PHYS 403: HOMEWORK ASSIGNMENT No. 3: QUANTUM GASES and SUPERFLUIDS

(Mar. 10th, 2022)

HOMEWORK DUE: WEDNESDAY, March 23rd, 2022

To be uploaded by 11.59 pm , Wednesday March 23rd - Late Homework will not be accepted

QUESTION (1) EARLY UNIVERSE: At the 'recombination time' τ_{R} (roughly 400,000 yrs after the Big Bang), the main constituents of the universe were photons, H atoms, protons, and electrons. Let's ignore the photons here, and assume that the 3 remaining species have chemical potentials μ_{H}, μ_{p}, and μ_{e}, and number densities n_{H}, n_{p}, and n_{e}, respectively. Assume a hydrogen ionization energy E_{o}, and that that there are 2 relevant states for the proton and electron (they are spin-1/2), and hence 4 states for the H atom.
$\mathbf{1}(\mathbf{a})$ Suppose we can treat this system as low density. Then what are n_{H}, n_{p}, and n_{e} in terms of μ_{H}, μ_{p}, and μ_{e} ?
$\mathbf{1}(\mathbf{b})$ What defines thermal equilibrium for this system, and at equilibrium, what are n_{H}, n_{p}, and n_{e} ?
$\mathbf{1}(\mathbf{c})$ Using values for E_{o} and for the mass m_{e} of an electron that you can get from the literature, find the density n_{e} when $n_{H}=n_{p}=n_{e}$ (ie., half the H atoms are ionized), which gives the density at the time τ_{R}.

QUESTION (2) BOSE GASES:

2(a): Draw two graphs as a function of energy E which shows (i) the 1-particle density of states, and (ii) the Bose distribution function, for a 3-dimensional Bose system of massive particles, for the cases $T>T_{c}$ and $T<T_{c}$. Here T_{c} is the BEC condensation temperature. Then draw two graphs showing the product of these 2 functions as a function of energy, again for these 2 cases.

2(b) A criterion for BEC to occur in a 3-d gas of bosons is that the chemical potential $\mu=0$. Explain this criterion with reference to the relevant mathematical expressions.

2(c) Rederive the criterion for 2-d and 1-d systems. What do the results tell you about BEC in these cases?
$\mathbf{2 (d)}$ Consider now the photon gas. Why is $\mu=0$ always for photons? Now, derive an expression for the energy density $u(T)$ for a photon gas in n dimensions, where n is a positive integer; and show that $u(T) \propto T^{n+1}$.

QUESTION (3) SUPERFLUIDS

$\mathbf{3 (a)}$ Suppose a mass M is moving through a fluid with constant viscosity coefficient η. Find the equation of motion of the particle, assuming there is an external force $f(t)$ acting on it. If the initial velocity at $t=0$ is $v(t=0)=v_{o}$, then show the solution to this equation of motion is

$$
v(t)=v_{o} e^{-\gamma t}+\int_{0}^{t} d t^{\prime} \frac{f\left(t^{\prime}\right)}{m} e^{-\gamma\left(t-t^{\prime}\right)}
$$

where $\gamma=\eta / M$. Then show that if the force $f(t)=f_{o}$, a constant, then after a long time the particle will reach a constant velocity v_{f}; and find v_{f}.
$\mathbf{3 (b)}$ In a superfluid the friction depends on the velocity. Suppose that $\eta(v)=\eta_{o}\left(v-v_{c}\right) \theta\left(v-v_{c}\right)$, where η_{o} is a constant, and $\theta(x)=0$ for $x<0$, and $\theta(x)=1$ for $x>0$. Find the new terminal velocity v_{f}, without solving the new equation of motion.

3(c) Superfluids have quantized vortex ring excitations. For a circular ring of radius R, the energy $E \sim$ $\frac{1}{2} \rho \kappa^{2} R \ln \left[R / a_{o}\right]$, and the momentum $p \sim \pi \rho \kappa R^{2}$, where ρ is the superfluid density, κ the circulation quantum, and $a_{o} \sim 0.1 \mathrm{~nm}$ is a vortex core radius. If the critical velocity for formation of a vortex ring is $v_{c} \sim \min (E / p)$, then show that in an infinite system, $v_{c} \rightarrow 0$; and also find v_{c} if the superfluid is moving through a cylindrical tube of radius R_{o}. Finally; since the vortex ring velocity is $v=d E / d p$, find $v(R)$ as a function of R, and sketch a graph of it.

