begindocument/before

PHYS 403: HOMEWORK ASSIGNMENT No. 3:

BOSONS (Mar. 14th, 2022)

HOMEWORK DUE: THU, March 30th, 2023 (revised deadline)

To be uploaded by 11.59 pm, Thursday March 30th - Late Homework will not be accepted

QUESTION (1) PHOTON BEAMS: We decide to make a very crude monochromatic photon beam simply by collimating and filtering light from a black body. Suppose we have a spherical black body of diameter 1m at temperature T, and we collimate the light from this body through a circular hole hole of radius 1 cm, at a distance of 10m from the centre of the black body. We use a filter of wavelength bandwidth $\Delta \lambda = 0.01$ Å, centred on a wavelength $\lambda = 5890$ Å (ie., one of the 2 main Na lines).

1(a) Suppose we want to have a power of 10^{-4} W in this beam. What temperature must the black body be at to get this?

1(b) What would be the difference between this light and the light from a laser of the same frequency and the same linewidth be? How could you tell the difference in an experiment?

QUESTION (2) PHOTONS: It is also interesting to see how the behaviour of photons differs from that of massive bosons - in particular, superfluidity and Bose condensation are impossible for photons.

2(a): Explain under what circumstances, and why, it is that $\mu = 0$ for photons. Where do we expect to see photons for which $\mu \neq 0$, and why?

Now, consider a photon gas in n dimensions, where n is a positive integer. Derive expressions for (i) the density of states $g(\epsilon)$, and (ii) the energy density u(T), for a photon gas in n dimensions; and show that $u(T) \propto T^{n+1}$.

2(b) Suppose now that the density of states $g(\epsilon) = g_o \epsilon$ per unit area A for a 2-dimensional system of photons (something easily arranged by having it in a confined geometry). Find expressions for (i) the grand canonical potential $\Xi(T)$ per unit area, (ii) the total energy U(T), and (iii) the pressure p(T), for this photon gas. What is the relationship between p, U, and A?

QUESTION (3) INFLUENCE of DENSITY of STATES: The 2 key factors which decide the behaviour of a set of bosons or fermions are (i) the value of the chemical potential $\mu(T)$, and (ii) the form of the density of states g(E). Let's look at how these influence the results for a set of non-interacting particles.

3(a) Suppose we have a set of N bosons, with N conserved, and $g(\epsilon) = g_o \epsilon^{1/2}$. Write down an expression for the number density $\rho = N/V$ of particles for this system, and explain why the system will show Bose condensation. Find the temperature T_c at which Bose condensation occurs, and find the temperature dependence of the condensate density $\rho_s(T)$ as a function of T for $T < T_c$. You can use the result that

$$\int_0^\infty dx \frac{x^{1/2}}{e^x - 1} = A_o = 1.306\pi^{1/2}$$

3(b) Suppose now we have a density of states given by: $g(\epsilon) = \frac{g_o}{E_1 - E_2} \left[\theta(\epsilon - E_1) - \theta(\epsilon - E_2)\right]$, where $\theta(x)$ is the step function. Again, write down an expression for ρ for this system, assuming a set of non-interacting bosons.

Suppose that instead we were dealing with fermions, and that $E_2 > \mu > E_1$. What then would be the relationship between $\rho(T)$, μ , and g_o ? Suppose now that for some reason we have $\mu(T)$ pinned so that $\mu - E_1 = (E_2 - E_1)/2$; what then is thre zero temperature value $\rho(T = 0)$ in terms of g_o ? And what then is the total energy U(T) of the system in an expansion up to $\sim O(T^2)$, assuming that $k_BT \ll (\mu - E_1)$?

3(c) Finally put $E_1 = 0$ and $E_2 = \infty$ for the density of states just given, and assume again a set of non-interacting bosons. Show, from your expression for ρ in this case, that the system will NOT show Bose condensation, by rewriting the integral over energy in the form of an infinite sum (expand the Bose function as a power series).

END of 3RD HOMEWORK ASSIGNMENT