30), the total particle number N, and the chemical potential µ). 
 
To see how this works, we will consider a total system comprised of 2 sub-systems aΣ  
and bΣ  which are each in thermal equilibrium with a heat bath 0Σ  at temperature T and 
are also separated from each other by a permeable membrane, so that particles can diffuse 
back and forth between them.  Let us assume that there are aN  and bN  particles, in aΣ  
and bΣ  respectively.  Then the situation is as shown in the figure – particles can pass 
freely between the two systems, and also from the bath into either of the 2 sub-systems, 
so that the numbers aN  and bN  are not constant, but fluctuate in time. We will assume 
that the is an energy associated with the transfer of a particle into either of the sub-
systems – we thus define two chemical potentials µA and µB, which denote these two 
energies. In general these two do not have to be the same.  
 
We see that we have now generalized the idea of a reservoir to one of a bath that can 
exchange both heat and particles with the system, without any changes in its own T  
and µ . The reservoir is now characterized by its own temperature and by a chemical 
potential  (or indeed potentials, if there is more than one kind of particle).  
 

                                    
 



We can set up the thermodynamic theory for this situation most simply by writing again 
the infinitesimal change in U wrought by changes in extensive variables. One way to do 
this would be by simply taking our previous result (in (12) or (25)) for dU,  and adding to 
it the term coming from a change in the particle number – we thus write 

 
                                                                                        (39) 
 

 
If we use this we now have 3 pairs of thermodynamic variables in play, viz., (T,S),  (p,V), 
and  (µ, N).  This may be more than we want – for example, we may have a situation 
where changes in p and V can be neglected, in which case we would just use the reduced 
result 
 
                           dU    =    TdS  +  µ dN                                                                         (40) 
 
Thermodynamic Potentials: Let us for the time being stick with our initial result in (39), 
allowing all the terms in the energy infinitesimal dU. We can of course, starting from 
(39), write down the new results for the enthalpy, and the Helmholtz and Gibbs free 
energies. One way we can do this is to simply define these exactly as in (24), without any 
reference to the chemical potential µ or to N; then, using (39), we immediately get 
differentials given by 
 
Internal energy:                        dU    =    TdS -  pdV  + µdN 
Enthalpy:                                  dH    =    TdS + Vdp  + µdN 
Helmholtz Free Energy:           dF    =   -SdT – pdV  + µdN 
Gibbs Free Energy:                  dG    =   -SdT + Vdp  + µdN                                          (41) 
 
       However, we can also make another choice for our definition of the thermodynamic 
potential functions, more in keeping with (39) , which is to include all of the different 
terms in the different thermodynamic potentials; this also gives us a larger freedom to 
vary these.  
      We can therefore also define the following set of  thermodynamic functions: 
 
Internal energy:                        U 
Generalized Enthalpy:             Φ   =   U + pV - µN 
Helmholtz Free Energy:           F    =   U – TS 
Grand canonical potential:       Ω    =   U – TS + pV - µN                                             (42) 
 
with the consequent differentials given by (again, starting from (39)): 
 
Internal energy:                        dU   =    TdS -  pdV + µdΝ 
Enthalpy:                                  dΦ   =    TdS + Vdp - Ndµ 
Helmholtz Free Energy:           dF    =   -SdT – pdV + µdN 
Gibbs Free Energy:                  dΩ    =   -SdT + Vdp - Ndµ                                           (43)        
 

dNpdVTdSdU µ+−=  



Notice that we can now define thermodynamic derivatives with respect to variation of µ 
as well as with respect to N, using these definitions.  
 
Perhaps the best way to understand how to use this formalism, and to see how these 
different thermodynamic potentials can arise in practice, is by looking at examples – we 
will do this in the main part of the course.      
                             
Equilibrium for a single system:  Let us first consider the situation where we only have 
one sub-system instead of two, able to exchange energy and particles with the 
surrounding bath. In this case we can assert that the entropy of this system must be a 
function of 3 extensive variables, ie., we have  
 
                                              S   =  ),,( NVUS                                                              (44) 
 
Since S  is assumed to be an analytic function of the state variables NandVU ,  we must 
have 
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which must be zero at equilibrium. Applying the triple product rule above while keeping 
N constant, we can then write 
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since  
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Inserting these into eqtn. (45), we immediately get  
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We can immediately solve for dU here, to get  
 
                           dU    =    TdS -  pdV  + µdN                                                              (49) 
 
which is just what we originally wrote down in (40) and (41);  we have thus derived this 
relation simply by making the assumption in (44) that the entropy is a function of the 3 
extensive variables U, V, and N, and then assuming thermal equilibrium.  
      By differentiating with respect to N, holding V and S constant, we also get the 
isoentropic (adiabatic) relation 
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which is nothing but a generalization of the first law of TD, this time to include the 
transfer of particles between system and bath. Note that both S and U are seen here to be 
functions of the three extensive variables U, V, and N.  
Since it is difficult to hold S constant when N changes, it is more practically useful to 
express µ  in terms of a change in F.  We get  (41)  and/or  (43) by assuming as usual that  
F = U – TS, which then implies as before that  SdTTdSdUdF −−= .  Then using  
(41), (43), or (49) for dU we obtain dF in the form given in (41) and (43), ie., we find 
that  dNpdVSdTdF µ+−−= .  From this is immediately follows that 
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which is a key equation in the practical use of this method. Note that F = F(T,V,N) is a 
function of two extensive variables V and N, one intensive variable T.  
       
We can also express µ  in terms of the change in free enthalpy G  caused by adding a 
particle. This is also useful, since it is easier to perform the particle addition while 
holding p  and T  constant rather than V  and T . Since pVTSUpVFG +−=+≡  it 
follows that dNVdpSdTVdppdVdFdG µ++−=++= , as in (41) (note that we are in 
(41) varying dN rather than dµ, so we use (41) instead of (43)). We thus have another 
definition of µ, as  
 

                                                
pTN

G
,









∂
∂

=µ                                                                (52) 

 
 

Notice here that  G(T,p,N) is a function of only one extensive variable, ie. N; both T and p 
are intensive variables.  One might then guess that it should be possible to write G 
entirely as a function proportional to N, ie., that G = aN + b. This is true - in fact we can 
demonstrate the very remarkable and simple relation that 
 
                                               NG µ=                                                                          (53) 
 
This can be seen as follows.  Let the size of the system (and number of particles) increase 
by λ, all the while keeping p and T constant.  Since G is extensive it must increase by the 
same factor, so we have 
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The derivative of (54), taken holding p, T, and N constant, then gives 
 



N
N

GG
NpT ,,)(









∂

∂
=

λ
                                                                                                    (55) 

 

ie., the constant of proportionality is the quantity in brackets – we extract it by putting λ 
= 1, to get 
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which demonstrates (53). 
                                                                    
 
Mutual Equilibrium State for 2 sub-systems: Now let us go back to the figure we had 
before, showing 2 different sub-systems coupled to a bath, with all three of these systems 
exchanging energy and particles. What will now determine the final steady state, for our 
pair of sub-systems? The equilibration will occur of course via thermal and diffusive 
transport between the 2 sub-systems in the figure, as well as with the bath. 
 
To simplify the analysis, let us assume that we allow the 2 sub-systems to exchange  
energy with the bath, but no particles (however, particles are still exchanged between the 
2 sub-systems). Complete equilibrium (thermal and diffusive) at the bath temperature T  
will then be reached once the total entropy batot SSSS ++≡ 0   is maximized, subject to 
the two conditions     
 

batot UUUU ++= 0      =   const                                                                                    (57) 
 
Ntot  =  Na + Nb             =   const                                                                                    (58) 
 
Let us now cut off the connection to the bath, leaving the 2 sub-systems at temperature T. 
To determine the equilibrium conditions, we can imagine varying about them. Consider a 
small number of particles dN  and a small amount of energy dU, both going from  aΣ  to 

bΣ . We accordingly define ba dUdUdU =−= , and ba dNdNdN =−= . Then we have a 
variation in total entropy given by 
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Since  aΣ  and bΣ  are assumed to be already in thermal equilibrium, then the 2nd term in 
big square brackets is zero already. The condition for diffusive equilibrium is then: 
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However this is nothing but the condition that the chemical potentials for the two systems 
are the same, since we have from either (41) or (43) that: 
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where we hold all state variables constant except for N. This is an important conclusion – 
the 2 sub-systems cannot reach mutual equilibrium until their chemical  potentials µa and 
µb  are the same. The chemical potentials are not fixed quantities – just like other 
intensive thermodynamic variables, like p and T, they can vary according to the 
conditions.  
 
What now of the equilibrium with the bath? It is obvious that if we repeat this argument, 
now allowing particle exchange with the bath as well as between the 2 sub-systems, then 
equilibrium will only be reached once all three chemical potentials are the same, ie., once 
we have µ0 = µa = µb, where µ0 is the bath chemical potential. Since the bath is 
considered to be so large that its thermodynamic properties do not change, this means 
simply that all the intensive properties (Ta, Tb, pa, pb, and µa, µb) all relax to equal the 
values possessed by the bath. Since the zero of the potential is arbitrary, one often simple 
fixes µ0 = 0 to begin with.  
 
How do the two sub-systems relax to these equilibrium values? Let us suppose that aΣ   
and bΣ  are not initially in diffusive equilibrium – this means that they must have 
different chemical potentials. Let’s assume, to be specific, that ba µµ > .  Suppose we now 
transfer dN  particles from aΣ  to bΣ , where dN can be positive or negative. Then the 
change in total free energy ba FFF +=  will be: 
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Now, since dNdNdN ab =−=  it immediately follows that  
 
                                                dNdF ab )( µµ −=                                                          (63) 
 
Since F  must be at a minimum in equilibrium, the change  dF  caused by dN  particles 
moving from a to b must be negative unless we have already reached equilibrium. Thus 
in eqtt (63),  dN  must be a positive number. In other words particles move from higher 
chemical potential to lower chemical potential. We should have expected this – the 
definition of chemical potential tells us that it denotes the energy required to add a single 
particle to the system, so the energy of the pair of sub-systems combined is lowered if we 



transfer particles from the sub-system with the higher chemical potential to the one with 
the lower one.   
 
 
 
 
APPENDIX:   Some Worked Examples in Thermodynamics 
 
It is useful to some simple problems worked out in thermodynamics. Again, the 
following is just scratching the surface of what is a very large topic. The following are 
chosen to illustrate some of the key ideas and identities.  
 
 
Example 1: Specific Heats for an Ideal Gas 
 
We consider the ideal gas, for which we have the usual relation pV = NkBT. We would 
like to find out expressions for the specific heats Cp(T) and CV(T) for this system, and for 
the relation between them. Recall that we have  
 

                                                          (A.1) 
 
for these quantities, where as before H = U + pV.  
 
Before beginning, let’s note that any equation of state for the simple one-species gas is 
an equation relating the three thermodynamic variables p, V, and T. The ideal gas relation 
is just the simplest possible equation of state, and it fixes one of these variables in terms 
of the other two. If we then ask how to parametrize the 4th thermodynamic variable, ie., S, 
for the system, we see that in general S can be written as S = S(p,V,T), a function of the 
three other variables. However, since one of p,V, and T is fixed in terms of the other three 
by the eqtn.  of state, we can write either S = S(T,V), or S = S(p,T), or S = S(p,V).  
 
There are a number of different ways to analyze the specific heat of the system. Let’s 
start with one that stresses the use of the Maxwell relations. Let’s make the choice of 
writing S = S(T,V), as described above. Then we can write  
 

                                                                      (A.2) 
 
For an infinitesimal change in S(T,V).  Since we are after the specific heats, which are 
given by T X (partial derivatives of S with respect to T), then we start by calculating these 
derivatives. First we have that 
 



                      
                                      

                                                                          (A.3) 
Subtracting off the derivative at constant V, and then multiplying by T to get the specific 
heats, we just get 

                                                                       (A.4) 
 
for the difference in specific heats. Note here that all we have dfound is the difference – 
we do not yet know what each one is, nor do we even know how they depend on 
temperature.  
 
Now for an ideal gas, the 2nd term on the right hand side of (A.4) is in a form that is very 
useful to us, because it is written in terms of variables in the equation of state; we have 
from pV = NkT that  
 

                                                                      (A.5) 
 
The 1st term is not in a convenient form sicne we do not know how S depends on V at 
constant T. However we can easily rewrite it using a Maxwell relation, viz., using 
 

                                                                                          (A.6) 
so that        

                                                                      (A.7) 
and since  

                                                                                                   (A.8) 
 
for a free gas, we immeidately get our final result, viz., that 
 

                                                                    (A.9) 
 
Note that this result does not tell us what Cp(T) and CV(T) are individually. We will 
discover when we do statistical mechanics that they are temperature-independent 
constants, proportinal to Nk.        
 
 



Example 2: Adiabatic Expansion for an Ideal Gas 
 
It is of considerable interest to discover how p and V vary when adiabatically change the 
temperature T of an ideal gas. Alternatively, we can ask how T changes when p and V 
change in such a way that the change is adiabatic. This can happen with any mass of gas 
if there insufficient time for much heat to pass in our out of the gas. A classic example 
deals with large volumes of air in the atmosphere which rise or fall either because their 
density does not match that of surrounding gas, or because they are moving over 
mountains, etc.  There are alos many astrophysical examples.  In all these cases, the 
amount of heat exchange wth the environment, during the timescale of the change, is 
much smaller than the heat content of the mass of gas.   
 
By definition, in an adiabatic change                   

                                                                    (A.10)    
 
Let’s start from the equation of state, and rewrite it in differential form as  
 

                                        (A.11) 
 
and write the first law in the form        

                                                                                               (A.12) 
so the total differential d(pV) takes the form 

                                                                                        (A.13) 
where we define 

                                                                                                    (A.14) 
 
But now it is mmediately obvious that we can integrate the differential form in (A.13), to 
get the desired result: 
 

                                                                          (A.15) 
 
This result is of key importance. We will find the temperature-independent ratio γ using 
statistical mechanics methods.  
 
 
Example 3: Isothermal Expansion for an Ideal Gas 
 
An obvious question one can ask is how all of this is affected by departures from ideal 
gas behaviour. To answer this is it helpful to have a simple generalization of the ideal gas 
law that is analytically tractable. Such an equation was provided by van der Waals in 
1873, in his PhD dissertation. His equation of state is 
 



                                                                      (A. 16) 
 
in which the correction to the pressure comes from interactions between the atoms or 
molecules, and the correction to the volume comes from the finite volume occupied by 
these species. Note that b is always positive (atoms and molecules can’t have negative 
volume), but the sign of a can be negative if attractive interactions dominate. The 
correction to the pressure is clearly a low-density approximation – it is proportional to ρ2, 
ie., to the density squared, ie, comes from pairwise interactions between 
atoms/molecules. For denser gases we expect higher order corrections proportional to ρ3, 
ρ4, etc. 
 
There are lots of basic questions that one can ask about this model, but here is a really 
simple one:  
 
Q: suppose we expand or compress the van der Waals gas isothermally (keeping T = 
const). How then does the free energy change? Note that this question is less relevant to 
large volume gases in the atmosphere or in outer space, where it would involve extremely 
slow expansion or contraction, because of the time required for heat to be transferred in 
or out of the gas so as to keep T = const.  It is more relevant to much smaller volumes of 
gas, but we note that we require a surrounding heat bath to keep the temperature constant.  
 
A: Suppose we change the volume from V1 to V2. Then since dT = 0, the change in free 
energy is just that coming from the volume change, and we have 
 

                                                                                                    (A.17) 
The pressure, from the equation of state, is 

                                                                                                    (A.18) 
and so we just integrate (A.17) to get 
 

                                                       
                                                            

                                                               (A.19) 
 
which is an interesting result, very simply derived. Notice how much further it simplifies 
if we go to the ideal gas limit with a = b = 0.  
 
 
 


	Relationship Between Entropy and Heat:  We can say more, again in the context of reversible thought experiments. Recall from the first law of TD. For a reversible process, we have   from eqtn. (5) above.
	Let us now consider a fluid or a gas – we would like to express this same result in terms of differentials of the state functions and .
	We know that any macroscopic observable (in particular, U or S) is a function of the state variables. That function depends on details of the system, and is embodied in the “equation of state”. The equation of state is a relationship between state var...
	Typically, for a gas or a fluid, we choose as state variables p and V, since they are readily measured. Then   and  can be determined. However one can also write   as a function of S and V such that:
	;                                                                                                           (12)
	where we have used the identity   from above, and the fact that
	(isentropic process)                                                                            (13)
	This latter relationship follows from the fact that  for a reversible process in an isolated system (e.g slow compression of an isolated volume of gas); this process is of course isentropic.
	Comparing eqtns. (5) and (12), we immediately see that for a reversible process one has
	(14)
	As noted already above, no realistic physical process is ever truly reversible, although one can come close. One should note that the relations   and  only hold necessarily for reversible processes.
	In spite of this, a remarkable thing about the science of TD, which was used by early workers in the field, is that one can in some cases one can replace or model an irreversible process by some equivalent  reversible process. For example, suppose a s...
	Nevertheless  the increase in entropy of  system 2  is still dS = dQ/T2, since one can  replace system 1 at the higher temperature with a third object at the same temperature T2 as system 2. The increase  in entropy of system 2 does not depend on wher...
	In the same way, we should note that even though the relation  is only strictly valid for reversible processes, the relation dU = TdS –pdV  in eqtn. (12) can be used also for irreversible processes. This is because it is written in terms of state func...
	Suppose we then consider a reversible process whereby a volume of ideal gas expands isothermally by an amount  dV, and at the same time does a small amount of work.
	The work done, if acting on a piston, is just .  Then dU = 0, since the internal energy only depends on T for an ideal gas (recall that ) so the gas must absorb an amount dQ of heat from the surroundings (). Then from eqtn. (14)  the change in entropy...
	(15)
	Note there is no work being done.
	= 0        (if )
	(if )                                                                   (18)
	We now go over to a more deductive approach. This is often much easier to understand for people who want to use TD, but who are not yet terribly familiar with the often rather complicated empirical basis for many of the key concepts.
	In the introduction above (in section 1(a) I dicussed the deductive approach by referring to the laws of TD. However when using TD, this is not terribly useful. What is more useful is to appreciate that one can start from a limited set of quantit...
	The general idea involves starting from the internal energy U, and then deciding which particular changes in the state of the system can influence U. We then incorporate the corresponding terms into the definition of U, and look to see how chan...
	Thermodynamic Potentials for Gases
	Let us note that in all of the above section (section 1(b)), which to some extent follows the historical development of the subject, we were actually assuming that the quantities involved in determining the TD state of the system were just the 4 quant...
	Now notice that we for any one of the two pairs of these quantities, we can imagine holding one constant while we infinitesimally vary the other. This then gives us 4 possible changes, viz., (dS, dV),  or (dS, dP), or  (dT, dV), or (dT, dP). Th...
	We also started off by defining the change dU by  dU = TdS – pdV. We now see that by performing simple Legendre transforms on U, we can define 3 other functions, with the result that we have the following 4 “thermodynamic potential” functions:
	Internal energy:                        U
	Enthalpy:                                  H   =    U + pV
	Helmholtz Free Energy:           F    =   U – TS
	Gibbs Free Energy:                  G    =   U – TS + pV                                                      (24)
	with the consequent differentials given by
	Internal energy:                        dU   =    TdS -  pdV
	Enthalpy:                                  dH   =    TdS + Vdp
	Helmholtz Free Energy:           dF    =   -SdT – pdV
	Gibbs Free Energy:                  dG    =   -SdT + Vdp                                                      (25)
	We notice immediately several important features of these results, arising purely from their mathematical form:
	(i)  We exhaust all 4 combinations here, but notice the arbitrariness in starting from U as defined by the infinitesimal dU in (24) above. We could equally have started with any one of the four potentials, and derived the other three by adding or subt...
	(ii)  With these 4 different potentials we can immediately define 8 different first derivatives, simply by varying one or other of the 4 potentials with respect to one or other of the 2 variables it depends on. Consider, for example, the Helmholtz fre...
	(26)
	which allows us to define one of the state variables in terms of derivatives of F with respect to its conjugate. Thus suppose some TD potential  has a derivative that depends on derivatives dxj and dYk,  then we define 2 derivatives like those in (26...
	(iii)  We can also define what are typically called “Maxwell relations”, by further differentiating a pair of relations like (26) with the conjugate variable to the one already used; in other words, we look at quantities like d2/dxj dYk. Thus, for ex...
	(iv)  If we also know that some state function happens to be a constant, then we can use the triple product rule. As an example, suppose the entropy S(U, V),  considered as a function of the energy U and the volume V, is a constant under a slow change...
	General Thermodynamic Potentials
	The definitions given above are obviously specifically tied to the idea that there are only 4 state variables, viz., T,S, p, and V. However, most systems at equilibrium will need many state variables to describe their TD properties. We can try definin...
	dQ   =   dU  -   j xj Yj                                                                                              (30)
	where the set { xj } comprises all the relevant intensive variables, and the set  { Yj } their conjugate extensive variables. The way this equation is set up makes it clear that it is simply a generalization of the 1st law of TD, as written in eqtns. ...
	So what other sorts of state variables can we have in the set { xj, Yj }? As just noted, a complex system may have a great many of these active at once, making the thermodynamic analysis quite complex.
	Here are some common examples, listed by conjugate pair:
	Work done by force                              infinitesimal dW               term in TD potential
	Volume change (pressure)                         dW   =   - p dV                              - pV
	Length change (tension)                            dW   =   f dL                                  fL
	Areal change (surface tension)                  dW   =    dA                                 A
	Strain  (stress)                                            dW   =   ij dij                              ij ij
	Electric polarization (E field)                    dW   =   E. dp                               E.p
	Magnetization  (B field)                            dW   =   B. dM                              B.M
	Particle number (chemical potential)        dW   =    dN                                 N
	Rotation (angular momentum)                  dW   =    . dL                               .L
	There are many more, some of which we will encounter in these notes. Note the different sign of  - pdV (the infinitesimal work done on the system by an external pressure acting inwards) from that of f dL and  dA (work done on the systemby forces pull...
	Clearly, if only two pairs of TD variables are active (ie., (T,S) plus one other pair), then the analysis goes through in the same way as for gases above, with the new pair substituting for the pair (p,V) discussed above; and we can define precise ana...
	Consider as an example the case where hydrostatic changes (involving stresses, etc., which change the volume, area, etc.) do not play a role, but where an applied magnetic field induction B can cause changes in the magnetization M. Then the ana...
	Internal energy:                         dU   =    TdS -  B. dM
	Enthalpy:                                  dH    =    TdS + M. dB
	Helmholtz Free Energy:           dF    =   -SdT – B. dM
	Gibbs Free Energy:                  dG    =   -SdT + M. dB                                               (31)
	with the parallel set of TD potentials in exact analogy with (23).
	The case where only 2 sets of TD potentials plays a role is of course anomalous. More generally we will have at least three. Then the number of different combinations of derivatives becomes very large - hence the complexity of real thermodynamics
	Clearly we cannot go through all possible examples. But it is useful at this point to say a little more about the Helmholtz free energy F. We will do this for the specific case of ‘gas-like’ systems, for which the results (24)-(29) apply.
	Free Energy F   (Helmholtz Free Energy)   The Helmholtz free energy F, as we saw in (24) above, is given in terms of the energy U  by
	(32)
	and as we also saw, an infinitesimal change in F gives, for a simple ‘gas-like system,
	dF  =    dU – TdS –SdT   =   TdS – pdV – TdS – SdT
	so that we get
	dF  =  -SdT – pdV                                                                                                         (33)
	From this we observe that a change ingives the maximum work for an isothermal process, in the same way that a change in  gives the maximum work for an isentropic process.
	As we will discuss in more detail when we come to discuss the canonical distribution in SM, the free energy F typically refers to a system in contact with a heat bath at some temperature T.   We can then show, for the gas-like systems we are disc...
	To see this, suppose we have two gases separated by a piston both in contact with a heat bath at temperature T (see diagram):
	Consider now a small displacement of the piston such that  . Then
	, and the change in free energy is just
	(34)
	The pressures must be equal to balance the force and   so that
	(35)
	Thus the free energy is at a minimum is equilibrium for a system at constant temperature.
	If on the other hand we were dealing with a closed system with some source of heat and an insulating piston,  as shown in the diagram immediately below, then U  would be a minimum in equilibrium since we then have
	(36)
	From these considerations we establish, using TD arguments, that:
	When the system is in contact with a heat bath there is a balance between lowering the internal energy and increasing entropy.
	We see that at higher entropy becomes more important, because the “TS” term in F wins; but when T ( 0, the “U” term wins.
	One can also easily obtain S and U from F. Using the result (26) for S, ie.,                                                                                                               we have                                                         ...
	(37)
	where . This gives one way to determine the internal energy from measurements of the Helmholtz free energy, we shall also use it later extensively in SM as a purely theoretical relation.
	One can use similar arguments to look at the enthalpy H and the Gibbs free energy, or free enthalpy G. Thus the Gibbs free energy is, as noted above,
	G  =  H - TS
	=  U – TS  + pV
	=  F + pV                                                                                                              (38)
	Internal energy:                        dU    =    TdS -  pdV  + dN
	Enthalpy:                                  dH    =    TdS + Vdp  + dN
	Helmholtz Free Energy:           dF    =   -SdT – pdV  + dN
	Internal energy:                        U
	Generalized Enthalpy:               =   U + pV - N
	Helmholtz Free Energy:           F    =   U – TS
	Grand canonical potential:           =   U – TS + pV - N                                             (42)
	with the consequent differentials given by (again, starting from (39)):
	Internal energy:                        dU   =    TdS -  pdV + d
	Enthalpy:                                  d   =    TdS + Vdp - Nd
	Helmholtz Free Energy:           dF    =   -SdT – pdV + dN
	Gibbs Free Energy:                  d    =   -SdT + Vdp - Nd                                           (43)
	dU    =    TdS -  pdV  + dN                                                              (49)

